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SU(2) vortex configuration in Laplacian center gauge
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Abstract

We study how Laplacian center gauge identifies the vortex content of a thick SU(2) vortex configuration on the lattice. This
configuration is a solution of the Yang–Mills classical equations of motion having vortex properties. We find that this gauge
fixing procedure cleanly identifies the underlying vortex properties. We also study the monopole content of this configuration
detected with this procedure. We obtain two monopole curves lying on the surface of the vortex. 2001 Elsevier Science B.V.
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1. Introduction

Confinement of quarks is still a phenomena not
fully understood. Two mechanisms, proposed long
time ago, are currently receiving a lot of attention.
In the first one [1], confinement is seen as a dual
Meissner effect, based in the condensation of magnetic
monopoles in the QCD vacuum. In the second one [2],
confinement is due to the condensation of vortices.
Both pictures of confinement show up in specific
partial gauge fixings.

In the dual superconductor picture of confinement,
magnetic monopoles appear as defects in the Abelian
gauges proposed by ’t Hooft [3]. In this case the gauge
is fixed up to the Cartan subgroup of the gauge group.
Then, monopoles appear at points in space in which
the gauge can not be fixed up to the Cartan subgroup,
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leaving a gauge freedom larger than the Abelian
subgroup. In the vortex picture of confinement vortices
are bidimensional objects carrying flux quantized in
elements of the center of the group.

Both pictures of confinement receive strong sup-
port from lattice results. The dual superconductor pic-
ture of confinement is studied by first fixing the lat-
tice configurations to some Abelian gauge, and then,
analyzing the Abelian projected configurations. In all
the Abelian gauges considered it is found that there is
monopole condensation in the confinement phase and
there is not in the deconfinement phase [4–6]. The vor-
tex picture of confinement is studied by first fixing the
gauge to maximal center gauge and then analyzing the
center projected configurations. By doing this it is ob-
served that these projected configurations reproduce
the full string tension. Even more, this string tension
disappears if the center vortices identified after cen-
ter projection are removed from the lattice ensemble
[7,8]. This phenomena is called center dominance.
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The relevance of center dominance is obscured by
the fact that you also obtain the full string tension
without doing any gauge fixing [9]. Then, center dom-
inance seems of no physical relevance. Nevertheless,
as it is said in [9], the non-triviality of center projec-
tion is related to the maximal center gauge fixing be-
cause, after doing that, the information about extended
physical objects is now encoded inZN local observ-
ables. So, maximal center gauge is needed to identify
the vortex content of the vacuum. Doing this, maximal
center gauge fixing and center projection, it is found
that the obtained vortex properties extrapolate to the
continuum limit, e.g., the ratio of string tension and
vortex (area) density is regulator independent [10].

One of the drawbacks of maximal center gauge is
that this gauge fixing procedure suffers from the Gri-
bov copies problem. This problem is associated to the
structure of the functional to be maximized, because
it has many local maximums, and then, the local algo-
rithms used to find the global maximum usually ends
in one of these local maximums (Gribov copies). As
was pointed out in [11,12] the Gribov copies prob-
lem for maximal center gauge is a really severe one.
Using a more powerful algorithm (simulated anneal-
ing) to find the global maximum of the functional to
be maximized, the projected string tension is not in
agreement with the physical string tension. This neg-
ative result has been addressed in [13,14] arguing that
direct maximal center gauge can be understood as a
best fit to a given lattice gauge field by a thin vortex
configuration [15], being this best fit given by an ap-
propriate choice of the lattice Gribov copy and, with
this choice, recovering the nice properties of the max-
imal center gauge fixing procedure. Laplacian center
gauge [16] was proposed as an alternative to the maxi-
mal center gauge fixing prescription without the lattice
Gribov copies problem. In this case, the vortex prop-
erties can be obtained with two different procedures,
looking at the points in which the gauge transforma-
tion can not be uniquely defined or using the center
projection method.

It is the purpose of this article to study how Lapla-
cian center gauge identifies a thick vortex configura-
tion on the lattice. To this end we apply this gauge
fixing procedure to a solution of the Yang–Mills equa-
tions of motion having vortex properties. After gauge
fixing we project to the center of the group, and then
check if this solution is seen as a thin vortex in the

projected configuration. We compare the obtained re-
sult with the one obtained using maximal center gauge.
Finally, we study the monopole and vortex content of
this configuration by looking at the singularities of the
gauge fixing procedure and see how this result com-
pare with the previous methods.

The layout of the article is the following. In Sec-
tion 2 we briefly describe both center gauge fixing pro-
cedures, maximal center gauge and Laplacian center
gauge. In Section 3 we show how a vortex solution ap-
pears in these gauge fixing prescriptions. And in Sec-
tion 4 we present our conclusions.

