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A l-dimensional cellular automaton which generates random sequences is dis- 
cussed. Each site in the cellular automaton has value 0 or 1, and is updated in 
parallel according to the rule n: = a,-, XOR (a, OR a,+r) (a; = (a,-, + a, + 
~1, + , + (I, ai+ ,) mod 2). Despite the simplicity of this rule, the time sequences of site 
values that it yields seem to be completely random. These sequences are analysed by 
a variety of empirical, combinatorial, statistical, dynamical systems theory and 
computation theory methods. An efficient random sequence generator based on 
them is suggested. 0 1986 Academic Press. Inc. 

1. RANDOM SEQUENCE GENERATION 

Sequences that seem random are needed for a wide variety of purposes. 
They are used for unbiased sampling in the Monte Carlo method, and to 
imitate stochastic natural processes. They are used in implementing rando- 
mized algorithms which require arbitrary choices. And their unpredictability 
is used in games of chance, and potentially in data encryption. 

To generate a random sequence on a digital computer, one starts with a 
fixed length seed, then iteratively applies some transformation to it, progres- 
sively extracting as long as possible a random sequence (e.g., [l]). In general 
one considers a sequence “random” if no patterns can be recognized in it, 
no predictions can be made about it, and no simple description of it can be 
found (e.g., [2]). But if in fact the sequence can be generated by iteration of 
a definite transformation, then a simple description of it certainly does 
exist.’ The sequence can nevertheless seem random if no computations done 
on it reveal this simple description. The original seed must be transformed 
in such a complicated way that the computations cannot recover it. 

‘A stricter definition of randomness can be based on the non-existence of simple descriptions 
[3], rather than merely the difficulty in finding them. None of the sequences discussed here, nor 
many generally considered random, would qualify according to this definition. 
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The degree of randomness of a sequence can be defined in terms of the 
classes of computations which cannot discern patterns in it. A sequence is 
“random enough” for application in a particular system if the computations 
that the system effectively performs are not sophisticated enough to be able 
to find patterns in the sequence. So, for example, a sequence might be 
random enough for Monte Carlo integration if the values it yields are 
distributed sufficiently uniformly. The existence say of particular correla- 
tions in the sequence might not be discerned in this calculation. Whenever a 
computation that uses a random sequence takes a bounded time, there is a 
limit to the degree of randomness that the sequence need have. Statistical 
tests of randomness emulate various simple computations encountered in 
practice, and check that statistical properties of the sequence agree with 
those predicted if every element occurred purely according to probabilities. 
It would be better if one could show in general that patterns could not be 
recognized in certain sequences by any computation whatsoever that, for 
example, takes less than a certain time. No such results can yet be proved, 
so one must for now rely on more circumstantial evidence for adequate 
degrees of randomness. 

The fact that acceptably random sequences can indeed be generated 
efficiently by digital computers is a consequence of the fact that quite simple 
transformations, when iterated, can yield extremely complicated behaviour. 
Simple computations are able to produce sequences whose origins can 
apparently be deduced only by much more complex computations. 

Most current practical random sequence generation computer programs 
are based on linear congruence relations (of the form x’ = ax + b mod n) 
(e.g., [l]), or linear feedback shift registers [4] (analogous to the linear 
cellular automata discussed below). The linearity and simplicity of these 
systems has made complete algebraic analyses possible and has allowed 
certain randomness properties to be proved [l, 41. But it also leads to 
efficient algebraic algorithms for predicting the sequences (or deducing their 
seeds), and limits their degree of randomness. 

An efficient random sequence generator should produce a sequence of 
length L in a time at most polynomial in L (and linear on most kinds of 
computers). It is always possible to deduce the seed (say of length s) for 
such a sequence by an exhaustive search which takes a time at most O(2”). 
But if in fact such an exponentially long computation were needed to find 
any pattern in the sequence, then the sequence would be random enough for 
almost any practical application (so long as it involved less than exponential 
time computations). 

No such lower bounds on computational complexity are yet known. It is 
however often possible to show that one problem is computationally equiv- 
alent to a large class of others. So, for example, one could potentially show 



CELLULAR AUTOMATA 125 

that the problem of deducing the seed for certain sequences was NP-com- 
plete [5]: special instances of the problem would then correspond to 
arbitrary problems in the class NP, and the problem would in general be as 
difficult as any in NP. (One should also show some form of uniform 
reducibility to ensure that the problem is difficult almost always, as well as 
in the worst case.) The class NP (nondeterministic polynomial time) in- 
cludes many well-studied problems (such as integer factorization), which 
involve finding objects (such as prime factors) that satisfy polynomial-time- 
testable conditions, but for which no systematic polynomial time (P) al- 
gorithms have ever been discovered. 

Random sequence generators have been constructed with the property 
that recognizing patterns in the sequences they produce is in principle 
equivalent to solving certain difficult number theoretical problems [2] (which 
are in the class NP, but are not NP-complete). An example is the sequence 
of least significant bits obtained by iterating the transformation x’ = x2 
mod (pq), where p and q are large primes (congruent to 3 modulo 4) [6]. 
Making predictions from this sequence is in principle equivalent to factoring 
the integer pq [6,7]. 

There are in fact many standard mathematical processes which are simple 
to perform, yet produce sequences so complicated that they seem random. 
An example is taking square roots of integers. Despite the simplicity of its 
computation, no practical statistical procedures have revealed any regularity 
in say the digit sequence of 6 (e.g., [8]). (Not even its normality or 
equidistribution has however actually been proved.) An even simpler exam- 
ple is multiplication by +, say in base 6.2 Starting with 1, one obtains the 
pattern shown in Fig. 1.1. The center vertical column of values, correspond- 
ing to the leading digit in the fractional part of (i)n, seems random [lo]. 
(Though again not even its normality has actually been proved.) Given the 
complete number obtained at a particular stage, multiplication by (;)” 
suffices to reproduce the original seed. But given only the center column, it 
seems difficult to deduce the seed. 

Many physical processes also yield seemingly random behaviour. In some 
cases, the randomness can be attributed to the effects of external random 
input. Thus, for example, “analog” random sequence generators such as 
noise diodes work by sampling thermal fluctuations associated with a heat 
bath containing many components. Coin tossings and Roulette wheels 

*This operation can be performed locally on a base 6 digit sequence, and so can be 
implemented as a cellular automaton. Given particular finite boundary conditions, it acts like a 
linear congruential sequence generator (e.g. [l]). But in an infinite region, its behaviour is more 
complicated, and is related to the so-called 3 N + 1 problem [9]. 
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1. 
1.3 
2.13 
3.213 
5.0213 

11.33213 
15.228213 
25.8383213 
41.34350213 

102.235433213 
133.3553528213 
222..25525883213 
333.425113050213 
522.3414514133213 

1203.53241532220213 
2005.521825283383213 
3012.5013420051350213 
4321.13223301152433213 

10581.520351315510520213 
14132.5805451554442883213 
23221.13124155541038058213 
35831.515182555313431133213 
54345.4544342551523445220213 

123542.4240534245585412~3~3213 
205534.040122341244232~94350213 
312523.180283532110350~105433213 
451204.438305528143543~1423529213 

11150ll.fi4344250~2355343233550~3213 
1454314.4054841383555235852545858215 
2423454.01231021355550544212344133213 
4835423.8204433225554424032@54822220213 

1~055334.331105284255404~050123~333~3213 
13125223.51444201042531@~1132@4352135@213 
21512835.454103814042143015201~55022433213 
3245W~55.4231343231~32543258814243348528213 
51113125.334523584435855511582548523120~3213 

114451512.224205441~54422445133531263450~~50213 
154115450.340312401424~341115225150111301133213 
253155413.530451002348Q55145584154550415431451315220213 
421555322.514114303538121542448253454244~25345415155~303213 

FIG. 1.1. Successive powers of 3/2 in base 6. The leading digits in the fractional parts of 
these numbers form a sequence that seems random. The process of multiplication by 3/2 in 
base 6 corresponds to a k = 6, r = 1 cellular automaton rule. 

produce outcomes that depend sensitively on initial velocities determined by 
complex systems with many components. It seems however that in all such 
cases, sequences extracted sufliciently quickly can depend on only a few 
components of the environment, and must eventually show definite correla- 
tions. 

One suspects in fact that randomness in many physical systems (probably 
including turbulent fluids) arises not from external random input, but rather 
through intrinsic mathematical processes [ll]. This paper discusses the 
generation of random sequences by simple procedures which seem to 
capture many features of this phenomenon. The investigations described 
may not only suggest practical methods for random sequence generation, 
but also provide further understanding of the nature and origins of random- 
ness in physical processes. 
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2. CELLULAR AUTOMATA 

A l-dimensional cellular automaton [12,13] consists of a line of sites with 
values a, between 0 and k - 1. These values are updated in parallel 
(synchronously) in discrete time steps according to a fixed rule of the form 

Much of this paper is concerned with the study of a particular k = 2, r = 1 
cellular automaton, described in Section 3. 

For mathematical purposes, it is often convenient to consider cellular 
automata with an infinite number of sites. But practical implementations 
must contain a finite number of sites N. These are typically arranged in a 
circular register, so as to have periodic boundary conditions, given in the 
r = 1 case by 

a; = +(a,, a,, u2) 

ah = q+lj+l,q&l). (2.2) 

It is also possible to arrange the sites in a feedback shift register (cf. [4]), 
with boundary conditions 

a; = &#+J,, a3r u4), +(a,, U4,U,)? a,), 

a; = q&+3, a47 a,)7 al, a2). m(2.3) 

Cellular automata can be considered as discrete approximations to partial 
differential equations, and used as direct models for a wide variety of 
natural systems (e.g. [14]). They can also be considered as discrete dynami- 
cal systems corresponding to continuous mappings on the Cantor set (e.g. 
[15]). Finally they can be viewed as computational systems, whose evolution 
processes information contained in their initial configurations (e.g. [16]). 

Despite the simplicity of their construction, cellular automata are found 
to be capable of diverse and complex behaviour. Figure 2.1 shows some 
patterns generated by evolution according to various cellular automaton 
rules, starting from typical disordered initial conditions. Four basic out- 
comes are seen [15]: (1) the pattern becomes homogeneous (fixed point), (2) 
the pattern degenerates into simple periodic structures (limit cycles), (3) the 
pattern is aperiodic, and appears chaotic, and (4) complicated localized 
structures are produced. The first two classes of cellular automata yield 
readily predictable behaviour, and show no seemingly random elements. But 
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rule 73 

FIG. 2.1. Patterns generated by evolution of various k = 2, r = 1 cellular automata from 
disordered initial states. Successive lines give configurations obtained on successive time steps, 
with white and black squares representing sites with values 0 and 1 respectively. The coefficient 
of 2’ in the binary decomposition of each rule number gives the value of the function #I in Eq. 
(2.1) for the neighbourhood whose site values form the integer i (cf. [17]). 

the third class gives rise to behaviour that is more complex. They can 
produce patterns whose features cannot readily be predicted in detail, and 
in fact often seem completely random. Such cellular automata can be used 
as models of randomness in nature. They can also be considered as abstract 
mathematical systems, and used for practical random sequence generation. 

