
ADVANCES IN APPLIED MATHEMATICS 7, 123-169 (1986)

Random Sequence Generation by Cellular Automata

STEPHEN WOLFRAM

Thinking Muchines Corporation, 245 First Street, Cambridge, Massachusetts 02142 und

The Institute for Advanced Study, Princeton, New Jersey 08540

A l-dimensional cellular automaton which generates random sequences is dis-
cussed. Each site in the cellular automaton has value 0 or 1, and is updated in
parallel according to the rule n: = a,-, XOR (a, OR a,+r) (a; = (a,-, + a, +
~1, + , + (I, ai+ ,) mod 2). Despite the simplicity of this rule, the time sequences of site
values that it yields seem to be completely random. These sequences are analysed by
a variety of empirical, combinatorial, statistical, dynamical systems theory and
computation theory methods. An efficient random sequence generator based on
them is suggested. 0 1986 Academic Press. Inc.

1. RANDOM SEQUENCE GENERATION

Sequences that seem random are needed for a wide variety of purposes.
They are used for unbiased sampling in the Monte Carlo method, and to
imitate stochastic natural processes. They are used in implementing rando-
mized algorithms which require arbitrary choices. And their unpredictability
is used in games of chance, and potentially in data encryption.

To generate a random sequence on a digital computer, one starts with a
fixed length seed, then iteratively applies some transformation to it, progres-
sively extracting as long as possible a random sequence (e.g., [l]). In general
one considers a sequence “random” if no patterns can be recognized in it,
no predictions can be made about it, and no simple description of it can be
found (e.g., [2]). But if in fact the sequence can be generated by iteration of
a definite transformation, then a simple description of it certainly does
exist.’ The sequence can nevertheless seem random if no computations done
on it reveal this simple description. The original seed must be transformed
in such a complicated way that the computations cannot recover it.

‘A stricter definition of randomness can be based on the non-existence of simple descriptions
[3], rather than merely the difficulty in finding them. None of the sequences discussed here, nor
many generally considered random, would qualify according to this definition.

123
0196-8858/86 $7.50

Copyright 0 1986 by Academic Press, Inc.
All rights of reproduction in any form resewed.

124 STEPHEN WOLFRAM

The degree of randomness of a sequence can be defined in terms of the
classes of computations which cannot discern patterns in it. A sequence is
“random enough” for application in a particular system if the computations
that the system effectively performs are not sophisticated enough to be able
to find patterns in the sequence. So, for example, a sequence might be
random enough for Monte Carlo integration if the values it yields are
distributed sufficiently uniformly. The existence say of particular correla-
tions in the sequence might not be discerned in this calculation. Whenever a
computation that uses a random sequence takes a bounded time, there is a
limit to the degree of randomness that the sequence need have. Statistical
tests of randomness emulate various simple computations encountered in
practice, and check that statistical properties of the sequence agree with
those predicted if every element occurred purely according to probabilities.
It would be better if one could show in general that patterns could not be
recognized in certain sequences by any computation whatsoever that, for
example, takes less than a certain time. No such results can yet be proved,
so one must for now rely on more circumstantial evidence for adequate
degrees of randomness.

The fact that acceptably random sequences can indeed be generated
efficiently by digital computers is a consequence of the fact that quite simple
transformations, when iterated, can yield extremely complicated behaviour.
Simple computations are able to produce sequences whose origins can
apparently be deduced only by much more complex computations.

Most current practical random sequence generation computer programs
are based on linear congruence relations (of the form x’ = ax + b mod n)
(e.g., [l]), or linear feedback shift registers [4] (analogous to the linear
cellular automata discussed below). The linearity and simplicity of these
systems has made complete algebraic analyses possible and has allowed
certain randomness properties to be proved [l, 41. But it also leads to
efficient algebraic algorithms for predicting the sequences (or deducing their
seeds), and limits their degree of randomness.

An efficient random sequence generator should produce a sequence of
length L in a time at most polynomial in L (and linear on most kinds of
computers). It is always possible to deduce the seed (say of length s) for
such a sequence by an exhaustive search which takes a time at most O(2”).
But if in fact such an exponentially long computation were needed to find
any pattern in the sequence, then the sequence would be random enough for
almost any practical application (so long as it involved less than exponential
time computations).

No such lower bounds on computational complexity are yet known. It is
however often possible to show that one problem is computationally equiv-
alent to a large class of others. So, for example, one could potentially show

CELLULAR AUTOMATA 125

that the problem of deducing the seed for certain sequences was NP-com-
plete [5]: special instances of the problem would then correspond to
arbitrary problems in the class NP, and the problem would in general be as
difficult as any in NP. (One should also show some form of uniform
reducibility to ensure that the problem is difficult almost always, as well as
in the worst case.) The class NP (nondeterministic polynomial time) in-
cludes many well-studied problems (such as integer factorization), which
involve finding objects (such as prime factors) that satisfy polynomial-time-
testable conditions, but for which no systematic polynomial time (P) al-
gorithms have ever been discovered.

Random sequence generators have been constructed with the property
that recognizing patterns in the sequences they produce is in principle
equivalent to solving certain difficult number theoretical problems [2] (which
are in the class NP, but are not NP-complete). An example is the sequence
of least significant bits obtained by iterating the transformation x’ = x2
mod (pq), where p and q are large primes (congruent to 3 modulo 4) [6].
Making predictions from this sequence is in principle equivalent to factoring
the integer pq [6,7].

There are in fact many standard mathematical processes which are simple
to perform, yet produce sequences so complicated that they seem random.
An example is taking square roots of integers. Despite the simplicity of its
computation, no practical statistical procedures have revealed any regularity
in say the digit sequence of 6 (e.g., [8]). (Not even its normality or
equidistribution has however actually been proved.) An even simpler exam-
ple is multiplication by +, say in base 6.2 Starting with 1, one obtains the
pattern shown in Fig. 1.1. The center vertical column of values, correspond-
ing to the leading digit in the fractional part of (i)n, seems random [lo].
(Though again not even its normality has actually been proved.) Given the
complete number obtained at a particular stage, multiplication by (;)”
suffices to reproduce the original seed. But given only the center column, it
seems difficult to deduce the seed.

Many physical processes also yield seemingly random behaviour. In some
cases, the randomness can be attributed to the effects of external random
input. Thus, for example, “analog” random sequence generators such as
noise diodes work by sampling thermal fluctuations associated with a heat
bath containing many components. Coin tossings and Roulette wheels

*This operation can be performed locally on a base 6 digit sequence, and so can be
implemented as a cellular automaton. Given particular finite boundary conditions, it acts like a
linear congruential sequence generator (e.g. [l]). But in an infinite region, its behaviour is more
complicated, and is related to the so-called 3 N + 1 problem [9].

126 STEPHEN WOLFRAM

1.
1.3
2.13
3.213
5.0213

11.33213
15.228213
25.8383213
41.34350213

102.235433213
133.3553528213
222..25525883213
333.425113050213
522.3414514133213

1203.53241532220213
2005.521825283383213
3012.5013420051350213
4321.13223301152433213

10581.520351315510520213
14132.5805451554442883213
23221.13124155541038058213
35831.515182555313431133213
54345.4544342551523445220213

123542.4240534245585412~3~3213
205534.040122341244232~94350213
312523.180283532110350~105433213
451204.438305528143543~1423529213

11150ll.fi4344250~2355343233550~3213
1454314.4054841383555235852545858215
2423454.01231021355550544212344133213
4835423.8204433225554424032@54822220213

1~055334.331105284255404~050123~333~3213
13125223.51444201042531@~1132@4352135@213
21512835.454103814042143015201~55022433213
3245W~55.4231343231~32543258814243348528213
51113125.334523584435855511582548523120~3213

114451512.224205441~54422445133531263450~~50213
154115450.340312401424~341115225150111301133213
253155413.530451002348Q55145584154550415431451315220213
421555322.514114303538121542448253454244~25345415155~303213

FIG. 1.1. Successive powers of 3/2 in base 6. The leading digits in the fractional parts of
these numbers form a sequence that seems random. The process of multiplication by 3/2 in
base 6 corresponds to a k = 6, r = 1 cellular automaton rule.

produce outcomes that depend sensitively on initial velocities determined by
complex systems with many components. It seems however that in all such
cases, sequences extracted sufliciently quickly can depend on only a few
components of the environment, and must eventually show definite correla-
tions.