2. Center gauge fixing

In this section we briefly describe both gauge fix-
ing procedures, maximal center gauge and Laplacian
center gauge, for the SU(2) Yang–Mills theory.

The maximal center gauge (MCG) in SU(2) lattice
gauge theory is defined as the gauge which brings link
variablesU as close as possible to elements of its
centerZ2 = ±1. This can be achieved by maximizing
the quantity:

(1)C = 1

VD

V∑

n=1

D∑

µ=1

1

4
|TrU(n,µ)|2,

whereV is the number of sites on the lattice and
D the number of dimensions. The usual procedures
to maximize the functionalC are local algorithms
maximizing this quantity at each lattice point. In
Ref. [17] it is described the most used algorithm to
perform this maximization.

The Laplacian center gauge (LCG) fixing prescrip-
tion use the two eigenvectors with lowest eigenvalues,
ψa

1 (n) andψa
2 (n), of the Laplacian operator,

Labnm(R)=
∑

µ

(
2δnmδ

ab −Rab(n,µ)δm,n+µ̂

(2)−Rba(m,µ)δn,m+µ̂
)

in presence of a gauge fieldRab(n,µ) in the adjoint
representation of the gauge group, to fix completely
the gauge up to the center of the SU(2) group. First,
the lowest eigenvector,ψa

1 (n), is rotated to the (σ3)
direction in color space. This step, Laplacian Abelian
gauge, fix the gauge up to the Abelian subgroup of
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the SU(2) group [18]. This U(1) Abelian freedom is
fixed by imposing that theψa

2 (n) eigenvector is further
rotated to lie in the positive (σ1, σ3) half-plane. After
these two steps the gauge is completely fixed up to the
center degrees of freedom.

3. Gauge fixing of a vortex solution

In this section we study how Laplacian center gauge
identifies a thick vortex configuration on the lattice.
To this end we apply this gauge fixing procedure to
a solution of the Yang–Mills classical equations of
motion having the properties of a thick vortex. The
layout of this section is the following. First, we review
the properties of the solution we are going to work
with. This solution was presented in [19]. Second, we
show how this solution appears after going to maximal
center gauge and center projection. This result was
presented in [24] and the solution appears as a thin
vortex in the projected configuration. We will compare
this result with the one obtained with LCG. Third,
we fix the gauge to Laplacian center gauge and then
we try to identify vortices in two different ways.
First, by looking at the center projected configuration,
and second by looking at points in which the gauge
transformation is not well defined. Finally, we study
the monopole content of this vortex solution.

The configuration we are going to study in maximal
and Laplacian center gauge, is a solution of the SU(2)
Yang–Mills classical equations of motion, presented
in [19]. This solution lives on the four-dimensional
torusT 4, with two large directions,t , x, and two small
directions,y, z, satisfies twisted boundary conditions
given by the twist vectors�k = �m= (1,0,0), has action
S = 4π2 and topological charge|Q| = 1/2. We fix
the length of the torus in the small directions,y, z, to
lsmall = 1. The length in the large directions,t , x, has
to bellarge� lsmall (llarge= 4 is large enough to obtain
the desired properties of the solution). Then we have
a solution living on a four-dimensional torusT 4 with
physical sizesl2large× l2small= 42 × 12.

The main properties of the solution are the follow-
ing. By looking at the action density we can see that it
has only one maximum and has a size approximately
equal to the size of the torus in the small directions,y

andz. The action density goes exponentially to zero in
the two large directions,t andx, while in the other two

directions,y andz, never reaches the zero value. This
exponential fall off int andx is the reason whyllarge=
4lsmall is big enough. And the most important property
of this solution is that a square Wilson loop in thext
plane, centered at the maximum of the solution, takes
the value−1 for a big enough size of the loop and is
almost independent of theyz coordinates [19]. Then,
looking at this Wilson loop, we see a bidimensional
object (because is independent of they, z coordinates)
carrying flux in an element of the center of the group.

To avoid any complication related to twisted bound-
ary conditions when we gauge fix and center project
the configuration, we repeat the solution once on each
direction. Then we will have a solution in a four-
dimensional torus with physical size 82 × 22, with ac-
tion S = 24×4π2, topological charge|Q| = 24 ×1/2,
and satisfying periodic boundary conditions. Then, we
have a solution with 16 maximums in the action den-
sity.