Figure 2.1 showed patterns produced by evolution according to various 
cellular automaton rules, starting from typical disordered initial conditions, 
in which the value of each site is randomly chosen to be zero or one. Figure 
2.2 shows some patterns obtained instead by evolution from a very simple 
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rule 22 rule 30 de 45 

rule 54 rule 57 de 60 

rule 73 rule 110 rule 122 

FIG. 2.2. Patterns generated by evolution of various k = 2, r = 1 cellular automata from 
an initial state containing a single nonzero site. Complex patterns are seen to be produced even 
with such simple initial conditions. 

initial condition containing a single nonzero site. With such simple initial 
conditions, some class 3 cellular automata yield rather simple patterns, 
which are typically periodic or at least self similar (almost periodic). There 
are nevertheless class 3 cellular automata which yield complex patterns, 
even from simple initial states. Their evolution can intrinsically produce 
apparent randomness, without external input of random initial conditions. 
It is such “autoplectic” systems [II] which seem most promising for 
explaining randomness in nature, or for use as practical random sequence 
generation procedures. 

Many class 3 cellular automata seem to perform very complicated trans- 
formations on their initial conditions. Their evolution thus corresponds to a 
complicated computation. But any predictions of the cellular automaton 
behaviour must also be obtained through computations. Effective predic- 
tions require computations that are more sophisticated than those corre- 
sponding to the cellular automaton evolution itself. One suspects however 
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that the evolution of many class 3 cellular automata is in fact computa- 
tionally as sophisticated as that of any (physically realizable) system can be 
[18, 191. It is thus “computationally irreducible,” and its outcome can 
effectively be found only by direct simulation or observation. There are no 
general computational shortcuts or finite mathematical formulae for it. As a 
consequence, many questions concerning infinite time or infinite size limits 
cannot be answered by bounded computations, and must be considered 
formally undecidable. In addition, questions about finite time or finite size 
behaviour, while ultimately computable, may be computationally intracta- 
ble, and could require, for example, exponential time computations. 

Most class 3 cellular automata are expected to be computationally 
irreducible. A few rules however have special simplifying features which 
make predictions and analysis possible. One class of such rules are those for 
which the function C$ is linear (modulo k) in the ai+j. Such cellular 
automata are analogous to linear feedback shift registers [4]. An example 
with k = 2 is 

ai = (aid1 + a,)mod2 = (uiPl XORu,), (2.4) 

where XOR stands for exclusive disjunction (this is rule number 60 in the 
scheme of [17]). Linear cellular automata satisfy a superposition principle, 
which implies that patterns generated with arbitrary initial states can be 
obtained as appropriate superpositions of the self-similar pattern produced 
with a single non-zero initial site (as illustrated in Fig. 2.2). As a result, it is 
possible to give a complete algebraic description of the behaviour of the 
system [20], and to deduce the outcome of its evolution by a much reduced 
computation. 

Most class 3 cellular automata are however nonlinear. No general meth- 
ods to predict their behaviour have been found, and from their likely 
computational irreducibility one expects that no such methods even in 
principle exist. In studying such systems one must therefore to a large extent 
forsake conventional mathematical techniques and instead rely on empirical 
and experimental mathematical results. 

3. A RANDOM SEQUENCE GENERATOR 

There are a total of 223 = 256 cellular automaton rules that depend on 
three sites, each with two possible values (k = 2, r = 1). Among these are 
several linear rules similar to that of Eq. (2.4). But the two rules that seem 
best as random sequence generators are nonlinear, and are given by 

a; = a,-, XOR(uiORui+,) (3.la) 
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or, equivalently, 

a; = (uiel + ai + u,+~ + u,u,+,) mod 2 (3.lb) 

(rule number 30 [17]; equivalent to rule 86 under reflection), and 

U: = u,-~ xoR (u; OR (NOT u;,,)) (3.2a) 

or 

a; = (1 + a,-i + a,,, + a,~,+~) mod 2 (3.2b) 

(rule 45; reflection equivalent to rule 75). Here XOR stands for exclusive 
disjunction (addition modulo two); OR for inclusive disjunction (Boolean 
addition), and NOT for negation. The patterns obtained by evolution from 
a single nonzero site with each of these rules were shown in Fig. 2.2. It is 
indeed remarkable that such complexity can arise in systems of such simple 
construction. A first indication of their potential for random sequence 
generation is the apparent randomness of the center vertical column of 
values in the patterns of Fig. 2.2. 

This paper concentrates on the cellular automaton of Eq. (3.1). The 
methods used carry over directly to the cellular automaton of Eq. (3.2), but 
some of the results obtained in this case are slightly less favourable for 
random sequence generation. 

The cellular automaton rule (3.1) is essentially nonlinear. Nevertheless, its 
dependence on a,-* is in fact linear. This feature (termed “left permutivity” 
in [21], and also studied in [22]) is the basis for many of its properties. In the 
form (3.1), the rule gives the new value a; of a site in terms of the old values 
uj-l, ui and u,+~. But the linear dependence on cliPi allows the rule to be 
rewritten as 

‘i-1 = a; XOR (a, OR u,+~), (3.3) 

giving a,-i in terms of a;, a, and u,+~. This relation implies that the 
spacetime patterns shown, for example, in Figs. 2.1 and 2.2 can be found 
not only by direct time evolution according to (3.1) from a given initial 
configuration, but also by extending spatially according to (3.3), starting 
with the temporal sequence of values of two adjacent sites. 

Random sequences are obtained from (3.1) by sampling the values that a 
particular site attains as a function of time. In practical implementations, a 
finite number of sites are considered, and are typically arranged in a circular 
register. Given almost any initial “seed” configuration for the sites in the 
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register, a long and seemingly random sequence can apparently be obtained. 
This paper discusses several approaches to the analysis of the cellular 
automaton (3.1) and the sequences it produces. While little can rigourously 
be proved, the overwhelming weight of evidence is that the sequences indeed 
have a high degree of randomness. 

4. GLOBAL PROPERTIES 

This section considers the behaviour of the cellular automaton (3.1) 
starting from all possible initial states. The basic approach is to count the 
possible sequences and patterns that can occur, and to characterize them 
using methods from dynamical systems theory (e.g. [23]). The next section 
discusses the behaviour obtained by evolution from particular initial con- 
figurations. For purposes of simplicity, this section concentrates on the 
infinite size limit; Section 9 considers finite size effects. 

Figure 4.1 shows a spacetime pattern produced by evolution according to 
(3.1) starting from a typical disordered initial state. While definite structure 

FIG. 4.1. Pattern produced by evolution according to the cellular automaton rule (3.1) from 
a typical disordered initial state. 
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is evident, one may suspect that a single line of sites at any angle in the 
pattern can have an arbitrary sequence of values. Below we shah show that 
this is in fact the case: given an appropriate initial condition, any sequence 
can be generated in an infinite cellular automaton with the rule (3.1). 

The rule (3.1) can be considered as a mapping from one (say infinite) 
cellular automaton configuration to another. An important property of this 
mapping is that it is smjective or onto. Any configuration A can thus always 
be obtained as the image of some configuration A -, according to A = +I -. 
A possible configuration A - (not necessarily unique) can be found by 
starting with a candidate pair of site values, then extending to the left using 
Eq. (3.3). So if all possible initial configurations are considered, then any 
configuration can be generated at any time step. Thus with appropriate 
initial conditions, any spatial sequence of site values can be produced. 

Every length X spatial sequence of site values that occurs is determined 
by a length X + 2 sequence on the previous time step. The surjectivity of 
the rule (3.1) implies that such a predecessor exists for any length X 
sequence. But Eq. (3.3) also implies that there are exactly four predecessors 
for any sequence. Given values aj, a,-r, and so on, in one sequence, the 
values a,:+ I and a; in its predecessor can be chosen in all the four possible 
ways; in each case the remaining a,:, are then uniquely determined by Eq. 
(3.3). Thus starting from an ensemble that contains all possible (infinite) 
cellular automaton configurations with equal probabilities, each configura- 
tion will be generated with equal probability throughout the evolution of the 
cellular automaton, and so every possible spatial sequence of a particular 
length will occur with equal frequency. 

One may also consider sequences of values attained by a single site as a 
function of time. Starting from an initial ensemble which contains all 
configurations with equal probabilities, all such sequences again occur with 
equal frequencies. For, given any temporal sequence, iteration of Eq. (3.3) 
yields an equal number of initial configurations which evolve to it. The same 
is true for sequences of site values on lines at any angle in the spacetime 
pattern. 

Entropies provide characterizations of the number of possible sequences 
that occur. First, let the number of distinct length n blocks in these 
sequences be N(n), and let the ith such sequence appear with probability 
pi. Then the topological entropy of the sequence is given by (e.g. [15]) 

s = nl”, ilog,N(n), (4-l) 

and the measure entropy by 
-1 2” 

sw= lim -Cpilog2pi. 
n+m n ; (4.2) 
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If the cellular automaton configurations are considered as elements of a 
Cantor set, then these entropies give respectively the Hausdorff (strictly 
Kolmogorov) and measure dimensions of this set. If the sequences are 
considered as “messages,” then the entropies give respectively their capacity 
and Shannon information content. 

For the cellular automaton of Eq. (3.1), all possible sequences occur with 
equal probabilities (given an equal probability initial ensemble) so both 
entropies are maximal: 

sp=s= 1. (4.3) 

Any reduction in entropy would reveal redundancy in the sequences, and 
would imply a lack of randomness. Equation (4.3) is thus a necessary 
(though not sufficient) condition for randomness. (It is related to statistical 
test A of Sect. 10 and Appendix A.) 

Although Eq (4.3) implies that all possible sequences of values for single 
sites can occur along any spacetime direction, the deterministic nature of the 
cellular automaton rule (3.1) implies that only certain spacetime patches of 
values can occur. In fact, all the site values in a particular patch are 
completely determined by the values that appear on its upper, left and right 
boundaries. Once these boundaries are specified, the values of remaining 
sites in the patch are redundant, and can be found simply by applying (3.1) 
and (3.3). 