One suspects in fact that randomness in many physical systems (probably
including turbulent fluids) arises not from external random input, but rather
through intrinsic mathematical processes [ll]. This paper discusses the
generation of random sequences by simple procedures which seem to
capture many features of this phenomenon. The investigations described
may not only suggest practical methods for random sequence generation,
but also provide further understanding of the nature and origins of random-
ness in physical processes.

CELLULAR AUTOMATA 127

2. CELLULAR AUTOMATA

A l-dimensional cellular automaton [12,13] consists of a line of sites with
values a, between 0 and k - 1. These values are updated in parallel
(synchronously) in discrete time steps according to a fixed rule of the form

Much of this paper is concerned with the study of a particular k = 2, r = 1
cellular automaton, described in Section 3.

For mathematical purposes, it is often convenient to consider cellular
automata with an infinite number of sites. But practical implementations
must contain a finite number of sites N. These are typically arranged in a
circular register, so as to have periodic boundary conditions, given in the
r = 1 case by

a; = +(a,, a,, u2)

ah = q+lj+l,q&l). (2.2)

It is also possible to arrange the sites in a feedback shift register (cf. [4]),
with boundary conditions

a; = &#+J,, a3r u4), +(a,, U4,U,)? a,),

a; = q&+3, a47 a,)7 al, a2). m(2.3)

Cellular automata can be considered as discrete approximations to partial
differential equations, and used as direct models for a wide variety of
natural systems (e.g. [14]). They can also be considered as discrete dynami-
cal systems corresponding to continuous mappings on the Cantor set (e.g.
[15]). Finally they can be viewed as computational systems, whose evolution
processes information contained in their initial configurations (e.g. [16]).

Despite the simplicity of their construction, cellular automata are found
to be capable of diverse and complex behaviour. Figure 2.1 shows some
patterns generated by evolution according to various cellular automaton
rules, starting from typical disordered initial conditions. Four basic out-
comes are seen [15]: (1) the pattern becomes homogeneous (fixed point), (2)
the pattern degenerates into simple periodic structures (limit cycles), (3) the
pattern is aperiodic, and appears chaotic, and (4) complicated localized
structures are produced. The first two classes of cellular automata yield
readily predictable behaviour, and show no seemingly random elements. But

128 STEPHEN WOLFRAM

rule 73

FIG. 2.1. Patterns generated by evolution of various k = 2, r = 1 cellular automata from
disordered initial states. Successive lines give configurations obtained on successive time steps,
with white and black squares representing sites with values 0 and 1 respectively. The coefficient
of 2’ in the binary decomposition of each rule number gives the value of the function #I in Eq.
(2.1) for the neighbourhood whose site values form the integer i (cf. [17]).

the third class gives rise to behaviour that is more complex. They can
produce patterns whose features cannot readily be predicted in detail, and
in fact often seem completely random. Such cellular automata can be used
as models of randomness in nature. They can also be considered as abstract
mathematical systems, and used for practical random sequence generation.

Figure 2.1 showed patterns produced by evolution according to various
cellular automaton rules, starting from typical disordered initial conditions,
in which the value of each site is randomly chosen to be zero or one. Figure
2.2 shows some patterns obtained instead by evolution from a very simple

CELLULAR AUTOMATA 129

rule 22 rule 30 de 45

rule 54 rule 57 de 60

rule 73 rule 110 rule 122

FIG. 2.2. Patterns generated by evolution of various k = 2, r = 1 cellular automata from
an initial state containing a single nonzero site. Complex patterns are seen to be produced even
with such simple initial conditions.

initial condition containing a single nonzero site. With such simple initial
conditions, some class 3 cellular automata yield rather simple patterns,
which are typically periodic or at least self similar (almost periodic). There
are nevertheless class 3 cellular automata which yield complex patterns,
even from simple initial states. Their evolution can intrinsically produce
apparent randomness, without external input of random initial conditions.
It is such “autoplectic” systems [II] which seem most promising for
explaining randomness in nature, or for use as practical random sequence
generation procedures.

Many class 3 cellular automata seem to perform very complicated trans-
formations on their initial conditions. Their evolution thus corresponds to a
complicated computation. But any predictions of the cellular automaton
behaviour must also be obtained through computations. Effective predic-
tions require computations that are more sophisticated than those corre-
sponding to the cellular automaton evolution itself. One suspects however

130 STEPHEN WOLFRAM

that the evolution of many class 3 cellular automata is in fact computa-
tionally as sophisticated as that of any (physically realizable) system can be
[18, 191. It is thus “computationally irreducible,” and its outcome can
effectively be found only by direct simulation or observation. There are no
general computational shortcuts or finite mathematical formulae for it. As a
consequence, many questions concerning infinite time or infinite size limits
cannot be answered by bounded computations, and must be considered
formally undecidable. In addition, questions about finite time or finite size
behaviour, while ultimately computable, may be computationally intracta-
ble, and could require, for example, exponential time computations.

Most class 3 cellular automata are expected to be computationally
irreducible. A few rules however have special simplifying features which
make predictions and analysis possible. One class of such rules are those for
which the function C$ is linear (modulo k) in the ai+j. Such cellular
automata are analogous to linear feedback shift registers [4]. An example
with k = 2 is

ai = (aid1 + a,)mod2 = (uiPl XORu,), (2.4)

where XOR stands for exclusive disjunction (this is rule number 60 in the
scheme of [17]). Linear cellular automata satisfy a superposition principle,
which implies that patterns generated with arbitrary initial states can be
obtained as appropriate superpositions of the self-similar pattern produced
with a single non-zero initial site (as illustrated in Fig. 2.2). As a result, it is
possible to give a complete algebraic description of the behaviour of the
system [20], and to deduce the outcome of its evolution by a much reduced
computation.

Most class 3 cellular automata are however nonlinear. No general meth-
ods to predict their behaviour have been found, and from their likely
computational irreducibility one expects that no such methods even in
principle exist. In studying such systems one must therefore to a large extent
forsake conventional mathematical techniques and instead rely on empirical
and experimental mathematical results.

3. A RANDOM SEQUENCE GENERATOR

There are a total of 223 = 256 cellular automaton rules that depend on
three sites, each with two possible values (k = 2, r = 1). Among these are
several linear rules similar to that of Eq. (2.4). But the two rules that seem
best as random sequence generators are nonlinear, and are given by

a; = a,-, XOR(uiORui+,) (3.la)

CELLULAR AUTOMATA 131

or, equivalently,

a; = (uiel + ai + u,+~ + u,u,+,) mod 2 (3.lb)

(rule number 30 [17]; equivalent to rule 86 under reflection), and

U: = u,-~ xoR (u; OR (NOT u;,,)) (3.2a)

or

a; = (1 + a,-i + a,,, + a,~,+~) mod 2 (3.2b)

(rule 45; reflection equivalent to rule 75). Here XOR stands for exclusive
disjunction (addition modulo two); OR for inclusive disjunction (Boolean
addition), and NOT for negation. The patterns obtained by evolution from
a single nonzero site with each of these rules were shown in Fig. 2.2. It is
indeed remarkable that such complexity can arise in systems of such simple
construction. A first indication of their potential for random sequence
generation is the apparent randomness of the center vertical column of
values in the patterns of Fig. 2.2.

This paper concentrates on the cellular automaton of Eq. (3.1). The
methods used carry over directly to the cellular automaton of Eq. (3.2), but
some of the results obtained in this case are slightly less favourable for
random sequence generation.

The cellular automaton rule (3.1) is essentially nonlinear. Nevertheless, its
dependence on a,-* is in fact linear. This feature (termed “left permutivity”
in [21], and also studied in [22]) is the basis for many of its properties. In the
form (3.1), the rule gives the new value a; of a site in terms of the old values
uj-l, ui and u,+~. But the linear dependence on cliPi allows the rule to be
rewritten as

‘i-1 = a; XOR (a, OR u,+~), (3.3)

giving a,-i in terms of a;, a, and u,+~. This relation implies that the
spacetime patterns shown, for example, in Figs. 2.1 and 2.2 can be found
not only by direct time evolution according to (3.1) from a given initial
configuration, but also by extending spatially according to (3.3), starting
with the temporal sequence of values of two adjacent sites.