To obtain this solution on the lattice we use a cool-
ing algorithm which implements twisted boundary
conditions (see [20–23] for details on this procedure).
In this article we use three configurations obtained in
lattice sizesNt ×Nx ×Ny ×Nz with Nt =Nx = 4Ns
andNy = Nz = Ns = 4,5,6. As we fix the length of
the torus in the small directions to belsmall= 1, the lat-
tice spacing isa = 1/Ns . Therefore, we will be look-
ing at the same solution with three different resolu-
tions,a = 0.25,a = 0.20 anda = 0.16. Once we have
these three lattice configurations, we repeat the solu-
tion in all directions and we do not need the trick used
to implement twisted boundary conditions on the lat-
tice. Then, we have three lattice configurations with
lattice sizes 2Nt ×2Nx×2Ny×2Nz and satisfying pe-
riodic boundary conditions. We label these three con-
figurations I, II and III, for the values ofNs = 4,5 and
6, respectively. From these lattice configurations the
field strengthFµν is obtained from the clover average
of plaquettes 1× 1 and 2× 2, combined in such a way
that the discretization errors are O(a4). And from this
Fµν we calculate all other quantities, like the action
density or the topological charge.

We show in Figs. 1(a) and 1(b) the action density
for the III solution (lattice spacinga = 0.16). What
we plot isS(t, x, y, z) for fixed values ofy andz. In
Fig. 1(b) we choose these values to be the maximum
of the action density iny, z and in Fig. 1(a) the
minimum. We can see that the curves obtained joining
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(a) (b)

Fig. 1. The action densityS(t, x, y, z) for the III solution (lattice spacinga = 0.16) is shown as a function ofx andt , and for fixed values of the
y andz coordinates, in (a),y andz fixed to the minimum in the action density in these coordinates, and in (b),y andz fixed to the maximum.

the data are very smooth and also we can figure out
the dependence iny, z, for any value ofy, z; we
always have the picture shown in Figs. 1(a) and (b),
but changing the height of the peak, going from the
maximum value, shown in Fig. 1(b), to the minimum
value, shown in Fig. 1(a). We also want to point out
that a square Wilson loop centered in one of these
maximums, takes the value−1 for a big enough size
of the loop, in physical units approximately equal to 2,
and this value is almost independent of they andz co-
ordinates [19].

The first thing we study is the center projected
solution after going to maximal center gauge. We
use the algorithm presented in [17] to fix the gauge
to maximal center gauge. This is a local algorithm
which maximize the functional (1). This procedure
has the Gribov copies problem. What we made is
repeat the gauge fixing procedure several times and
we take the configuration with higher value ofC. In
fact, the fastest way to get the highest value ofC is
by going first to Laplacian center gauge and then to
maximal center gauge. As a technical detail we say
that we stop the gauge fixing procedure when theC

quantity is stable up to the eighth significant digit.
Once we have the gauge fixed configuration we make
the center projection. In this case theZ2 configuration
is quite simple. All plaquettes belonging to thexy,

xz, yz, yt andzt planes (planes involving at least one
of the small directions) are positives. Only in thext
plane you can find negative plaquettes. There are four
P -vortices perxt plane, each one at the same location
of the four maximums in the action density. All other
plaquettes are positives. So, the vortex solution is seen,
in the center projected configuration obtained after
fixing to maximal center gauge, as a bidimensional
string of negative plaquettes, this string joining the
maximums in the action density at eachxt plane.

Second, we study this solution in Laplacian center
gauge. To fix to Laplacian center gauge we have
to calculate the lowest eigenvectors of the Laplacian
operator. We use the algorithm presented in [25] to
obtain these vectors. We get the three eigenvectors
with lowest eigenvalues, and we obtain that in this case
the two lowest eigenvalues are degenerated. With these
two eigenvectors we fix the gauge to Laplacian center
gauge. First, we find the gauge transformation which
rotates the first eigenvector to the third direction in
color space (σ3). And then, we find the Abelian gauge
transformation which rotates the second vector further
to the positive(σ1, σ3) half-plane.

We center project the LCG fixed configurations and,
as before, study the center projected configuration.
We obtain the same structure described before for the
center projected configuration obtained after going to
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(a) (b)

Fig. 2. The cosine of the angle between the two lowest eigenvectorsP (t, x, y, z) for the III solution (lattice spacinga = 0.16) is shown as
a function ofx and t , and for fixed values of they and z coordinates, in (a),y andz fixed to the minimum in the action density in these
coordinates, and in (b),y andz fixed to the maximum.

maximal center gauge. So, Laplacian center gauge and
center projection clearly identifies the vortex solution
as a bidimensional string ofP -vortices. If we take the
center projected configuration after fixing to Laplacian
Abelian gauge, instead of the one after LCG fixing,
we do not see any structure unraveling the underlying
vortex structure, so the fixing of the U(1) degrees of
freedom is crucial to identify the vortex properties.
We also want to point out that the same results are
obtained if we choose to fix the gauge to LCG linear
combinations of the two lowest eigenvectors (these
two are degenerated).