In general the degree of redundancy in such spacetime patterns can be 
characterized by the invariant topological and measure entropies for the 
cellular automaton mapping, given by (e.g. [15, 241) 

(4.4) 
and 

(4.5) 

where N( X, T) gives the total number of distinct X x T spacetime patches 
of site values that occur, and the pi give their probabilities. 

It is clear from the locality of the rule (3.1) that 

h,sh<2. (4.6) 

A calculation based on the method of [25] in fact shows that* 

h, 5 1.20. (4.7) 

*Recent results [45] suggest in fact that h, = 1 + T-‘0.6*0.1), yielding a final value of 1. 



CELLULAR AUTOMATA 135 

Hence a knowledge of the time sequences of values of about 1.2 sites suffice 
in principle to determine the values of all other sites. In practice however 
the function which gives the initial configuration in terms of these temporal 
sequences seems rapidly to become intractably complicated, as discussed in 
Section 7. 

5. STABILITY PROPERTIES 

Section 4 considered properties of possible patterns generated by evolu- 
tion with the cellular automaton rule of Eq. (3.1), starting from all possible 
initial configurations. This section considers the change in the patterns 
produced by small perturbations in the initial state. Figure 5.1 shows the 
differences resulting from reversal of a single site value in a typical dis- 
ordered initial configuration. The region affected increases in size with time, 
reflecting the instability of the patterns generated. 

This instability implies that information on localized changes eventually 
propagates throughout the cellular automaton. The rates of information 
transmission to the left and right are determined by the slopes of the 
difference pattern in Fig. 5.1. These in turn give left and right Lyapunov 
exponents AL and A, for the cellular automaton evolution [15, 261. (The 
sequence of site values in a configuration, starting from a particular point, 
can be represented as a real number. Linear growth of the difference pattern 

FIG. 5.1. Differences in patterns produced by evolution according to the cellular automaton 
rule of Eq. (3.1) from two typical disordered states which differ by reversal of the centre site 
value. the growth of the region of differences reflects the instability of the cellular automaton 
evolution. 
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in Fig. 5.1 then implies exponential divergence of the numbers representing 
nearby configurations.) 

The form of the cellular automaton rule (3.1) immediately implies that 

A, = 1. (5.1) 

For consider a configuration in which the difference pattern has reached site 
- 1. Whatever the current values of sites 0 and 1, the XOR in (3.1) leads to 
a change in the new value of site 0. The value (5.1) is the maximum allowed 
by the locality of the rule (3.1). 

Empirical measurements suggest that the left-hand side of the difference 
pattern expands at an asymptotically linear rate, with a slope [45] 

A, = (0.2428 + 0.0003). (5.2) 

A simple statistical estimate for X, can be given. Consider a pair of 
configuations for which the front of the difference pattern has reached site 0. 
As a first approximation, one may assume that the motion of this front 
depends only on the neighbouring values a _ r and a + r, where, by construc- 
tion, a _ r is the same for the two configurations. When a-, = 0, the front 
advances (left) by one site, independent of the values of the a,. When 
a-1 = 1, the front remains stationary if the ~+r for the two configurations 
are equal, and retreats by one site if they are unequal. If possible sets of site 
values occured with equal probabilities, the front should thus follow a 
biased random walk, advancing at average speed l/4. In practice, however, 
Fig. 5.1 shows that the front can retreat by many sites in a single time step. 
This occurs when the cellular automaton rule yields the same image for 
multiple site value sequences, as for say 10100 and 11001. Such phenomena 
make the probabilities for different difference patterns unequal, and invali- 
date this purely statistical approach discussed. (The values of A, obtained 
in this approach by considering the effects of between 1 and 5 sites on the 
right are 0.25, 0.1875, 0.15625, 0.140625 and 0.134766.) 

The result (5.2) gives the average speed of the left-hand side of the 
difference pattern. As the random walk interpretation suggests, however, 
one can choose initial configurations for which a single site change leads to 
differences which expand at speed 1 on the left. In general, one can 
construct the analog of a Green’s function, giving the probability that a site 
at a particular position and time will be affected by an initial perturbation. 
This function is nonzero within a “light cone” with edges expanding at 
speed 1. It appears to be uniform on the right-hand side. But on the 
left-hand side, it appears to be determined by a diffusion equation which 
gives the average behaviour of the biased random walk. The difference 
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pattern can thus extend beyond the line given by Eq. (5.2), but with an 
exponentially damped probability. 

Lyapunov exponents measure the rate of information transmission in 
cellular automata, and provide upper bounds on entropies, which measure 
the information content of patterns generated by cellular automaton evolu- 
tion. For sujective cellular automata it can be shown, for example, that [15] 

(5.3) 

consistent with Eqs. (4.6) and (5.2). The existence of positive Lyapunov 
exponents is a characteristic feature of class 3 cellular automata. 

The difference pattern of Fig. 5.1, and the related Green’s function, 
measure the effect of initial perturbations on the values of individual sites. 
In studying random sequence generation, one must also consider the effect 
of such perturbations on time sequences of site values, say of length T. 
These sequences are always completely determined from the initial values of 
2T + 1 sites. But not all these initial values necessarily affect the time 
sequences. A change in any of the T + 1 left-hand initial sites necessarily 
leads to a change in at least one element of the time sequence. But some 
changes in the T right-hand initial sites have no effect on any element of the 
time sequence. It seems that the probability for a particular initial site to 
affect the time sequence decreases exponentially with distance to the right. 
The average number of sites on the right which affect the time sequence is 
found to be approximately 0.26 + 0.19T. Thus the total number of initial 
sites on which a length T time sequence depends is on average approxi- 
mately 1.91 + 1.19T. This result is presumably related to the entropy (4.6). 

6. PARTICULAR INITIAL STATES 

Sections 4 and 5 have discussed some properties of the patterns produced 
by evolution according to Eq. (3.1) from generic initial conditions. This 
section considers evolution from particular special initial configurations. 

Figure 6.1 shows on two scales the pattern produced by evolution from a 
configuration containing a single nonzero site. (This could be considered a 
difference pattern for the special time-invariant state in which all sites have 
value zero.) Remarkable complexity is evident. 

There are however some definite regularities. For example, diagonal 
sequences of sites on the left-hand side of the pattern are periodic, with 
small periods. In general, the value of a site at a depth N from the edge of 
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the pattern depends only on sites at depths N or less; all the other sites on 
which it could depend always have value 0 because of the initial conditions 
given. As a consequence, the sites down to depth N are independent of 
those deeper in the pattern, and in fact follow a shifted version of the 
cellular automaton rule (3.1) with boundary conditions that constrain two 
sites at one end to have value zero. Since such a finite cellular automaton 
has a total of 2N possible states, any time sequence of values in it must have 
a period of at most 2N. The corresponding diagonal sequences in the pattern 
of Fig. 6.1 must therefore also have periods not greater than 2N. 

Table 6.1 gives the actual periods of diagonal sequences found at various 
depths on the left- and right-hand sides of the pattern in Fig. 6.1. These are 
compared with those for the self-similar pattern shown in Fig. 2.2 generated 
by evolution according to the linear cellular automaton rule (2.4). 

The short periods on the left-hand side of the pattern in Fig. 6.1 are 
related to the high degree of irreversibility in the effective cellular automa- 
ton rule for diagonal sequences in this case [27]. Starting with any possible 
initial configuration, this cellular automaton always yields cycles with period 
2j. The maximum value of j increases very slowly with N, yielding 
maximum cycle lengths which increase in jumps, on average slower than 
linearly with N. (Between the N values at which the maximum cycle length 
increases, a single additional cycle of maximal length seems to be added 
each time N increases by one. The total number of cycle states thus 
increases at most quadratically with N, implying an increasing degree of 
irreversibility.) The actual sequences that occur near the left-hand boundary 
of the pattern in Fig. 6.1 correspond to a particular set of those possible in 
this effective cellular automaton. In a first approximation, they can be 
considered uniformly distributed among possible N-site configurations, and 
their periods increase very slowly with N. 

The effective rule for the right-hand side diagonal pattern in Fig. 6.1 is a 
shifted version of Eq. (3.1) 

a; = ai XOR (u;+r OR u;+~), (6.la) 

with boundary conditions 

4-l = uNel XOR aN, 

I - aN - aN. (6.lb) 

This system is exactly reversible: all of its 2N possible configurations have 
unique predecessors. All the configurations thus lie on cycles, and again the 
cycles have periods of the form 2j. Figure 6.2 shows the lengths of longest 
cycles as a function of N. These lengths increase roughly exponentially with 
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FIG. 6.1. Patterns generated by evolution for 250 and 2000 generations, respectively. 
according to the cellular automaton rule (3.1) from an initial state containing a single nonzero 
site. (The second pattern was obtained by Jim Salem using a prototype Connection Machine 
computer.) 
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TABLE 6.1 

Depth 

0 
1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
15 
16 

32 

64 

128 

256 

512 

1024 

CA30 
WR TL 

1 1 
2 1 
2 1 
4 2 
8 1 
8 2 

16 2 
32 1 
32 4 
64 1 
64 4 
64 4 
64 4 
64 4 
64 4 

128 4 
256 4 

8 

4 

8 

8 

16 

16 

CA60 
TR 

1 
2 
4 
4 
8 
8 
8 
8 

16 
16 
16 
16 
16 
16 
16 
16 
32 

64 

128 

256 

512 

1024 

2048 

Period lengths for diagonal sequences in patterns generated by evolution 
from a single nonzero site according to the cellular automaton rules of Eqs. 
(3.1) and (2.4). or, and R[, signify respectively periods for diagonal sequences 
on the right and left of the patterns, at the specified depth. (The entries left 
blank were not found.) 

N; a least squares fit to the data of Fig. 6.2 yields 

log,l-I, z OS(N + 1). (6.2) 

This length is small compared to the total number of states 2N; few states in 
fact lie on such longest cycles. Nevertheless, the periods of the right-hand 
diagonal sequences in Fig. 6.1 do seem to increase roughly exponentially 
with depth, as suggested by Table 6.1. 
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FIG. 6.2. Maximal period lengths IIN for the effective cellular automaton which gives the 
right-hand diagonal sequences in Fig. 6.1 down to depth N. Points plotted at integer N are 
joined for pictorial purposes. 

The boundary in Fig. 6.1 between regular behaviour on the left and 
irregular behaviour on the right seems to be asymptotically linear, and to 
move to the left with speed 0.25. A statistical argument for this result can be 
given in analogy with that for Eq. (5.2). Each site at depth d on the 
left-hand side of the pattern could in principle be affected by sites down to 
depth d arbitrarily far up in the pattern. In practice, however, it is 
unaffected by changes in sites outside a cone whose boundary propagates at 
speed X, z 0.25. Thus the irregularity on the right spreads to the left only 
at this speed. 