Random sequences are obtained from (3.1) by sampling the values that a
particular site attains as a function of time. In practical implementations, a
finite number of sites are considered, and are typically arranged in a circular
register. Given almost any initial “seed” configuration for the sites in the

132 STEPHEN WOLFRAM

register, a long and seemingly random sequence can apparently be obtained.
This paper discusses several approaches to the analysis of the cellular
automaton (3.1) and the sequences it produces. While little can rigourously
be proved, the overwhelming weight of evidence is that the sequences indeed
have a high degree of randomness.

4. GLOBAL PROPERTIES

This section considers the behaviour of the cellular automaton (3.1)
starting from all possible initial states. The basic approach is to count the
possible sequences and patterns that can occur, and to characterize them
using methods from dynamical systems theory (e.g. [23]). The next section
discusses the behaviour obtained by evolution from particular initial con-
figurations. For purposes of simplicity, this section concentrates on the
infinite size limit; Section 9 considers finite size effects.

Figure 4.1 shows a spacetime pattern produced by evolution according to
(3.1) starting from a typical disordered initial state. While definite structure

FIG. 4.1. Pattern produced by evolution according to the cellular automaton rule (3.1) from
a typical disordered initial state.

CELLULAR AUTOMATA 133

is evident, one may suspect that a single line of sites at any angle in the
pattern can have an arbitrary sequence of values. Below we shah show that
this is in fact the case: given an appropriate initial condition, any sequence
can be generated in an infinite cellular automaton with the rule (3.1).

The rule (3.1) can be considered as a mapping from one (say infinite)
cellular automaton configuration to another. An important property of this
mapping is that it is smjective or onto. Any configuration A can thus always
be obtained as the image of some configuration A -, according to A = +I -.
A possible configuration A - (not necessarily unique) can be found by
starting with a candidate pair of site values, then extending to the left using
Eq. (3.3). So if all possible initial configurations are considered, then any
configuration can be generated at any time step. Thus with appropriate
initial conditions, any spatial sequence of site values can be produced.

Every length X spatial sequence of site values that occurs is determined
by a length X + 2 sequence on the previous time step. The surjectivity of
the rule (3.1) implies that such a predecessor exists for any length X
sequence. But Eq. (3.3) also implies that there are exactly four predecessors
for any sequence. Given values aj, a,-r, and so on, in one sequence, the
values a,:+ I and a; in its predecessor can be chosen in all the four possible
ways; in each case the remaining a,:, are then uniquely determined by Eq.
(3.3). Thus starting from an ensemble that contains all possible (infinite)
cellular automaton configurations with equal probabilities, each configura-
tion will be generated with equal probability throughout the evolution of the
cellular automaton, and so every possible spatial sequence of a particular
length will occur with equal frequency.

One may also consider sequences of values attained by a single site as a
function of time. Starting from an initial ensemble which contains all
configurations with equal probabilities, all such sequences again occur with
equal frequencies. For, given any temporal sequence, iteration of Eq. (3.3)
yields an equal number of initial configurations which evolve to it. The same
is true for sequences of site values on lines at any angle in the spacetime
pattern.

Entropies provide characterizations of the number of possible sequences
that occur. First, let the number of distinct length n blocks in these
sequences be N(n), and let the ith such sequence appear with probability
pi. Then the topological entropy of the sequence is given by (e.g. [15])

s = nl”, ilog,N(n), (4-l)

and the measure entropy by
-1 2”

sw= lim -Cpilog2pi.
n+m n ; (4.2)

134 STEPHEN WOLFRAM

If the cellular automaton configurations are considered as elements of a
Cantor set, then these entropies give respectively the Hausdorff (strictly
Kolmogorov) and measure dimensions of this set. If the sequences are
considered as “messages,” then the entropies give respectively their capacity
and Shannon information content.

For the cellular automaton of Eq. (3.1), all possible sequences occur with
equal probabilities (given an equal probability initial ensemble) so both
entropies are maximal:

sp=s= 1. (4.3)

Any reduction in entropy would reveal redundancy in the sequences, and
would imply a lack of randomness. Equation (4.3) is thus a necessary
(though not sufficient) condition for randomness. (It is related to statistical
test A of Sect. 10 and Appendix A.)

Although Eq (4.3) implies that all possible sequences of values for single
sites can occur along any spacetime direction, the deterministic nature of the
cellular automaton rule (3.1) implies that only certain spacetime patches of
values can occur. In fact, all the site values in a particular patch are
completely determined by the values that appear on its upper, left and right
boundaries. Once these boundaries are specified, the values of remaining
sites in the patch are redundant, and can be found simply by applying (3.1)
and (3.3).

In general the degree of redundancy in such spacetime patterns can be
characterized by the invariant topological and measure entropies for the
cellular automaton mapping, given by (e.g. [15, 241)

(4.4)
and

(4.5)

where N(X, T) gives the total number of distinct X x T spacetime patches
of site values that occur, and the pi give their probabilities.

It is clear from the locality of the rule (3.1) that

h,sh<2. (4.6)

A calculation based on the method of [25] in fact shows that*

h, 5 1.20. (4.7)

*Recent results [45] suggest in fact that h, = 1 + T-‘0.6*0.1), yielding a final value of 1.

CELLULAR AUTOMATA 135

Hence a knowledge of the time sequences of values of about 1.2 sites suffice
in principle to determine the values of all other sites. In practice however
the function which gives the initial configuration in terms of these temporal
sequences seems rapidly to become intractably complicated, as discussed in
Section 7.

5. STABILITY PROPERTIES

Section 4 considered properties of possible patterns generated by evolu-
tion with the cellular automaton rule of Eq. (3.1), starting from all possible
initial configurations. This section considers the change in the patterns
produced by small perturbations in the initial state. Figure 5.1 shows the
differences resulting from reversal of a single site value in a typical dis-
ordered initial configuration. The region affected increases in size with time,
reflecting the instability of the patterns generated.

This instability implies that information on localized changes eventually
propagates throughout the cellular automaton. The rates of information
transmission to the left and right are determined by the slopes of the
difference pattern in Fig. 5.1. These in turn give left and right Lyapunov
exponents AL and A, for the cellular automaton evolution [15, 261. (The
sequence of site values in a configuration, starting from a particular point,
can be represented as a real number. Linear growth of the difference pattern

FIG. 5.1. Differences in patterns produced by evolution according to the cellular automaton
rule of Eq. (3.1) from two typical disordered states which differ by reversal of the centre site
value. the growth of the region of differences reflects the instability of the cellular automaton
evolution.

136 STEPHEN WOLFRAM

in Fig. 5.1 then implies exponential divergence of the numbers representing
nearby configurations.)

The form of the cellular automaton rule (3.1) immediately implies that

A, = 1. (5.1)

For consider a configuration in which the difference pattern has reached site
- 1. Whatever the current values of sites 0 and 1, the XOR in (3.1) leads to
a change in the new value of site 0. The value (5.1) is the maximum allowed
by the locality of the rule (3.1).

Empirical measurements suggest that the left-hand side of the difference
pattern expands at an asymptotically linear rate, with a slope [45]

A, = (0.2428 + 0.0003). (5.2)

A simple statistical estimate for X, can be given. Consider a pair of
configuations for which the front of the difference pattern has reached site 0.
As a first approximation, one may assume that the motion of this front
depends only on the neighbouring values a _ r and a + r, where, by construc-
tion, a _ r is the same for the two configurations. When a-, = 0, the front
advances (left) by one site, independent of the values of the a,. When
a-1 = 1, the front remains stationary if the ~+r for the two configurations
are equal, and retreats by one site if they are unequal. If possible sets of site
values occured with equal probabilities, the front should thus follow a
biased random walk, advancing at average speed l/4. In practice, however,
Fig. 5.1 shows that the front can retreat by many sites in a single time step.
This occurs when the cellular automaton rule yields the same image for
multiple site value sequences, as for say 10100 and 11001. Such phenomena
make the probabilities for different difference patterns unequal, and invali-
date this purely statistical approach discussed. (The values of A, obtained
in this approach by considering the effects of between 1 and 5 sites on the
right are 0.25, 0.1875, 0.15625, 0.140625 and 0.134766.)