Monopoles and vortices can be found in Laplacian
center gauge as defects of the gauge fixing procedure.
Then, we have to look at the first and second eigen-
vector and find the points in which you can not build
the gauge transformation. In the first step, rotate the
first eigenvector to the third direction in color space,
we can find a singularity ifψa

1 (t, x, y, z)= 0. This de-
fines lines in four-dimensional space and these lines
are identified as monopole lines. In the second step,
find the Abelian gauge transformation rotating the sec-
ond eigenvector further to the positive(σ1, σ3) half-
plane, there are singularities at points in which the first
and second eigenvectors are parallel. This condition

defines surfaces in four-dimensional space and these
surfaces are identified as vortex sheets.

As we know that this solution is a thick vortex con-
figuration we look at the cosine of the two lowest
eigenvectors,P(t, x, y, z), to see how the vortex back-
ground is identified. In Fig. 2(a) we showP(t, x, y, z)
as a function oft andx for y andz fixed to the min-
imum in the action density, and in Fig. 2(b) the same
quantity but fory andz fixed to the maximum in the
action density. The same picture is obtained for ally,
z points. We see that these two vectors are orthogo-
nal at all points of the lattice except on the neighbor-
hood of the maximum in the action density for eachy,
z point. If at these points the value ofP reaches the
value 1 then you can not build the gauge transforma-
tion. This is the condition defining vortex sheets. If we
join the maxima ofP(t, x, y, z) for all y, z values we
obtain a surface of points with a value for the cosine
very close to 1 (always over 0.7). It seems that look-
ing at this quantity we detect a vortex sheet. Note that
in the case of degeneration two for the lowest eigen-
vector, the vortex properties are uniquely determined
because if these two vectors are parallel at some point,
any linear combination will produce parallel vectors at
the same point.
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Finally, we study the monopole content of this con-
figuration. By construction, Laplacian gauge magnetic
monopoles lie on the center vortices, then, we look
at one of the 2× 2 yz planes in which the vortex
sheet is located (one of the four maximums in the
action density for thex, t coordinates). In this case,
the monopole pattern obtained depends on the choice
of lowest eigenvector. We parameterize the possible
choices with an angle,θ , as:Ψ ′

1 = cosθΨ1 + sinθΨ2,
and we look at the monopole patterns as a function
of the θ angle. We always see two monopole curves,
each one going between two of the maximums in
the action density in they, z coordinates (positions
y0, z0 = 0.5,1.5). For a value ofθ which can be cho-
sen as the origin of anglesθ = 0◦, these two curves are
straight lines in they direction (z = 0.5 and z= 1.5
for 0 � y � 2). Forθ = 45◦ these curves are the two
diagonals of thisyz plane (z= y andz = −y + 2 for
0 � y � 2), forθ = 90◦ are straight lines in thez direc-
tion (y = 0.5 andy = 1.5 for 0� z� 2 ), forθ = 135◦
are the lines orthogonal to the diagonals (z= −y + 1
andz= y+1 for 0� y � 1; z= −y+3 andz= y−1
for 1 � y � 2) and forθ = 180◦ you recover the pic-
ture atθ = 0◦. So we can figure out how these curves
evolve withθ , the two lines in they direction seen at
θ = 0◦ are deformed up to get the two diagonals at
θ = 45◦, continuing then up two get the two lines in
thez direction atθ = 90◦, then the lines orthogonal to
the diagonals atθ = 135◦ and finally getting the start-
ing pattern atθ = 180◦.

4. Conclusions

We have studied in this Letter how Laplacian cen-
ter gauge identifies a SU(2) thick vortex configuration
on the lattice. Looking at the center projected con-
figuration obtained after fixing the gauge of a vortex
solution to Laplacian Center gauge, we see a bidimen-
sional string of negative plaquettes joining the max-
imums of the solution in the action density at each
xt plane. This is the same result obtained by look-
ing at the center projected configuration after fixing
to maximal center gauge. So both procedures clearly
identify the vortex solution as a surface ofP -vortices.
We have also looked at the other way Laplacian cen-
ter gauge can locate center vortices, and we have seen
that looking at the possible singularities of the gauge

fixing procedure, you obtain the same result as using
Laplacian or maximal center gauge and center projec-
tion. The candidate points to be singularities of the
gauge fixing procedure describe the same surface de-
tected using center projection. Nevertheless, even for
this quite simple case in which we know that there
is a physical vortex, it is quite difficult to find an in-
terpolation procedure to state that you have an actual
singularity: points in which the lowest eigenvector of
the L operator is zero or the two lowest eigenvectors
are parallel. This difficulty was previously pointed out
in Ref. [26] in which they use the alternative center
projection procedure to locate vortices, which we have
seen that gives the same results for the vortex solution.

It is worth to stress that, for this particular thick
vortex configuration, both procedures to locate vor-
tices, maximal center projection and Laplacian center
gauge, either with the collinearity condition of the two
lowest eigenvectors or through the center projection
method, give the same answer. Nevertheless, this re-
sult does not allow us to conclude what is the generic
way in which Laplacian center gauge works, specially
in realistic SU(2) configurations with strongly over-
lapping vortices.
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