While diagonal sequences at angles f 1 in Fig. 6.1 must ultimately 
become periodic, sequences closer to the vertical need not. In fact, no 
periodicity has been found in any such sequences. The center vertical (i.e., 
temporal) sequence has, for example, been tested up to length 219 3 5 x 10s, 
and no perk&city is seen. One can prove in fact that only one such vertical 
sequence (obtained from any initial state containing a finite number of 
nonzero sites) can possibly be periodic [22]. For if two sequences were both 
periodic, then it would follow that all sequences to their right must also be, 
which would lead to a contradiction at the edge of the pattern. 

Not only has no periodicity been detected in the center vertical sequence 
of Fig. 6.1.; the sequence has also passed all other statistical tests of 
randomness applied to it, as discussed in Section 10. 

While individual sequences seem random, there are local regularities in 
the overall pattern of Fig. 6.1. Examples are the triangular regions of zero 
sites. Such regularities are associated with invariants of the cellular automa- 
ton rule. 
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TABLE 6.2 

Period Element 

1 0 
01 

3 oooo11111001 

4 OOOtK)Ol 
0000111 
0010011 
0111111 

Configurations periodic under the cellular automaton 
mapping (3.1) consist of infinite repetitions of the ele- 
ments given, Notice that the four elements given for 
period four correspond simply to different phases in a 
cycle. The patterns generated by these periodic configura- 
tions are shown in Fig. 6.3. 

The particular configuration in which all sites have value 0 is invariant 
under the cellular automaton rule of Eq. (3.1). As a consequence, any string 
of zeroes that appears can be corrupted only by effects that propagate in 
from its ends. Thus each string of zeroes that is produced leads to a uniform 
triangular region. 

Table 6.2 and Fig. 6.3 give other configurations which are periodic under 
the rule (3.1). (They can be considered as invariant under iterations of the 
rule.) Again, any string that contains just the sequences in these configura- 
tions can be corrupted only through end effects, and leads to a regular 
region in spacetime patterns generated by Eq. (3.1). 

In general, there is a finite set of configurations with any particular period 
p under a permutive cellular automaton rule such as (3.1). The configura- 

period I pertod 3 period 4 

FIG. 6.3. Periodic patterns for the cellular automaton rule of Eq. (3.1). The form of these 
patterns is given in Table 6.2. 
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FIG. 6.4. Patterns produced by evolution according to the cellular automaton rule (3.1) by 
single site initial defects in the periodic patterns of Fig. 6.2 and Table 6.2. 

tions may be found by starting with a candidate length 2p string, then 
testing whether this and the string it yields through Eq. (3.3) on the left are 
in fact invariant under $G’. The string to be tested need never be longer than 
22P, since such a string can contain all possible length 2p strings. Thus the 
periodic configurations consist of repetitions of blocks containing 2’P or less 
site values. (For an arbitrary cellular automaton rule, the set of invariant 
configurations forms a finite complement language which contains in gen- 
eral an infinite number of sequences with the constraint that certain blocks 
are excluded [16].) 

The pattern in Fig. 6.1 can be considered the effect of a single site 
“defect” in the periodic pattern resulting from a configuration with all sites 
0. Figure 6.4 shows difference patterns produced by single site defects in the 
other periodic configurations of Table 6.2 and Fig. 6.3 

The periodic configurations of Table 6.2 and Fig. 6.3 can be viewed as 
special states in which the cellular automaton of Eq. (3.1) behaves just like 
the identity rule. Concatenations of other blocks could simulate other 
cellular automata: one block might correspond to a value 0 site, and another 
to a value 1 site in the effective cellular automaton. Some cellular automata 
(such as that of Eq. (2.4)) simulate themselves under such “blocking 
transformations,” and thus evolve to self-similar patterns. The cellular 
automata of Eqs. (3.1) and (3.2) are unique among k = 2, r = 1 rules in 
simulating no other rules, at least with blocks of length up to eight [14]. 

7. FUNCTIONAL PROPERTIES 

Cellular automaton rules such as (3.1) can be considered as functions $I 
which map three Boolean values to one. Iterations of these rules for say t 
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steps correspond to functions of 2t + 1 Boolean values. The complexity of 
these functions reflects the intrinsic complexity of the cellular automaton 
evolution. 

The complexity of a Boolean function can be characterized by the 
number of logic gates that would be needed to evaluate it with a particular 
kind of circuit, or the number of terms that it would have in a particular 
symbolic representation. Explicit evolution according to the cellular au- 
tomaton rule (3.1) corresponds to a circuit with O(t*) components and 
depth t. But for purposes of comparison, it is convenient to consider fixed 
depth representations. One such representation is disjunctive normal form 
(DNF), in which the function is written as a disjunction of conjunctions. A 
two-level circuit can be constructed in direct correspondence with this form 
(as programmable logic arrays often are). 

For the function of Eq. (3.1), the DNF is 

-- 
+(a-,, a,, q) = (a_,a,) + (~-1~0%) + (Gd (74 

where + stands for OR, concatenation for AND, and bar for NOT. Notice 
that by using in addition an XOR operation, Eq. (3.1) itself gives a shorter 
form for this function. 

The general problem of finding the absolute shortest representation for an 
arbitrary Boolean function, even in DNF, is NP-complete (e.g. [5]), and so 
presumably requires an exponential time computation. But a definite ap- 
proximation can be found in terms of “prime implicants” (e.g. [28]). A 
Boolean function of n variables can be considered as a colouring of the 
Boolean n-cube. Prime implicants give the hyperplanes (with different 
dimensions) in the n-cube which must be superimposed to obtain the region 
with value 1. Each prime implicant can thus be used as a term in a DNF for 
the function. The’ number of prime implicants required gives a measure of 
the total number of “holes” in the colouring of the n-cube, and thus of the 
complexity of the function. 

The minimal DNF obtained with prime implicants for the function 
corresponding to two iterations of the cellular automaton mapping (3.1) is 

$*(a-,, u-1, a,, 69 (12) 

= (a_2a_,iiy)Ula,) + (a_,~-,~,~, c> 

+(a-,a_,qJa,a, ) 
-- 

+ (a--*a-la, a1 a*) 

+(n4~-,q~, ---) + (<a_,&a,) 
- 

+ (u-y-, 4)a* ) + (a_zu~luou2) + (u-2u-,a,). (7.2) 
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TABLE 7.1 

CA30 

t P.I. 

1 3 
2 9 
3 23 
4 16 
5 185 
6 666 ,I 

Min. 
CA60 

P.I./Min. 

3 2 
I 2 

17 8 
41 2 

105 8 
272 8 

Number of terms in disjunctive normal form Boolean 
expressions corresponding to iterations of the map- 
pings (3.1) (CA30) and (2.4) (CA60). P.I. gives the 
number of prime implicants; min. the number of terms 
obtained by [29]. (The two numbers are the equal in 
the case of Eq. (2.4)) 

Table 7.1 gives the number of prime implicants for successive iterations of 
the mapping (3.1). These results are plotted in Fig. 7.1. For arbitrary 
Boolean functions of 2t + 1 variables, the number of prime implicants 
could increase like 4’. In practice, however, a least squares fit to the data of 
Table 7.1 suggests growth like 4’.“‘. 

Various efficient methods are known to find DNF that are somewhat 
simpler than those obtained using prime implicants. With one such method 

FIG. 7.1. Number of terms in disjunctive normal form Boolean expressions for I step 
iterations of the mappings (3.1) and (2.4). The upper curve gives the number of prime 
implicants for iterations of Eq. (3.1). The next curve gives the minimal number of terms 
obtained in this case using [q]. The lowest curve gives the minimal number of terms for the 
linear cellular automaton mapping (2.4). 
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[28, 291, the DNF of Eq. (7.2) can be reduced to 

$J2(a-,, a-1, a,, a,, 4 

= (zQa_,a,a,) + (a_,~-,~,q) 

+ (u-2 a-, a0 u2 --- ) + (~u4zou2) 

+(ue2a,a,) + (u-2c4 + (4-2444. (7.3) 

The sizes of the minimal DNF obtained by this method for iterations of Eq. 
(3.1) are shown in Table 7.1 and Fig. 7.1. They are seen to grow more slowly 
than those obtained with prime implicants; the data given are however 
again fit by exponential growth like 40.65’. 

Table 7.1 and Fig. 7.1 also give the size of the minimal DNF for iterations 
of the linear cellular automaton mapping (2.4). This number remains much 
smaller, apparently increasing like 2**1(‘)-~ -C t2, where #1(t) gives the 
number of ones in the binary representation for the integer t (cf. [30]). 

The rapid increase in the size of the minimal DNF found for iterations of 
Eq. (3.1) indicates the increasing computational complexity of determining 
the result of evolution according to (3.1), and supports the conjecture of its 
computational irreducibility. (Note however that even the parity function 
cannot be computed by any DNF, or in general fixed-depth, circuit of 
polynomial size [3.1].) 

Equation (7.3) gives the function which determines the value of a single 
site after two iterations of the cellular automaton rule (3.1). One can also 
construct a function which gives the length t sequence of values of a 
particular site attained through time by evolution from a given length 
2t + 1 initial sequence. The minimal DNF representation for this function 
is found (using [29]) to grow in size approximately as 21.361. 

The results of Table 7.1 and Fig. 7.1 concern the difficulty of finding the 
outcome of cellular automaton evolution according to Eq. (3.1) from a given 
initial state. One may also consider the problem of deducing the initial state 
from time sequences of site values produced in the evolution. Given say t 
steps in the time sequence of values for two adjacent sites, the initial 
configuration up to t sites to the left can be deduced directly by iteration of 
Eq. (3.3). The combinatorial results of Section 4 indicate in fact that only 
about 1.2 such temporal sequences should on average be required. And in 
principle from a single sufficiently long temporal sequence, it should be 
possible to deduce a complete initial configuration for a finite cellular 
automaton. In practice, however, the necessary computation seems to be- 
come increasingly intractable as the size of the system increases. 

Given a particular temporal sequence, say at position 0, Eq. (3.3) uniquely 
determines the values of all sites in a triangle to the left as a function of 
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TABLE 7.2 

147 

n (“=> (P.I.) Max. P.I. 