The result (5.2) gives the average speed of the left-hand side of the
difference pattern. As the random walk interpretation suggests, however,
one can choose initial configurations for which a single site change leads to
differences which expand at speed 1 on the left. In general, one can
construct the analog of a Green’s function, giving the probability that a site
at a particular position and time will be affected by an initial perturbation.
This function is nonzero within a “light cone” with edges expanding at
speed 1. It appears to be uniform on the right-hand side. But on the
left-hand side, it appears to be determined by a diffusion equation which
gives the average behaviour of the biased random walk. The difference

CELLULAR AUTOMATA 137

pattern can thus extend beyond the line given by Eq. (5.2), but with an
exponentially damped probability.

Lyapunov exponents measure the rate of information transmission in
cellular automata, and provide upper bounds on entropies, which measure
the information content of patterns generated by cellular automaton evolu-
tion. For sujective cellular automata it can be shown, for example, that [15]

(5.3)

consistent with Eqs. (4.6) and (5.2). The existence of positive Lyapunov
exponents is a characteristic feature of class 3 cellular automata.

The difference pattern of Fig. 5.1, and the related Green’s function,
measure the effect of initial perturbations on the values of individual sites.
In studying random sequence generation, one must also consider the effect
of such perturbations on time sequences of site values, say of length T.
These sequences are always completely determined from the initial values of
2T + 1 sites. But not all these initial values necessarily affect the time
sequences. A change in any of the T + 1 left-hand initial sites necessarily
leads to a change in at least one element of the time sequence. But some
changes in the T right-hand initial sites have no effect on any element of the
time sequence. It seems that the probability for a particular initial site to
affect the time sequence decreases exponentially with distance to the right.
The average number of sites on the right which affect the time sequence is
found to be approximately 0.26 + 0.19T. Thus the total number of initial
sites on which a length T time sequence depends is on average approxi-
mately 1.91 + 1.19T. This result is presumably related to the entropy (4.6).

6. PARTICULAR INITIAL STATES

Sections 4 and 5 have discussed some properties of the patterns produced
by evolution according to Eq. (3.1) from generic initial conditions. This
section considers evolution from particular special initial configurations.

Figure 6.1 shows on two scales the pattern produced by evolution from a
configuration containing a single nonzero site. (This could be considered a
difference pattern for the special time-invariant state in which all sites have
value zero.) Remarkable complexity is evident.

There are however some definite regularities. For example, diagonal
sequences of sites on the left-hand side of the pattern are periodic, with
small periods. In general, the value of a site at a depth N from the edge of

138 STEPHEN WOLFRAM

the pattern depends only on sites at depths N or less; all the other sites on
which it could depend always have value 0 because of the initial conditions
given. As a consequence, the sites down to depth N are independent of
those deeper in the pattern, and in fact follow a shifted version of the
cellular automaton rule (3.1) with boundary conditions that constrain two
sites at one end to have value zero. Since such a finite cellular automaton
has a total of 2N possible states, any time sequence of values in it must have
a period of at most 2N. The corresponding diagonal sequences in the pattern
of Fig. 6.1 must therefore also have periods not greater than 2N.

Table 6.1 gives the actual periods of diagonal sequences found at various
depths on the left- and right-hand sides of the pattern in Fig. 6.1. These are
compared with those for the self-similar pattern shown in Fig. 2.2 generated
by evolution according to the linear cellular automaton rule (2.4).

The short periods on the left-hand side of the pattern in Fig. 6.1 are
related to the high degree of irreversibility in the effective cellular automa-
ton rule for diagonal sequences in this case [27]. Starting with any possible
initial configuration, this cellular automaton always yields cycles with period
2j. The maximum value of j increases very slowly with N, yielding
maximum cycle lengths which increase in jumps, on average slower than
linearly with N. (Between the N values at which the maximum cycle length
increases, a single additional cycle of maximal length seems to be added
each time N increases by one. The total number of cycle states thus
increases at most quadratically with N, implying an increasing degree of
irreversibility.) The actual sequences that occur near the left-hand boundary
of the pattern in Fig. 6.1 correspond to a particular set of those possible in
this effective cellular automaton. In a first approximation, they can be
considered uniformly distributed among possible N-site configurations, and
their periods increase very slowly with N.

The effective rule for the right-hand side diagonal pattern in Fig. 6.1 is a
shifted version of Eq. (3.1)

a; = ai XOR (u;+r OR u;+~), (6.la)

with boundary conditions

4-l = uNel XOR aN,

I - aN - aN. (6.lb)

This system is exactly reversible: all of its 2N possible configurations have
unique predecessors. All the configurations thus lie on cycles, and again the
cycles have periods of the form 2j. Figure 6.2 shows the lengths of longest
cycles as a function of N. These lengths increase roughly exponentially with

CELLULAR AUTOMATA

FIG. 6.1. Patterns generated by evolution for 250 and 2000 generations, respectively.
according to the cellular automaton rule (3.1) from an initial state containing a single nonzero
site. (The second pattern was obtained by Jim Salem using a prototype Connection Machine
computer.)

140 STEPHEN WOLFRAM

TABLE 6.1

Depth

0
1
2
3
4
5
6
I
8
9

10
11
12
13
14
15
16

32

64

128

256

512

1024

CA30
WR TL

1 1
2 1
2 1
4 2
8 1
8 2

16 2
32 1
32 4
64 1
64 4
64 4
64 4
64 4
64 4

128 4
256 4

8

4

8

8

16

16

CA60
TR

1
2
4
4
8
8
8
8

16
16
16
16
16
16
16
16
32

64

128

256

512

1024

2048

Period lengths for diagonal sequences in patterns generated by evolution
from a single nonzero site according to the cellular automaton rules of Eqs.
(3.1) and (2.4). or, and R[, signify respectively periods for diagonal sequences
on the right and left of the patterns, at the specified depth. (The entries left
blank were not found.)

N; a least squares fit to the data of Fig. 6.2 yields

log,l-I, z OS(N + 1). (6.2)

This length is small compared to the total number of states 2N; few states in
fact lie on such longest cycles. Nevertheless, the periods of the right-hand
diagonal sequences in Fig. 6.1 do seem to increase roughly exponentially
with depth, as suggested by Table 6.1.

CELLULAR AUTOMATA 141

15'

10

2
z
2
2

5

/
/,-

O!7--T-r 5 10 20
N

FIG. 6.2. Maximal period lengths IIN for the effective cellular automaton which gives the
right-hand diagonal sequences in Fig. 6.1 down to depth N. Points plotted at integer N are
joined for pictorial purposes.

The boundary in Fig. 6.1 between regular behaviour on the left and
irregular behaviour on the right seems to be asymptotically linear, and to
move to the left with speed 0.25. A statistical argument for this result can be
given in analogy with that for Eq. (5.2). Each site at depth d on the
left-hand side of the pattern could in principle be affected by sites down to
depth d arbitrarily far up in the pattern. In practice, however, it is
unaffected by changes in sites outside a cone whose boundary propagates at
speed X, z 0.25. Thus the irregularity on the right spreads to the left only
at this speed.

While diagonal sequences at angles f 1 in Fig. 6.1 must ultimately
become periodic, sequences closer to the vertical need not. In fact, no
periodicity has been found in any such sequences. The center vertical (i.e.,
temporal) sequence has, for example, been tested up to length 219 3 5 x 10s,
and no perk&city is seen. One can prove in fact that only one such vertical
sequence (obtained from any initial state containing a finite number of
nonzero sites) can possibly be periodic [22]. For if two sequences were both
periodic, then it would follow that all sequences to their right must also be,
which would lead to a contradiction at the edge of the pattern.

Not only has no periodicity been detected in the center vertical sequence
of Fig. 6.1.; the sequence has also passed all other statistical tests of
randomness applied to it, as discussed in Section 10.

While individual sequences seem random, there are local regularities in
the overall pattern of Fig. 6.1. Examples are the triangular regions of zero
sites. Such regularities are associated with invariants of the cellular automa-
ton rule.