2 0.5 0.15 1 
3 1 1.125 2 
4 1.375 1.375 3 
5 1.125 1.219 3 
6 2.281 2.719 12 
I 2.828 3,539 17 
8 3.164 4.105 26 
9 3.699 

10 4.254 

Properties of Boolean expressions for leftmost initial site values deduced from 
length n time sequences, obtained by evolution according to Eq. (3.1). The 
average number of variables appearing in the Boolean expressions is given, 
together with the number of prime imphcants in the disjunctive normal form for 
the expression. The maximum number of variables which can appear is always 
n - 1. (Results for n 2 9 were obtained by Carl Feynman using a Symbolics 
3600 LISP machine. The entries left blank were not found.) 

values in the temporal sequence at position 1. The number of values in the 
position 1 temporal sequence on which a given site depends varies with the 
form of the position 0 sequence [32]. For example, if the position 0 sequence 
consists solely of ones, then the whole triangle of sites is completely 
determined, entirely independent of the position 1 sequence. Table 7.2 gives 
some results from considering the dependence of the site value a-, at 
position -t (the apex of the triangle) on the position 1 sequence, for all 2’ 
possible position 0 sequences. The number of values in the position 1 

4.. 

3.. 

/ 

2.. 
/’ 

r 

/ 
1 ‘. 

01 
0 2 4 6 8 10 

n 

FIG. 7.2. Average number of additional site values necessary to “back-track” and de- 
termine uniquely the initial site value a-,, given the sequence of values n,, for n subsequent 
time steps. 
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sequence on which a-, depends seems to be roughly Poisson distributed, 
with a mean that grows like 0.4t, as shown in Fig. 7.2. This is consistent 
with the combinatorial result (4.6). 

Table 7.2 also gives some properties of the prime implicant forms for u _ ,. 
It is clear that the complexity of the function that determines a-, from 
temporal sequences grows with t, probably at an increasingly rapid rate. 
Again this suggests that the problem of deducing the initial sequence for 
evolution according to Eq. (3.1), while combinatorially possible, is computa- 
tional complex. 

By comparison, the corresponding problem for evolution according to the 
linear rule (2.4) is quite straightforward. For each possible position 0 
sequence, there are only two possible forms for the dependence of a-, on 
the position 1 sequence, and each of them involves exactly 2#1(‘-‘) prime 
implicants. This simplicity can be viewed as a consequence of the algebraic 
structure associated with this system. 

8. COMPUTATION THEORETICAL PROPERTIES 

The discussion of the previous section can be considered as giving a 
characterization of the computational complexity of iterations of the cellular 
automaton mapping (3.1) in a particular simple model of computation. The 
results obtained suggest that at least in this model, there is no shortcut 
method for finding the outcome of the evolution: the computations required 
are no less than for an explicit simulation of each time step. As discussed 
above, one suspects in fact that the evolution is in general computationally 
irreducible, so that no possible computation could find its outcome more 
efficiently than by direct simulation. 

This would be the case if the cellular automaton of Eq. (3.1) could act as 
an efficient universal computer (e.g. [33]), so that with an appropriate initial 
state, its evolution could mimic any possible computation. In particular, it 
could be that the problem of finding the value of a particular site after t 
steps (given say a simply-specified initial state, as in Fig. 6.1) must take a 
time polynomial in t on any computer. (Direct simulation takes 0( t *) time 
on a serial-processing computer, and O(t) time with O(t) parallel 
processors.) For a linear cellular automaton such as that of Eq. (2.4), this 
problem can be solved in a time polynomial in log(t); but for the cellular 
automaton of Eq. (3.1) it quite probably cannot [18]. 

In addition to studying cellular automaton evolution from given initial 
configurations, one may consider the problem of deducing configurations of 
the cellular automaton from partial information such as temporal sequences. 
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In particular, one may study the computational complexity of finding the 
seed for a cellular automaton in a finite region from the temporal sequences 
it generates. 

There are 2N possible seeds for a size N cellular automaton, and one can 
always find which ones produce a particular sequence by trying each of 
them in turn. Such a procedure would however rapidly become impractical. 
The results in Section 7 suggest a slightly more efficient method. If it were 
possible to find two adjacent temporal sequences, then the seed could be 
found easily using Eq. (3.3). Given only one temporal sequence, however, 
some elements of the seed are initially undetermined. Nevertheless, in a 
finite size system, say with periodic boundary conditions, one can derive 
many distinct equations for a single site value. The site value can then be 
deduced by solving the resulting system of simultaneous Boolean equations. 
The equations will however typically involve many variables. As discussed 
in Section 7, the number of variables seems to be Poisson-distributed with a 
mean around 0.4N. 

The general problem of solving a Boolean equation in n variables is 
NP-complete (e.g. [5]), and so presumably cannot be solved in a time 
polynomial in n. In addition, it seems likely that the average time to solve 
an arbitrary Boolean equation is correspondingly long. To relate the prob- 
lem of deducing the seed discussed above to this would however require a 
demonstration that the Boolean equations generated were in a sense uni- 
formly distributed over all possibilities. Out of all 2’” n-variable equations, 
the problem here typically involves U(2”), but these seem to have no special 
simplifying features. At least with the method discussed above, it is thus 
conceivable that the problem of deducing the seed is equivalent to the 
general problem of solving Boolean equations, which is NP-complete. 

9. FINITE SIZE BEHAVIOUR 

Much of the discussion above has concerned the behaviour of the cellular 
automaton (3.1) in the idealized limit of an infinite lattice of sites. But 
practical implementations must use finite size registers, and certain global 
properties can depend on the size and boundary conditions chosen. 

The total number of possible states in a size N cellular automaton is 2N. 
Evolution between these states can be represented by a finite state transition 
diagram. Figure 9.1 gives some examples of such diagrams for the cellular 
automaton of Eq. (3.1) with periodic boundary conditions, as in Eq. (2.2). 
Table 9.1 summarizes some of their properties. The results are seen to 
depend not only the magnitude of N, but also presumably on its number 
theoretical properties. 
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Each state transition diagram contains a set of cycles, fed by trees 
representing transients. The cycles may be considered as “attractors” to 
which states in their “basins of attraction” irreversibly evolve. 

There are many regularities in the structure of the state transition 
diagrams obtained from Eq. (3.1). The evolution is thus not well-approxi- 
mated by a random mapping between 2N states. 

A first observation is that most configurations have unique predecessors 
under the mapping (3.1) (as mentioned for infinite lattices in Sect. 4), so 
there is little branching in the state transition diagram. In fact, it can be 
shown [32] that a configuration has a unique predecessor unless it contains a 
pair of value zero sites separated by a sequence of 3n + 1 value one sites 
(with n 2 0), or unless N is divisible by 3, and all sites have value one. In 
the former case, the configuration has exactly zero or two predecessors; in 
the latter case, it has three. The numbers of configurations with zero and 
two predecessors are equal when N is not divisible by 3; there are two more 
with zero predecessors when 3 ] N. For large N, the number of configurations 
with zero or two predecessors behaves as [32] kN, where K z 1.696 is the real 
root of 4~~ - 2~~ - 1 = 0. Since the total number of configurations grows 
like 2N, the fraction of nodes in the state transition diagram that are branch 
points thus tends exponentially to zero. 

A second observation is that there are often many identical parts in the 
state transition diagrams of Table 9.1 and Fig. 9.1. This is largely a 
consequence of shift invariance. States in a cellular automaton with periodic 
boundary conditions that are related by shifts (translations) evolve equiv- 
alently. Thus, for example, there are often several identical cycles, related by 
shifts in their configurations. In addition, the periods of the cycles are often 
divisible by N or its factors, since they contain several sequences of 
configurations related by shifts. The transient trees that feed each of these 
sequences are then identical. 

The evolution of a finite cellular automaton with periodic boundary 
conditions is equivalent to the evolution of an infinite cellular automaton 
with a periodic initial configuration. Thus the results on cycle length 
distributions in Table 9.1 can be considered as inverse to those in Table 6.2 
on configurations with given temporal periods. Cycles of lengths corre- 
sponding to these temporal periods occur whenever N is divisible by the 
spatial periods of these configurations. Such short cycles are absent if N has 
none of these factors. 

FIG. 9.1. State transition diagrams for configurations of cellular automata evolving accord- 
ing to Eq. (3.1) in circular registers of size N. Each node represents one of the 2N possible 
length N configurations, and is joined by an arc to its successor under the cellular automaton 
mapping. Transients corresponding to trees in the graph are seen ultimately to evolve to 
periodic cycles. Some properties of these state transition diagrams are given in Table 9.1. 
(Graphics by Steve Strassmann.) 
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TABLE 9.1 

N Cycles Frac. longest Cyc. frac. (Transient) 

4 1,X8,3X1 0.75 0.69 0.5 
5 1X5,1X1 0.94 0.19 4.3 
6 3x1 1.00 0.05 3.3 
7 1x63,7X4,1x1 0.60 0.72 0.4 
8 1x40,1X8,3x1 0.88 0.20 3.1 
9 1~171,1~72,1~1 0.81 0.48 1.1 

10 2X15,1X5,3X1 0.82 0.04 14.8 
11 1 x 154.11 x 17,l x 1 0.76 0.17 3.3 
12 4x102,1X8,4x3,3X1 0.93 0.11 4.4 

13 1~832,1X260,1X247,1X91,1X1 0.32 0.17 2.2 

14 1 x 1428,2 x 133.1 x 112.2 x 84.1 x 63.1 x 14.3 x 1 0.84 0.13 2.7 
15 1 x 1455.5 x 30.5 x 9,15 x 7.4 x 5,l x 1 0.93 0.05 5.7 
16 1x6016,1x4144,3~40,1~8,3~1 0.50 0.16 
17 1 x 10846.1 x 1632,l x 867,l x 306.1 x 136.1 x 17.1 x 1 0.96 0.11 

Properties of state transition diagrams for the cellular automaton rule of Eq. (3.1) in a 
circular register of size N. The multiplicity and length of each cycle is given, followed by the 
fraction of initial states which evolve to a longest cycle (size of attractor basin), the total 
fraction of all 2N states which he on cycles, and the average length of transient before a cycle is 
reached in evolution from an arbitrary initial state. (Results for N 2 16 were obtained by Holly 
Peck.) 

For large N, the state transition diagrams for Eq. (3.1) appear to be 
increasingly dominated by a single cycle. This cycle is longer than the 
others, and its basin of attraction is large enough that most arbitrarily 
chosen initial states evolve to it. The low degree of branching in the 
transient trees implies that the points reached from arbitrary initial states 
should be roughly uniformly distributed around the cycle. 