142 STEPHEN WOLFRAM

TABLE 6.2

Period Element

1 0
01

3 oooo11111001

4 OOOtK)Ol
0000111
0010011
0111111

Configurations periodic under the cellular automaton
mapping (3.1) consist of infinite repetitions of the ele-
ments given, Notice that the four elements given for
period four correspond simply to different phases in a
cycle. The patterns generated by these periodic configura-
tions are shown in Fig. 6.3.

The particular configuration in which all sites have value 0 is invariant
under the cellular automaton rule of Eq. (3.1). As a consequence, any string
of zeroes that appears can be corrupted only by effects that propagate in
from its ends. Thus each string of zeroes that is produced leads to a uniform
triangular region.

Table 6.2 and Fig. 6.3 give other configurations which are periodic under
the rule (3.1). (They can be considered as invariant under iterations of the
rule.) Again, any string that contains just the sequences in these configura-
tions can be corrupted only through end effects, and leads to a regular
region in spacetime patterns generated by Eq. (3.1).

In general, there is a finite set of configurations with any particular period
p under a permutive cellular automaton rule such as (3.1). The configura-

period I pertod 3 period 4

FIG. 6.3. Periodic patterns for the cellular automaton rule of Eq. (3.1). The form of these
patterns is given in Table 6.2.

143 CELLULAR AUTOMATA

FIG. 6.4. Patterns produced by evolution according to the cellular automaton rule (3.1) by
single site initial defects in the periodic patterns of Fig. 6.2 and Table 6.2.

tions may be found by starting with a candidate length 2p string, then
testing whether this and the string it yields through Eq. (3.3) on the left are
in fact invariant under $G’. The string to be tested need never be longer than
22P, since such a string can contain all possible length 2p strings. Thus the
periodic configurations consist of repetitions of blocks containing 2’P or less
site values. (For an arbitrary cellular automaton rule, the set of invariant
configurations forms a finite complement language which contains in gen-
eral an infinite number of sequences with the constraint that certain blocks
are excluded [16].)

The pattern in Fig. 6.1 can be considered the effect of a single site
“defect” in the periodic pattern resulting from a configuration with all sites
0. Figure 6.4 shows difference patterns produced by single site defects in the
other periodic configurations of Table 6.2 and Fig. 6.3

The periodic configurations of Table 6.2 and Fig. 6.3 can be viewed as
special states in which the cellular automaton of Eq. (3.1) behaves just like
the identity rule. Concatenations of other blocks could simulate other
cellular automata: one block might correspond to a value 0 site, and another
to a value 1 site in the effective cellular automaton. Some cellular automata
(such as that of Eq. (2.4)) simulate themselves under such “blocking
transformations,” and thus evolve to self-similar patterns. The cellular
automata of Eqs. (3.1) and (3.2) are unique among k = 2, r = 1 rules in
simulating no other rules, at least with blocks of length up to eight [14].

7. FUNCTIONAL PROPERTIES

Cellular automaton rules such as (3.1) can be considered as functions $I
which map three Boolean values to one. Iterations of these rules for say t

144 STEPHEN WOLFRAM

steps correspond to functions of 2t + 1 Boolean values. The complexity of
these functions reflects the intrinsic complexity of the cellular automaton
evolution.

The complexity of a Boolean function can be characterized by the
number of logic gates that would be needed to evaluate it with a particular
kind of circuit, or the number of terms that it would have in a particular
symbolic representation. Explicit evolution according to the cellular au-
tomaton rule (3.1) corresponds to a circuit with O(t*) components and
depth t. But for purposes of comparison, it is convenient to consider fixed
depth representations. One such representation is disjunctive normal form
(DNF), in which the function is written as a disjunction of conjunctions. A
two-level circuit can be constructed in direct correspondence with this form
(as programmable logic arrays often are).

For the function of Eq. (3.1), the DNF is

--
+(a-,, a,, q) = (a_,a,) + (~-1~0%) + (Gd (74

where + stands for OR, concatenation for AND, and bar for NOT. Notice
that by using in addition an XOR operation, Eq. (3.1) itself gives a shorter
form for this function.

The general problem of finding the absolute shortest representation for an
arbitrary Boolean function, even in DNF, is NP-complete (e.g. [5]), and so
presumably requires an exponential time computation. But a definite ap-
proximation can be found in terms of “prime implicants” (e.g. [28]). A
Boolean function of n variables can be considered as a colouring of the
Boolean n-cube. Prime implicants give the hyperplanes (with different
dimensions) in the n-cube which must be superimposed to obtain the region
with value 1. Each prime implicant can thus be used as a term in a DNF for
the function. The’ number of prime implicants required gives a measure of
the total number of “holes” in the colouring of the n-cube, and thus of the
complexity of the function.

The minimal DNF obtained with prime implicants for the function
corresponding to two iterations of the cellular automaton mapping (3.1) is

$*(a-,, u-1, a,, 69 (12)

= (a_2a_,iiy)Ula,) + (a_,~-,~,~, c>

+(a-,a_,qJa,a,)
--

+ (a--*a-la, a1 a*)

+(n4~-,q~, ---) + (<a_,&a,)
-

+ (u-y-, 4)a*) + (a_zu~luou2) + (u-2u-,a,). (7.2)

CELLULAR AUTOMATA 145

TABLE 7.1

CA30

t P.I.

1 3
2 9
3 23
4 16
5 185
6 666 ,I

Min.
CA60

P.I./Min.

3 2
I 2

17 8
41 2

105 8
272 8

Number of terms in disjunctive normal form Boolean
expressions corresponding to iterations of the map-
pings (3.1) (CA30) and (2.4) (CA60). P.I. gives the
number of prime implicants; min. the number of terms
obtained by [29]. (The two numbers are the equal in
the case of Eq. (2.4))

Table 7.1 gives the number of prime implicants for successive iterations of
the mapping (3.1). These results are plotted in Fig. 7.1. For arbitrary
Boolean functions of 2t + 1 variables, the number of prime implicants
could increase like 4’. In practice, however, a least squares fit to the data of
Table 7.1 suggests growth like 4’.“‘.

Various efficient methods are known to find DNF that are somewhat
simpler than those obtained using prime implicants. With one such method

FIG. 7.1. Number of terms in disjunctive normal form Boolean expressions for I step
iterations of the mappings (3.1) and (2.4). The upper curve gives the number of prime
implicants for iterations of Eq. (3.1). The next curve gives the minimal number of terms
obtained in this case using [q]. The lowest curve gives the minimal number of terms for the
linear cellular automaton mapping (2.4).

146 STEPHEN WOLFRAM

[28, 291, the DNF of Eq. (7.2) can be reduced to

$J2(a-,, a-1, a,, a,, 4

= (zQa_,a,a,) + (a_,~-,~,q)

+ (u-2 a-, a0 u2 ---) + (~u4zou2)

+(ue2a,a,) + (u-2c4 + (4-2444. (7.3)

The sizes of the minimal DNF obtained by this method for iterations of Eq.
(3.1) are shown in Table 7.1 and Fig. 7.1. They are seen to grow more slowly
than those obtained with prime implicants; the data given are however
again fit by exponential growth like 40.65’.

Table 7.1 and Fig. 7.1 also give the size of the minimal DNF for iterations
of the linear cellular automaton mapping (2.4). This number remains much
smaller, apparently increasing like 2**1(‘)-~ -C t2, where #1(t) gives the
number of ones in the binary representation for the integer t (cf. [30]).

The rapid increase in the size of the minimal DNF found for iterations of
Eq. (3.1) indicates the increasing computational complexity of determining
the result of evolution according to (3.1), and supports the conjecture of its
computational irreducibility. (Note however that even the parity function
cannot be computed by any DNF, or in general fixed-depth, circuit of
polynomial size [3.1].)

Equation (7.3) gives the function which determines the value of a single
site after two iterations of the cellular automaton rule (3.1). One can also
construct a function which gives the length t sequence of values of a
particular site attained through time by evolution from a given length
2t + 1 initial sequence. The minimal DNF representation for this function
is found (using [29]) to grow in size approximately as 21.361.

The results of Table 7.1 and Fig. 7.1 concern the difficulty of finding the
outcome of cellular automaton evolution according to Eq. (3.1) from a given
initial state. One may also consider the problem of deducing the initial state
from time sequences of site values produced in the evolution. Given say t
steps in the time sequence of values for two adjacent sites, the initial
configuration up to t sites to the left can be deduced directly by iteration of
Eq. (3.3). The combinatorial results of Section 4 indicate in fact that only
about 1.2 such temporal sequences should on average be required. And in
principle from a single sufficiently long temporal sequence, it should be
possible to deduce a complete initial configuration for a finite cellular
automaton. In practice, however, the necessary computation seems to be-
come increasingly intractable as the size of the system increases.

Given a particular temporal sequence, say at position 0, Eq. (3.3) uniquely
determines the values of all sites in a triangle to the left as a function of

CELLULAR AUTOMATA

TABLE 7.2

147

n (“=> (P.I.) Max. P.I.

2 0.5 0.15 1
3 1 1.125 2
4 1.375 1.375 3
5 1.125 1.219 3
6 2.281 2.719 12
I 2.828 3,539 17
8 3.164 4.105 26
9 3.699

10 4.254

Properties of Boolean expressions for leftmost initial site values deduced from
length n time sequences, obtained by evolution according to Eq. (3.1). The
average number of variables appearing in the Boolean expressions is given,
together with the number of prime imphcants in the disjunctive normal form for
the expression. The maximum number of variables which can appear is always
n - 1. (Results for n 2 9 were obtained by Carl Feynman using a Symbolics
3600 LISP machine. The entries left blank were not found.)

values in the temporal sequence at position 1. The number of values in the
position 1 temporal sequence on which a given site depends varies with the
form of the position 0 sequence [32]. For example, if the position 0 sequence
consists solely of ones, then the whole triangle of sites is completely
determined, entirely independent of the position 1 sequence. Table 7.2 gives
some results from considering the dependence of the site value a-, at
position -t (the apex of the triangle) on the position 1 sequence, for all 2’
possible position 0 sequences. The number of values in the position 1

4..

3..

/

2..
/’

r

/
1 ‘.

01
0 2 4 6 8 10

n

FIG. 7.2. Average number of additional site values necessary to “back-track” and de-
termine uniquely the initial site value a-,, given the sequence of values n,, for n subsequent
time steps.

148 STEPHEN WOLFRAM

sequence on which a-, depends seems to be roughly Poisson distributed,
with a mean that grows like 0.4t, as shown in Fig. 7.2. This is consistent
with the combinatorial result (4.6).

Table 7.2 also gives some properties of the prime implicant forms for u _ ,.
It is clear that the complexity of the function that determines a-, from
temporal sequences grows with t, probably at an increasingly rapid rate.
Again this suggests that the problem of deducing the initial sequence for
evolution according to Eq. (3.1), while combinatorially possible, is computa-
tional complex.

By comparison, the corresponding problem for evolution according to the
linear rule (2.4) is quite straightforward. For each possible position 0
sequence, there are only two possible forms for the dependence of a-, on
the position 1 sequence, and each of them involves exactly 2#1(‘-‘) prime
implicants. This simplicity can be viewed as a consequence of the algebraic
structure associated with this system.

8. COMPUTATION THEORETICAL PROPERTIES

The discussion of the previous section can be considered as giving a
characterization of the computational complexity of iterations of the cellular
automaton mapping (3.1) in a particular simple model of computation. The
results obtained suggest that at least in this model, there is no shortcut
method for finding the outcome of the evolution: the computations required
are no less than for an explicit simulation of each time step. As discussed
above, one suspects in fact that the evolution is in general computationally
irreducible, so that no possible computation could find its outcome more
efficiently than by direct simulation.

This would be the case if the cellular automaton of Eq. (3.1) could act as
an efficient universal computer (e.g. [33]), so that with an appropriate initial
state, its evolution could mimic any possible computation. In particular, it
could be that the problem of finding the value of a particular site after t
steps (given say a simply-specified initial state, as in Fig. 6.1) must take a
time polynomial in t on any computer. (Direct simulation takes 0(t *) time
on a serial-processing computer, and O(t) time with O(t) parallel
processors.) For a linear cellular automaton such as that of Eq. (2.4), this
problem can be solved in a time polynomial in log(t); but for the cellular
automaton of Eq. (3.1) it quite probably cannot [18].

In addition to studying cellular automaton evolution from given initial
configurations, one may consider the problem of deducing configurations of
the cellular automaton from partial information such as temporal sequences.

CELLULAR AUTOMATA 149

In particular, one may study the computational complexity of finding the
seed for a cellular automaton in a finite region from the temporal sequences
it generates.

There are 2N possible seeds for a size N cellular automaton, and one can
always find which ones produce a particular sequence by trying each of
them in turn. Such a procedure would however rapidly become impractical.
The results in Section 7 suggest a slightly more efficient method. If it were
possible to find two adjacent temporal sequences, then the seed could be
found easily using Eq. (3.3). Given only one temporal sequence, however,
some elements of the seed are initially undetermined. Nevertheless, in a
finite size system, say with periodic boundary conditions, one can derive
many distinct equations for a single site value. The site value can then be
deduced by solving the resulting system of simultaneous Boolean equations.
The equations will however typically involve many variables. As discussed
in Section 7, the number of variables seems to be Poisson-distributed with a
mean around 0.4N.

The general problem of solving a Boolean equation in n variables is
NP-complete (e.g. [5]), and so presumably cannot be solved in a time
polynomial in n. In addition, it seems likely that the average time to solve
an arbitrary Boolean equation is correspondingly long. To relate the prob-
lem of deducing the seed discussed above to this would however require a
demonstration that the Boolean equations generated were in a sense uni-
formly distributed over all possibilities. Out of all 2’” n-variable equations,
the problem here typically involves U(2”), but these seem to have no special
simplifying features. At least with the method discussed above, it is thus
conceivable that the problem of deducing the seed is equivalent to the
general problem of solving Boolean equations, which is NP-complete.

9. FINITE SIZE BEHAVIOUR

Much of the discussion above has concerned the behaviour of the cellular
automaton (3.1) in the idealized limit of an infinite lattice of sites. But
practical implementations must use finite size registers, and certain global
properties can depend on the size and boundary conditions chosen.

The total number of possible states in a size N cellular automaton is 2N.
Evolution between these states can be represented by a finite state transition
diagram. Figure 9.1 gives some examples of such diagrams for the cellular
automaton of Eq. (3.1) with periodic boundary conditions, as in Eq. (2.2).
Table 9.1 summarizes some of their properties. The results are seen to
depend not only the magnitude of N, but also presumably on its number
theoretical properties.

150 STEPHEN WOLFRAM

m

N=9

(2 copies)

N= 10

(4copies) (Zcopies)

CELLULAR AUTOMATA 151

Each state transition diagram contains a set of cycles, fed by trees
representing transients. The cycles may be considered as “attractors” to
which states in their “basins of attraction” irreversibly evolve.

There are many regularities in the structure of the state transition
diagrams obtained from Eq. (3.1). The evolution is thus not well-approxi-
mated by a random mapping between 2N states.

A first observation is that most configurations have unique predecessors
under the mapping (3.1) (as mentioned for infinite lattices in Sect. 4), so
there is little branching in the state transition diagram. In fact, it can be
shown [32] that a configuration has a unique predecessor unless it contains a
pair of value zero sites separated by a sequence of 3n + 1 value one sites
(with n 2 0), or unless N is divisible by 3, and all sites have value one. In
the former case, the configuration has exactly zero or two predecessors; in
the latter case, it has three. The numbers of configurations with zero and
two predecessors are equal when N is not divisible by 3; there are two more
with zero predecessors when 3] N. For large N, the number of configurations
with zero or two predecessors behaves as [32] kN, where K z 1.696 is the real
root of 4~~ - 2~~ - 1 = 0. Since the total number of configurations grows
like 2N, the fraction of nodes in the state transition diagram that are branch
points thus tends exponentially to zero.

A second observation is that there are often many identical parts in the
state transition diagrams of Table 9.1 and Fig. 9.1. This is largely a
consequence of shift invariance. States in a cellular automaton with periodic
boundary conditions that are related by shifts (translations) evolve equiv-
alently. Thus, for example, there are often several identical cycles, related by
shifts in their configurations. In addition, the periods of the cycles are often
divisible by N or its factors, since they contain several sequences of
configurations related by shifts. The transient trees that feed each of these
sequences are then identical.