The shorter cycles in Table 9.1 can be considered as related to subsets of 
states invariant under the cellular automaton rule. With N even, for 
example, configurations which consist of two identical length N/2 subse- 
quences can evolve only to configurations of the same type. Once such a 
configuration has been reached, the evolution is “trapped” within this 
subset of configurations, and must yield shorter cycles. (This phenomenon 
also occurs for cellular automata with essentially trivial rules, such as the 
shift mapping ai = a,. All states are on cycles in this case. The different 
cycles correspond to the possible “necklaces” with N beads of two kinds, 
which are inequivalent under shifts or rotations. These necklaces in turn 
correspond to cyclotomic polynomials; there are XdrN$(d)2N’d of them, 
where $I the Euler totient function (e.g. [4]).) In general, there may exist 
subsets of states with certain special symmetry properties that are preserved 
by the cellular automaton rule. Initial states with particular, symmetrical, 
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forms can be expected to have these properties, and thus to be trapped in 
subsets of state space, and to yield short cycles. For example, with N = 36, 
a configuration containing a single nonzero site evolves to a length 2844 
cycle, while most initial configurations evolve to the longest cycle, with 
2237412 states. 

In the infinite size limit, patterns such as that of Fig. 6.1 generated by the 
cellular automaton of Eq. (3.1) never become periodic. But with a total of N 
sites, a cycle must occur after 2Nor less steps. Table 9.2 and Fig. 9.2 give the 
actual maximal cycle lengths rlN found. A roughly exponential increase of 
llN with N is seen, and a least squares fit to the data of Table 9.2 yields 

log&I, = 0.61(N + 1). (94 

Note that if the state transition diagram corresponded to an entirely 
random mapping between the 2N cellular automaton states, then cycles of 
average length 2N’2 would be expected [34]. The cycles actually obtained are 
significantly longer. The exponent in Eq. (9.1) may be related to the entropy 
(4.6) as a result of the expansivity or instability of the mapping discussed in 
Section 5. 

If there were very short cycles, then the sequences produced by the 
cellular automaton would readily be predictable. So if in fact no such 
prediction can be made by any polynomial time computation, the length of 
the cycles that occur should in general increase asymptotically faster than 
polynomial in N (cf. [2]). This behaviour is supported by Eq. (9.1). 

If indeed the evolution of cellular automata such as (3.1) is computa- 
tionally irreducible, then a complex computation may always be required to 
determine for example the lengths of cycles that appear. For in this case, 
there can effectively be no better way to find the succession of states that 
occur, except by explicit application of the rule (3.1). One expects in fact 
that the problem of 6nding say whether two configurations lie on the same 
cycle is PSPACE-complete, and so presumably cannot be solved in a time 
polynomial in N, but rather essentially requires a direct simulation of the 
cellular automaton evolution. (Note that if the lengths of the cycles studied 
are 0(2”), where both 2N-M and 2”” are large, then parallel processing is 
essentially of no avail in this problem.) 

While the determination of cycle lengths and structures may be computa- 
tionally intractable for cellular automata such as (3.1), it should be much 
easier for linear cases such as (2.4). From the algebraic theory of these 
systems it is possible to show for example that the maximal cycle length lJN 
satisfies [20] 

nN12 7 ord,(*) - 1 P-2) 

where n]m states that the integer n exactly divides m. Here ord,(k) is the 



TABLE 9.2 

CA30 CA60 

4 8 
5 5 
6 1 
7 63 
8 40 
9 171 

10 15 
11 154 
12 102 
13 832 
14 1428 
15 1455 
16 6016 
17 10845 
18 2844 
19 3705 
20 6150 
21 2793 
22 3256 
23 38249 
24 185040 
25 588425 
26 312156 
27 67554 
28 249165 
29 1466066 
30 306120 
31 2841150 
32 2002272 
33 2038476 
34 5656002 
35 18480630 
36 2237472 
37 49276415 
38 9329228 
39 961272 
40 19211080 
41 51151354 
42 109603410 
43 93537212 
44 192218312 
45 75864495 
46 261598274 
47 811284813 
48 3035918676 
49 9937383652 
50 593487780 
51 3625711023 
52 20653434880 
53 40114679273 
54 7551779562 

b3,n h 

3.0 
2.3 
0.0 
6.0 
5.3 
7.4 
3.9 
7.3 
6.7 
9.7 

10.5 
10.5 
12.6 
13.4 
11.5 
11.9 
12.6 
11.4 
11.7 
15.2 
17.5 
19.2 
18.3 
16.0 
17.9 
20.5 
18.2 
21.4 
20.9 
21.0 
22.4 
24.1 
21.1 
25.6 
23.2 
19.9 
24.2 
25.6 
26.7 
26.5 
27.5 
26.2 
28.0 
29.6 
31.5 
33.2 
29.1 
31.8 
34.3 
35.2 
32.8 

1 
15 
6 
7 
1 

63 
30 

341 
12 

819 
14 
15 
1 

255 
126 

9709 
60 
63 

682 
2047 

24 
25575 

1638 
13797 

28 
475107 

30 
31 
1 

1023 
510 

4095 
252 

3233097 
19418 
4095 

120 
41943 

126 
5461 
1364 
4095 
4094 

48 
2097151 

51150 
255 

3276 
3556769739 

27594 

0.0 
3.9 
2.6 
2.8 
0.0 
6.0 
4.9 
8.4 
3.6 
9.7 
3.8 
3.9 
0.0 
8.0 
7.0 

13.2 
5.9 
6.0 
9.4 

11.0 
4.6 

14.6 
10.7 
13.7 
4.8 

18.9 
4.9 
5.0 
0.0 

10.0 
9.0 

12.0 
8.0 

21.6 
14.2 
12.0 
6.9 

15.4 
7.0 

12.4 
10.4 
12.0 
12.0 
23.0 
5.6 

21.0 
15.6 

8.0 
11.7 
31.7 
14.8 

Maximum cycle lengths llN found for the cellular automata 
of Eqs. (3.1) (CA30) and (2.4) (CA60) in circular registers of size 
N. In the former case, a selection of seeds, including single 
nonzero sites, were used. In the latter case, maximal length 
cycles are always obtained with single nonzero site seeds. The 
results are plotted in Fig. 9.2. (Results for N 2 32 were ob- 
tained by Holly Peck and Tsutomu Shimomura with an assem- 
bly-language program on a Celerity C-1200 computer.) 
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FIG. 9.2. Maximal cycle lengths IIN for the cellular automaton of Eqs. (3.1) (CA30) and 
(2.4) (CA60) in circular registers of size Iv. 

multiplicative order function, equal to the minimum integer j such that 
kj = 1 modN. This function divides the totient function e(N) (equal to the 
number of integers less than N which are relatively prime to N), which is 
maximal for prime N. Table 9.2 and Fig. 9.2 give the actual maximal 
periods found in this case. Equation (9.2) rarely holds as an equality, and 
the IIN found are usually much shorter than the corresponding ones for the 
nonlinear rule (3.1). 

The cycle structures of finite cellular automata depend in detail on the 
boundary conditions chosen. Table 9.3 gives the maximal cycle lengths 
found for rules (3.1) and (2.4) with shift register boundary conditions. The 
results differ substantially from those with periodic boundary conditions 
given in Table 9.2. One notable feature is the presence of length 2N - 1 
cycles in the linear cellular automaton (2.4) for certain N. These correspond 
to maximal length linear feedback shift registers, and can be identified by a 
direct algebraic procedure [4]. 

Other boundary conditions may also be considered. Among them are 
twisted ones, in which the sites a, and uN are negated in Eq. (2.2). The 
maximum cycle lengths found with such boundary conditions seem typically 
shorter than in the purely periodic case. 

One may in addition consider boundary conditions in which the boundary 
site values are fixed, rather than being periodically identified. Section 6 
(particularly Fig. 6.2) gave some examples of results with such boundary 
conditions. Different cycles are obtained in different cases; all those in- 
vestigated nevertheless give maximal cycle lengths shorter than those of 
Table 9.2 found with periodic boundary conditions. 

What has been discussed so far are cycles in complete finite cellular 
automaton configurations. But in obtaining random sequences one samples 
single sites. The sequences found could potentially have periods which were 
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N h3,n, 

4 5 2.3 
5 2 1.0 
6 7 2.8 
7 4 2.0 
8 17 4.1 
9 65 6.0 

10 6 2.6 
11 57 5.8 
12 50 5.6 
13 118 6.9 
14 185 7.5 
15 257 8.0 
16 481 8.9 
17 907 9.8 
18 1681 10.7 
19 707 9.5 
20 2619 11.4 
21 5630 12.5 
22 1368 10.4 
23 31241 14.9 
24 3567 11.8 
25 60503 15.9 
26 4752 12.2 
21 46519 15.5 
28 35569 15.1 
29 207197 17.7 
30 149899 17.2 
31 482717 18.9 
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TABLE 9.3 

CA30 CA60 

hnv 

15 3.9 
21 4.4 
21 4.4 

127 7.0 
63 6.0 
73 6.2 

889 9.8 
1533 10.6 
1085 10.1 
7905 12.9 

11811 13.5 
32161 15.0 

255 8.0 
273 8.1 

253921 18.0 
413385 18.7 
761763 19.5 

5461 12.4 
4194303 22.0 
2088705 21.0 
2097151 21.0 
2192337 21.1 

22995 14.5 
41943035 25.3 
17895697 24.1 

Maximum cycle lengths n N found for the cellular automata of 
Eqs. (3.1) (CA30) and (2.4) (CA60) in shift registers of size N 
(with boundary conditions given by Eq. (2.3)). 

sub-multiples of the periods for the complete configuration. For permutive 
rules such as (3.1) (or (2.4)) this cannot, however, occur. 

The state transition diagrams summarized in Table 9.1 give the number of 
complete N-site configurations that can occur at various stages in the 
evolution of the cellular automaton (3.1). One may also consider the number 
of single site temporal sequences that can occur. Table 9.4 gives the fraction 
of the 2L possible length L temporal sequences that are actually generated 
from any of the 2N possible initial states in a size N cellular automaton 
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TABLE 9.4 
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L 3 4 5 6 7 8 9 10 11 12 13 14 15 

3 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
4 0.250 0.625 0.875 0.938 l.OOfI 1.000 1.000 l.OOCI 1.000 1.000 1.000 1.000 1.000 
5 0.125 0.313 0.656 0.844 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
6 0.063 0.156 0.344 0.594 0.906 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
7 0.031 0.078 0.180 0.352 0.609 0.891 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
8 0.016 0.039 0.094 0.188 0.328 0.633 0.949 0.992 1.000 1.000 1.000 1.000 1.000 
9 0.008 0.020 0.047 0.094 0.168 0.361 0.668 0.895 0.996 1.000 1.000 1.000 1.000 

10 0.004 0.010 0.023 0.047 0.085 0.195 0.386 0.644 0.917 0.989 1.000 1.000 1.000 
11 0.002 0.005 0.012 0.023 0.042 0.102 0.204 0.377 0.666 0.897 0.995 l.OtXl 1.000 
12 0.001 0.002 0.006 0.012 0.021 0.052 0.105 0.204 0.387 0.651 0.911 0.995 l.OOG 
13 0.000 0.001 0.003 0.006 0.011 0.026 0.054 0.105 0.209 0.385 0.669 0.913 0.995 
14 0.000 0.001 0.001 0.003 0.005 0.013 0.027 0.053 0.109 0.209 0.397 0.671 0.906 
15 0.000 0.000 0.001 0.001 0.003 0.007 0.013 0.027 0.055 0.109 0.215 0.399 0.668 

Fraction of length L temporal sequences generated from all possible seeds by evolution 
according to Fq. (3.1) in a length N circular register. Results for successive values of N are 
given in successive columns. The results are plotted in Fig. 9.3. 

evolving according to Eq. (3.1) (with periodic boundary conditions). The 
results are plotted in Fig. 9.3. Whenever N > L + 2, all possible sequences 
seem to be generated. They appear with roughly equal frequencies. 