The evolution of a finite cellular automaton with periodic boundary
conditions is equivalent to the evolution of an infinite cellular automaton
with a periodic initial configuration. Thus the results on cycle length
distributions in Table 9.1 can be considered as inverse to those in Table 6.2
on configurations with given temporal periods. Cycles of lengths corre-
sponding to these temporal periods occur whenever N is divisible by the
spatial periods of these configurations. Such short cycles are absent if N has
none of these factors.

FIG. 9.1. State transition diagrams for configurations of cellular automata evolving accord-
ing to Eq. (3.1) in circular registers of size N. Each node represents one of the 2N possible
length N configurations, and is joined by an arc to its successor under the cellular automaton
mapping. Transients corresponding to trees in the graph are seen ultimately to evolve to
periodic cycles. Some properties of these state transition diagrams are given in Table 9.1.
(Graphics by Steve Strassmann.)

152 STEPHEN WOLFRAM

TABLE 9.1

N Cycles Frac. longest Cyc. frac. (Transient)

4 1,X8,3X1 0.75 0.69 0.5
5 1X5,1X1 0.94 0.19 4.3
6 3x1 1.00 0.05 3.3
7 1x63,7X4,1x1 0.60 0.72 0.4
8 1x40,1X8,3x1 0.88 0.20 3.1
9 1~171,1~72,1~1 0.81 0.48 1.1

10 2X15,1X5,3X1 0.82 0.04 14.8
11 1 x 154.11 x 17,l x 1 0.76 0.17 3.3
12 4x102,1X8,4x3,3X1 0.93 0.11 4.4

13 1~832,1X260,1X247,1X91,1X1 0.32 0.17 2.2

14 1 x 1428,2 x 133.1 x 112.2 x 84.1 x 63.1 x 14.3 x 1 0.84 0.13 2.7
15 1 x 1455.5 x 30.5 x 9,15 x 7.4 x 5,l x 1 0.93 0.05 5.7
16 1x6016,1x4144,3~40,1~8,3~1 0.50 0.16
17 1 x 10846.1 x 1632,l x 867,l x 306.1 x 136.1 x 17.1 x 1 0.96 0.11

Properties of state transition diagrams for the cellular automaton rule of Eq. (3.1) in a
circular register of size N. The multiplicity and length of each cycle is given, followed by the
fraction of initial states which evolve to a longest cycle (size of attractor basin), the total
fraction of all 2N states which he on cycles, and the average length of transient before a cycle is
reached in evolution from an arbitrary initial state. (Results for N 2 16 were obtained by Holly
Peck.)

For large N, the state transition diagrams for Eq. (3.1) appear to be
increasingly dominated by a single cycle. This cycle is longer than the
others, and its basin of attraction is large enough that most arbitrarily
chosen initial states evolve to it. The low degree of branching in the
transient trees implies that the points reached from arbitrary initial states
should be roughly uniformly distributed around the cycle.

The shorter cycles in Table 9.1 can be considered as related to subsets of
states invariant under the cellular automaton rule. With N even, for
example, configurations which consist of two identical length N/2 subse-
quences can evolve only to configurations of the same type. Once such a
configuration has been reached, the evolution is “trapped” within this
subset of configurations, and must yield shorter cycles. (This phenomenon
also occurs for cellular automata with essentially trivial rules, such as the
shift mapping ai = a,. All states are on cycles in this case. The different
cycles correspond to the possible “necklaces” with N beads of two kinds,
which are inequivalent under shifts or rotations. These necklaces in turn
correspond to cyclotomic polynomials; there are XdrN$(d)2N’d of them,
where $I the Euler totient function (e.g. [4]).) In general, there may exist
subsets of states with certain special symmetry properties that are preserved
by the cellular automaton rule. Initial states with particular, symmetrical,

CELLULAR AUTOMATA 153

forms can be expected to have these properties, and thus to be trapped in
subsets of state space, and to yield short cycles. For example, with N = 36,
a configuration containing a single nonzero site evolves to a length 2844
cycle, while most initial configurations evolve to the longest cycle, with
2237412 states.

In the infinite size limit, patterns such as that of Fig. 6.1 generated by the
cellular automaton of Eq. (3.1) never become periodic. But with a total of N
sites, a cycle must occur after 2Nor less steps. Table 9.2 and Fig. 9.2 give the
actual maximal cycle lengths rlN found. A roughly exponential increase of
llN with N is seen, and a least squares fit to the data of Table 9.2 yields

log&I, = 0.61(N + 1). (94

Note that if the state transition diagram corresponded to an entirely
random mapping between the 2N cellular automaton states, then cycles of
average length 2N’2 would be expected [34]. The cycles actually obtained are
significantly longer. The exponent in Eq. (9.1) may be related to the entropy
(4.6) as a result of the expansivity or instability of the mapping discussed in
Section 5.

If there were very short cycles, then the sequences produced by the
cellular automaton would readily be predictable. So if in fact no such
prediction can be made by any polynomial time computation, the length of
the cycles that occur should in general increase asymptotically faster than
polynomial in N (cf. [2]). This behaviour is supported by Eq. (9.1).

If indeed the evolution of cellular automata such as (3.1) is computa-
tionally irreducible, then a complex computation may always be required to
determine for example the lengths of cycles that appear. For in this case,
there can effectively be no better way to find the succession of states that
occur, except by explicit application of the rule (3.1). One expects in fact
that the problem of 6nding say whether two configurations lie on the same
cycle is PSPACE-complete, and so presumably cannot be solved in a time
polynomial in N, but rather essentially requires a direct simulation of the
cellular automaton evolution. (Note that if the lengths of the cycles studied
are 0(2”), where both 2N-M and 2”” are large, then parallel processing is
essentially of no avail in this problem.)

While the determination of cycle lengths and structures may be computa-
tionally intractable for cellular automata such as (3.1), it should be much
easier for linear cases such as (2.4). From the algebraic theory of these
systems it is possible to show for example that the maximal cycle length lJN
satisfies [20]

nN12 7 ord,(*) - 1 P-2)

where n]m states that the integer n exactly divides m. Here ord,(k) is the

TABLE 9.2

CA30 CA60

4 8
5 5
6 1
7 63
8 40
9 171

10 15
11 154
12 102
13 832
14 1428
15 1455
16 6016
17 10845
18 2844
19 3705
20 6150
21 2793
22 3256
23 38249
24 185040
25 588425
26 312156
27 67554
28 249165
29 1466066
30 306120
31 2841150
32 2002272
33 2038476
34 5656002
35 18480630
36 2237472
37 49276415
38 9329228
39 961272
40 19211080
41 51151354
42 109603410
43 93537212
44 192218312
45 75864495
46 261598274
47 811284813
48 3035918676
49 9937383652
50 593487780
51 3625711023
52 20653434880
53 40114679273
54 7551779562

b3,n h

3.0
2.3
0.0
6.0
5.3
7.4
3.9
7.3
6.7
9.7

10.5
10.5
12.6
13.4
11.5
11.9
12.6
11.4
11.7
15.2
17.5
19.2
18.3
16.0
17.9
20.5
18.2
21.4
20.9
21.0
22.4
24.1
21.1
25.6
23.2
19.9
24.2
25.6
26.7
26.5
27.5
26.2
28.0
29.6
31.5
33.2
29.1
31.8
34.3
35.2
32.8

1
15
6
7
1

63
30

341
12

819
14
15
1

255
126

9709
60
63

682
2047

24
25575

1638
13797

28
475107

30
31
1

1023
510

4095
252

3233097
19418
4095

120
41943

126
5461
1364
4095
4094

48
2097151

51150
255

3276
3556769739

27594

0.0
3.9
2.6
2.8
0.0
6.0
4.9
8.4
3.6
9.7
3.8
3.9
0.0
8.0
7.0

13.2
5.9
6.0
9.4

11.0
4.6

14.6
10.7
13.7
4.8

18.9
4.9
5.0
0.0

10.0
9.0

12.0
8.0

21.6
14.2
12.0
6.9

15.4
7.0

12.4
10.4
12.0
12.0
23.0
5.6

21.0
15.6

8.0
11.7
31.7
14.8

Maximum cycle lengths llN found for the cellular automata
of Eqs. (3.1) (CA30) and (2.4) (CA60) in circular registers of size
N. In the former case, a selection of seeds, including single
nonzero sites, were used. In the latter case, maximal length
cycles are always obtained with single nonzero site seeds. The
results are plotted in Fig. 9.2. (Results for N 2 32 were ob-
tained by Holly Peck and Tsutomu Shimomura with an assem-
bly-language program on a Celerity C-1200 computer.)