10. STATISTICAL PROPERTIES 

The sequences generated by the cellular automaton of Eq. (3.1) may be 
considered effectively random if no feasible procedure can identify a pattern 

FIG. 9.3. Fraction of length L sequences obtained by evolution from all possible seeds 
according to Eq. (3.1) in a size N circular register. The three-dimensional view is from the point 
N = L = 20, with elevation 2. 
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in them, or allow their behaviour to be predicted. Even though it may not be 
possible to prove that no such procedure can exist, circumstantial evidence 
can be accumulated by trying various statistical procedures and finding that 
they reveal no regularities. The basic approach is to compare statistical 
results on sequences generated by (3.1) with those calculated for sequences 
whose elements occur purely according to probabilities. 

To establish the validity of (3.1) as a general-purpose random sequence 
generator, one should apply a variety of statistical procedures, related to 
various different kinds of calculations. The choice of tests is necessarily as 
ad hoc as the choice of calculations done. Appendix A lists those used here. 
(But see also [35].) Some can be considered related to Monte Carlo simula- 
tions of physical and other systems. Others to statistical analyses that would 
be done on data from various kinds of measurements. While quite ad hoc, 
the tests seem to be sensitive, and reasonably independent. 

As an example, consider the “equidistribution” or “frequency” test. If a 
sequence of zeroes and ones is to be random, the digits zero and one must 
occur in it with equal frequency. In general, in fact, all 2” possible length n 
blocks of digits must also occur with equal frequency. (The measure entropy 
of (4.2) is maximal exactly when such equidistribution occurs.) However, in 
a finite sample of length m, there are expected to be statistical fluctuations, 
which lead to slightly different numbers of zeroes and ones. (The value of 
entropy deduced from a finite sample is thus almost always not maximal, 
even if it would be maximal were the sequence to be continued forever.) As 
a consequence, one can never definitively conclude by studying a finite 
sample that the complete sequence is not random. One can however 
calculate the probability that a truly random sequence would have the 
properties seen in the finite sample. 

To do this, (e.g. [36]), one evaluates x *, defined in terms of the observed 
and expected frequencies p0 and pe as 

x2 = it PO - PJ2/Pe. (10.1) 

Here Y gives the number of degrees of freedom, or number of distinct 
objects whose frequencies are included in the sum. If blocks of length n are 
studied then Y = 2”. Now one must find the probability that a value of x2 
larger than that observed would occur for a random sequence. This 
“confidence interval” is obtained immediately from the integral of the x2 
distribution (e.g. [36]). 

If the confidence interval is very close to zero or one, then the observed 
x2 is unlikely to be produced from a random sequence, and one may infer 
that the observed sequence is not random. Of course, if say a total of k tests 
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TABLE 10.1 

CA30 CA30 CA30 CA30 CA30 CA30 
N = 17 N= 17 N = 23 N = 29 N = 37 N = 49 
L= 8k L = 64k L = 64k L = 64k L = 64k L = 64k 

~___-__ --__ 
A 0.0039 l.oooo 0.0456 0.7375 0.3852 0.8003 
B 0.0171 0.9944 0.3391 0.4888 0.1010 0.1494 
C 0.4164 0.4783 0.1256 0.4847 0.4083 0.9407 
D 0.3227 0.9998 0.1506 0.1434 0.1678 0.6074 
E 0.4576 0.4484 0.6790 0.8492 0.5414 0.7991 
F 0.4306 0.8644 0.8751 0.5590 0.6681 0.6606 
G 0.2942 0.944 0.1232 0.7359 0.4448 0.6961 

Results of the statistical tests described in Appendix A for sequences of length L 
(k = 1024) generated by the cellular automaton of Eq. (3.1) (rule number 30) in 
circular registers of length N. In each case, the seed used consists of a single nonzero 
site. The numbers given are the probabilities (confidence intervals) for statistical 
averages of truly random sequences to exceed those of the sequences analysed. The 
numbers should be uniformly distributed between 0 and 1 if the sequences analysed are 
indeed truly random. Results below 0.05 and above 0.95 are shown in bold type. 
Accumulations close to 0 or 1 suggest deviations from randomness. Such accumula- 
tions are seen in this case only when the period of the cellular automaton is comparable 
to the length of the sequence sampled. (The statistical test programs used here were 
written in C by Don Mitchell.) 

are done, it is to be expected that the confidence interval for at least one of 
them will be less than l/k. Evidence for nonrandomness in a sequence must 
come from an excess of confidence interval values close to zero or one, over 
and above the number expected for a uniform distribution. 

Table 10.1 gives results from the statistical tests described in Appendix A 
for sequences generated by the cellular automaton (3.1) in a finite circular 
register. Except when the sample sequence is comparable in length to the 
period of the system, as given by Table 9.2, no significant deviations from 
randomness are found. 

Table 10.2 gives statistical results for sequences generated by other 
procedures. Those obtained from linear feedback shift registers, while 
provably random in some respects (e.g. [4]), are revealed as significantly 
nonrandom by several of the tests used here. Many sequences obtained from 
linear congruential generators are also found to be significantly nonrandom 
with respect to these tests. No regularities are detected in the digit sequence 
of fi (and other surds tried) (cf. [37]). There is, however, some possible 
evidence for nonrandomness in the digit sequences of e and r (cf. [38]). 
(This will be explored elsewhere.) 
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TABLE 10.2 

CA60 LFSR LFSR LCG Jz e II 
N = 29 N = 17 N = 29 N = 32 
L = 64k L = 64k L= 64k L= 64k L= 51906k L= 9501k L= 26755k 

A l.OlMO 0.0390 0.9998 0.0167 0.6255 0.5505 0.1441 
B l.oooo 0.9773 0.4378 0.0841 0.0801 0.4556 0.9525 
c l.oooo 0.2654 1.0000 0.1676 0.0582 0.8615 0.2799 
D 1.0000 0.8797 0.8400 0.8322 0.8553 0.7605 09986 
E 0.9256 Loo00 0.9435 0.5850 0.6363 0.6890 0.0049 
F 0.99% l.OMO 0.%74 0.9248 0.8499 0.7031 0.1297 
G l.oooO 0.9790 0.3476 0.3137 0.8465 0.4086 0.5473 

Results of statistical tests for sequences generated by various procedures. CA60 is the 
linear cellular automaton rule of Eq. (2.4). in a size N circular register. LFSR is a linear 
feedback shift register of length N with period 2N - 1. For N = 17 the shift register taps 
are at positions 14 and 17; for N = 29 they are at positions 27 and 29. For CA60 and LFSR 
seeds consisting of a single nonzero site were used. LCG is the linear congruential generator 
x’ = (1103515245x + 12345) mod 23’ (used, for example, in many implementations of the 
UNIX operating system). The seed x = 1 was used. The behaviour of CA60, LFSR and 
LCG are illustrated in Fig. 11.1. fi, e, and n are the binary digit sequences of the square 
root of two, the exponential constant, and pi, respectively. (These digit sequences were 
obtained by R. W. Gosper using a Symbolics 3600 LISP machine.) 

TABLE 10.3 

i=o i=O i=O i-l 
L- 8k L = 64k L = 512k L = 512k 

A 0.1536 0.2234 0.6453 0.8629 
B 0.5996 0.0637 0.4891 0.7639 
c 0.6448 0.6538 0.5443 0.5887 
D 0.5921 0.2643 om51 0.0105 
E 0.1358 0.1348 0.6631 0.8430 
F 0.2622 0.1957 0.9385 0.4324 
G 0.4542 0.8773 0.6658 0.1080 

is -1 i = 32 
L = 512k L = 512k 

0.8630 0.8733 
0.8343 0.2525 
0.4000 0.8271 
0.7030 0.4550 
0.7498 0.1264 
0.9009 0.4736 
0.7169 0.7744 

i= -32 
L = 512k 

0.2677 
0.1751 
0.8815 
0.7832 
0.8353 
0.8022 
0.2364 

Results of statistical tests for vertical sequences at position i in the pattern of Fig. 
6.1 generated by evolution according to Eq. (3.1) from a single nonzero initial site on 
an infinite lattice. Leading zeroes in each sequence were truncated. (The sequences were 
obtained by Jim Salem using a prototype Connection Machine computer.) 
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Table 10.3 gives statistical results for temporal sequences in the pattern of 
Fig. 6.1 obtained by evolution according to Eq. (3.1) from a single nonzero 
initial site on an infinite lattice. Once again, no significant deviations from 
randomness are seen. 

If deviations from randomness were detected by some statistical proce- 
dure, then this procedure could be used to make statistical predictions about 
the sequence. In addition, it could be used to obtain a compressed represen- 
tation for the sequence, and would thus demonstrate that the sequence did 
not have maximal information content. The fact that deviations from 
randomness have not been found by any of the statistical procedures 
considered lends strong support to the belief that sequences produced by 
Eq. (3.1) with large N are indeed random for practical purposes. 

11. PRACTICAL ID~IPLE~~ENTATI~N 

The simplicity and intrinsic parallelism of the cellular automaton rule 
(3.1) makes possible efficient implementation on many kinds of computers. 

On a serial-processing computer, each site could be updated in turn 
according to (3.1). But in practice, site values can be represented by single 
bits in say a 32-bit word, and updated in parallel using standard word-wise 
Boolean operations. (Additional bit-wise operations are often needed for 
boundary conditions.) 

On a synchronous parallel-processing computer, different sites or groups 
of sites in the cellular automaton can be assigned to different processors. 
They can then be updated independently (though synchronously), using the 
same instructions, and with only local communications. 

Very efficient hardware implementations of (3.1) should also be possible. 
For short registers, explicit circuitry can be included for each site. And for 
long registers, a pipelined approach analogous to a feedback shift register 
can be used (cf. [39]). 

The evidence presented above suggests that the cellular automaton of Eq. 
(3.1) can serve as a practical random sequence generator. The most ap- 
propriate detailed choices of parameters depend on the application in- 
tended. The most obvious constraint is one of cycle length. To obtain a 
cycle length larger than 232 a 4 X 109, Table 9.2 shows that a circular 
register of length N = 49 can be used. Cycle lengths tend to increase with 
N, but Table 9.2 shows some irregularities. Thus it is not clear, for example, 
how large N need be to obtain a cycle length larger than 264 E 1019. But 
based on Eq. (9-l), a value N = 127 should certainly suffice. 
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Random sequences can be obtained by sampling the sequence of values of 
a particular site in a register updated according to Eq. (3.1). The theoretical 
and statistical studies described above support the contention that such 
sequences show no regularities. For some critical applications, it may be 
best however, to sample site values only say on alternate time steps. While 
this method generates a sequence more slowly, it should foil prediction 
procedures along the lines discussed in Section 7. 

Sequences could potentially be obtained more quickly by extracting the 
values of several sites in the register at each time step. But Eq. (4.6) implies 
that some statistical correlations must exist between these values. The 
correlations are probably minimized if the sites sampled are equally spaced 
around the register. Nevertheless, in some applications where only a low 
degree of randomness is needed, it may even be satisfactory to use all site 
values in the register. (An example appears to be approximation of partial 
differential equations, where randomness can be used to emulate additional 
low-order digits.) 

The random sequences obtained from Eq. (3.1) have an equal fraction of 
0 and 1. Many applications, however, involve random binary choices with 
unequal probabilities. There is nevertheless a simple algorithm [40] to obtain 
digits with arbitrary probabilities. First write the probability p for outcome 
1 as a binary number. Then generate a random binary sequence s with a 
length equal to this number. The output is obtained by an iterative proce- 
dure. Begin with a “current result” of 1. Then, starting from the least 
significant digit in p, successively find a new result by combining the old 
result with the corresponding digit of s, using a function AND or OR, 
depending on whether the digit in p is 0 or 1, respectively. The final result 
thus obtained is equal to 1 with probability exactly p. 

Configurations in two length N registers with slightly different seeds 
should become progressively less correlated under the action (3.1) as a result 
of the instability discussed in Section 5. The characteristic time for this 
process is governed by Eqs. (5.1) and (5.2), and should be z 0.8 N. Thus, if 
several sequences are to be generated with seeds that differ only slightly 
(obtained for example from addresses of computer elements), then (3.1) 
should applied at least O(N) times to the seeds before beginning to extract 
random sequences. 

One may compare the scheme for random sequence generation described 
here with the linear methods now in common use (e.g. [l]). Figure 11.1 
shows patterns produced by these various schemes. The primary feature of 
linear schemes is that they can be analysed by algebraic methods. As a 
consequence, certain randomness properties can be proved for the sequences 
they generate, and cases that give long cycles can be identified. But the 
simplicity in structure which underlies this analysis also limits the degree of 
randomness that such schemes can produce. The nonlinear scheme de- 
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FIG. 11.1. Patterns obtained by various procedures in registers of size N. CA30 stands for 
the cellular automaton of Pq. (3.1). with periodic boundary conditions. CA60 is the linear 
cellular automaton of Eq. (2.4). again with periodic boundary conditions. LFSR is a linear 
feedback shift register with size N and period 2N - 1. For N = 17 the taps are at positions 14 
and 17: for N = 29, they are at positions 27 and 29. LCG is a linear congruential sequence 
generator, operating on the 32-bit integers whose binary digit sequences are given. The seed in 
all cases consists of a single nonzero bit in the centre of the register. Statistical properties of the 
sequences produced are given in Tables 10.1 and 10.2. 

scribed here is not readily amenable to complete analysis, and no significant 
limits on the degree of randomness it yields are known. But on the other 
hand, no conventional mathematical proofs for particular randomness prop- 
erties can be given, and it must be investigated by largely empirical 
methods. 

12. ALTERNATIVE SCHEMES 

The cellular automaton of Eq. (3.1) is one of the simplest that seems good 
for random sequence generation. But other cellular automata may also be 
considered, and some potentially have certain advantages. 

Among k = 2, r = 1 cellular automata, Eq. (3.2) is the only other serious 
contender. No direct equivalence between this rule and that of Eq. (3.1) is 
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known, but their properties are very similar. Equation (3.2) gives however 
i451 

A, = (0.1724 f 0.0004), (12.1) 

slightly smaller than the corresponding result (5.2) for Eq. (3.1). In addition, 
it gives a slightly smaller invariant entropy h,. It seems to have no 
advantages over (3.1). 

Cellular automata with k > 2 or R > 3 may also be studied. (Here R is 
defined as the total number of sites in the neighbourhood for the rule.) Any 
class 3 (chaotic) cellular automaton rule can be considered a candidate 
random sequence generator. Autoplectic rules which produce complex pat- 
terns even from simple initial conditions are probably best. Some of these 
rules have larger Lyapunov exponents and invariant entropies than Eq. 
(3.1) but they are also more difficult to compute. In addition, many rules 
that seem to produce chaotic overall patterns nevertheless yield sequences 
that show definite regularities, resulting, for example, in non-maximal 
temporal entropies. Permutive chaotic rules avoid such problems, but are 
very similar in character to the rule of Eq. (3.1), and so potentially share any 
of its possible deficiencies. 

One possibility is to consider bijective cellular automaton rules, which are 
invertible, so that each configuration has both a unique successor in time, 
and a unique predecessor. The state transition diagrams for such cellular 
automata in finite regions with periodic boundary conditions can contain 
only cycles, and no transients. But only a very small fraction of all cellular 
automaton rules are bijective, and very few of those that are exhibit chaotic 
behaviour. Table 12.1 gives some non-trivial bijective cellular automaton 
rules with k = 2 and R I 5 (cf. [41]). None of those with R I 4 are 
chaotic. 

With larger effective k, it is nevertheless possible to construct chaotic 
bijective rules explicitly. One method [42] yields cellular automaton rules 
that are most easily stated in terms of dependence on second-to-last as well 
as immediately preceding site values: 

@) = ‘P( &;“, . . . , &;“)XOR a!‘-*). (12.2) 

Such rules may be stated in the standard form (2.1) by considering sites with 
k* possible values. Some examples of patterns generated by rules of the 
form (12.2) are shown in Fig. 12.1. The rules are bijective, so that all states 
lie on cycles. However, there are often many distinct cycles, each quite 
short, making the system unsuitable for random sequence generation. 
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TABLE 12.1 

k=2,R=4 
lkng 
ls5k 
lhmc 
lj4s 

lkng 
ls5k 
lhmc 
lj4s 

k=2,R=5 
3nhlvo0 
3ug5voo 
39gtvo0 

3nhlvo0 
3ug5voo 

f20nvljogtvoO 

Bijective cellular automata rules with k possible values for 
each site and depending on strictly R previous site values. The 
rules given are “totally quiescent,” so that cp(u, a,. , a) = a 
for all a. The rules are specified by giving the values of + as 
digits in a binary number indexed by a number formed from the 
arguments of +. The binary number is then stated in base 32, 
with letters of the alphabet representing successive digits greater 
than 9. Leading zeroes are not truncated. Long specifications 
correspond to rules with larger values of R. 

rule 22 rule 30 rule 41 

FIG. 12.1. Patterns generated by various bijective (reversible) k = 2, r = 1 cellular au- 
tomata with rules of the form (12.1). 
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13. DISCUSSION 

This paper has used methods from several disciplines to study the 
behaviour of the nonlinear cellular automaton of Eq. (3.1). Despite the 
simplicity of its construction, all the approaches taken support the conjec- 
ture that its behaviour is so complicated as to seem random for practical 
purposes. It is remarkable that such a simple system can give rise to such 
complexity. But it is in keeping with the observation that mathematical 
systems with few axioms, or computers with few intrinsic instructions, can 
lead to essentially arbitrary complexity. And it seems likely that the 
mathematical mechanisms at work are also responsible for much of the 
randomness and chaos seen in nature. 

The simplicity of Eq. (3.1) makes it amenable to highly efficient practical 
implementation. And the analyses carried out here suggest that the se- 
quences it produces have a high degree of randomness. In fact, if any 
regularity could be found in these sequences, it would probably have 
substantial consequences for studies of many complex and seemingly ran- 
dom phenomena. 

APPENDIX A: STATISTICAL PROCEDURES 

This Appendix describes the statistical randomness testing procedures 
used in Section 10. The procedures are mostly taken from [l], although their 
numbering has been changed slightly. The basic method in each case is to 
compare an observed distribution with that calculated for a purely prob- 
abilistic sequence. 

The sequences studied consist of strings of binary bits. In many of the 
tests, these bits are grouped into blocks: either length 8 (non-overlapping) 
bytes, or length 4 (non-overlapping) nybbles. The possible bit sequences in 
these blocks can be represented by integer “values” between 0 and 255 or 
16, respectively. 

A. Block Frequency Distribution. Each of the 2” possible n-blocks 
should occur with equal frequency. (n = 8 is used.) 

B. Gap Length Distribution. The lengths of runs of n-blocks whose 
values are all greater than i, or less than i, should follow a binomial 
distribution. (n = 8, i, = 100, i, = 200 are used; runs longer than 16 blocks 
are lumped together.) 

C. Distinct Blocks Distribution. The frequencies with which p out of q 
successive m-blocks are distinct should follow a definite distribution. (m = 4, 
q = 4 are used.) 
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D. Block Accumulation Distribution. The number of successive n-blocks 
necessary for all possible m-blocks to appear in order as their first m 
elements should follow a definite distribution. (n = 8, m = 3 are used; 
numbers greater than 40 are lumped together.) 

E. Permutation Frequency Distribution. The values of q successive 
n-blocks should occur in all q! possible orderings with equal frequency. 
(n = 8, q = 5 are used.) 

F. Monotone Sequence Length Distribution. The lengths of sequences in 
which successive n-blocks have monotonically increasing values should 
follow a definite distribution. (n = 8 is used; lengths greater than 6 are 
lumped together; elements immediately following each run are discarded to 
make successive runs statistically independent.) 

G. Maxima Distribution. The maximum values of n-blocks in sequences 
of q n-blocks should follow a power law distribution. (n = 8, q = 8 are 
used.) 
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