CELLULAR AUTOMATA 155

40 40

30 30

2 m" 20 e2 20
2 I::.:; 2

2
10 10

0 0
0 10 20 30 40 50 0 10 20 30 40 50

CA 30 N CA60 N

FIG. 9.2. Maximal cycle lengths IIN for the cellular automaton of Eqs. (3.1) (CA30) and
(2.4) (CA60) in circular registers of size Iv.

multiplicative order function, equal to the minimum integer j such that
kj = 1 modN. This function divides the totient function e(N) (equal to the
number of integers less than N which are relatively prime to N), which is
maximal for prime N. Table 9.2 and Fig. 9.2 give the actual maximal
periods found in this case. Equation (9.2) rarely holds as an equality, and
the IIN found are usually much shorter than the corresponding ones for the
nonlinear rule (3.1).

The cycle structures of finite cellular automata depend in detail on the
boundary conditions chosen. Table 9.3 gives the maximal cycle lengths
found for rules (3.1) and (2.4) with shift register boundary conditions. The
results differ substantially from those with periodic boundary conditions
given in Table 9.2. One notable feature is the presence of length 2N - 1
cycles in the linear cellular automaton (2.4) for certain N. These correspond
to maximal length linear feedback shift registers, and can be identified by a
direct algebraic procedure [4].

Other boundary conditions may also be considered. Among them are
twisted ones, in which the sites a, and uN are negated in Eq. (2.2). The
maximum cycle lengths found with such boundary conditions seem typically
shorter than in the purely periodic case.

One may in addition consider boundary conditions in which the boundary
site values are fixed, rather than being periodically identified. Section 6
(particularly Fig. 6.2) gave some examples of results with such boundary
conditions. Different cycles are obtained in different cases; all those in-
vestigated nevertheless give maximal cycle lengths shorter than those of
Table 9.2 found with periodic boundary conditions.

What has been discussed so far are cycles in complete finite cellular
automaton configurations. But in obtaining random sequences one samples
single sites. The sequences found could potentially have periods which were

156

N h3,n,

4 5 2.3
5 2 1.0
6 7 2.8
7 4 2.0
8 17 4.1
9 65 6.0

10 6 2.6
11 57 5.8
12 50 5.6
13 118 6.9
14 185 7.5
15 257 8.0
16 481 8.9
17 907 9.8
18 1681 10.7
19 707 9.5
20 2619 11.4
21 5630 12.5
22 1368 10.4
23 31241 14.9
24 3567 11.8
25 60503 15.9
26 4752 12.2
21 46519 15.5
28 35569 15.1
29 207197 17.7
30 149899 17.2
31 482717 18.9

STEPHEN WOLFRAM

TABLE 9.3

CA30 CA60

hnv

15 3.9
21 4.4
21 4.4

127 7.0
63 6.0
73 6.2

889 9.8
1533 10.6
1085 10.1
7905 12.9

11811 13.5
32161 15.0

255 8.0
273 8.1

253921 18.0
413385 18.7
761763 19.5

5461 12.4
4194303 22.0
2088705 21.0
2097151 21.0
2192337 21.1

22995 14.5
41943035 25.3
17895697 24.1

Maximum cycle lengths n N found for the cellular automata of
Eqs. (3.1) (CA30) and (2.4) (CA60) in shift registers of size N
(with boundary conditions given by Eq. (2.3)).

sub-multiples of the periods for the complete configuration. For permutive
rules such as (3.1) (or (2.4)) this cannot, however, occur.

The state transition diagrams summarized in Table 9.1 give the number of
complete N-site configurations that can occur at various stages in the
evolution of the cellular automaton (3.1). One may also consider the number
of single site temporal sequences that can occur. Table 9.4 gives the fraction
of the 2L possible length L temporal sequences that are actually generated
from any of the 2N possible initial states in a size N cellular automaton

CELLULAR AUTOMATA

TABLE 9.4

157

L 3 4 5 6 7 8 9 10 11 12 13 14 15

3 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.250 0.625 0.875 0.938 l.OOfI 1.000 1.000 l.OOCI 1.000 1.000 1.000 1.000 1.000
5 0.125 0.313 0.656 0.844 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
6 0.063 0.156 0.344 0.594 0.906 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
7 0.031 0.078 0.180 0.352 0.609 0.891 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 0.016 0.039 0.094 0.188 0.328 0.633 0.949 0.992 1.000 1.000 1.000 1.000 1.000
9 0.008 0.020 0.047 0.094 0.168 0.361 0.668 0.895 0.996 1.000 1.000 1.000 1.000

10 0.004 0.010 0.023 0.047 0.085 0.195 0.386 0.644 0.917 0.989 1.000 1.000 1.000
11 0.002 0.005 0.012 0.023 0.042 0.102 0.204 0.377 0.666 0.897 0.995 l.OtXl 1.000
12 0.001 0.002 0.006 0.012 0.021 0.052 0.105 0.204 0.387 0.651 0.911 0.995 l.OOG
13 0.000 0.001 0.003 0.006 0.011 0.026 0.054 0.105 0.209 0.385 0.669 0.913 0.995
14 0.000 0.001 0.001 0.003 0.005 0.013 0.027 0.053 0.109 0.209 0.397 0.671 0.906
15 0.000 0.000 0.001 0.001 0.003 0.007 0.013 0.027 0.055 0.109 0.215 0.399 0.668

Fraction of length L temporal sequences generated from all possible seeds by evolution
according to Fq. (3.1) in a length N circular register. Results for successive values of N are
given in successive columns. The results are plotted in Fig. 9.3.

evolving according to Eq. (3.1) (with periodic boundary conditions). The
results are plotted in Fig. 9.3. Whenever N > L + 2, all possible sequences
seem to be generated. They appear with roughly equal frequencies.

10. STATISTICAL PROPERTIES

The sequences generated by the cellular automaton of Eq. (3.1) may be
considered effectively random if no feasible procedure can identify a pattern

FIG. 9.3. Fraction of length L sequences obtained by evolution from all possible seeds
according to Eq. (3.1) in a size N circular register. The three-dimensional view is from the point
N = L = 20, with elevation 2.

158 STEPHEN WOLFRAM

in them, or allow their behaviour to be predicted. Even though it may not be
possible to prove that no such procedure can exist, circumstantial evidence
can be accumulated by trying various statistical procedures and finding that
they reveal no regularities. The basic approach is to compare statistical
results on sequences generated by (3.1) with those calculated for sequences
whose elements occur purely according to probabilities.

To establish the validity of (3.1) as a general-purpose random sequence
generator, one should apply a variety of statistical procedures, related to
various different kinds of calculations. The choice of tests is necessarily as
ad hoc as the choice of calculations done. Appendix A lists those used here.
(But see also [35].) Some can be considered related to Monte Carlo simula-
tions of physical and other systems. Others to statistical analyses that would
be done on data from various kinds of measurements. While quite ad hoc,
the tests seem to be sensitive, and reasonably independent.

As an example, consider the “equidistribution” or “frequency” test. If a
sequence of zeroes and ones is to be random, the digits zero and one must
occur in it with equal frequency. In general, in fact, all 2” possible length n
blocks of digits must also occur with equal frequency. (The measure entropy
of (4.2) is maximal exactly when such equidistribution occurs.) However, in
a finite sample of length m, there are expected to be statistical fluctuations,
which lead to slightly different numbers of zeroes and ones. (The value of
entropy deduced from a finite sample is thus almost always not maximal,
even if it would be maximal were the sequence to be continued forever.) As
a consequence, one can never definitively conclude by studying a finite
sample that the complete sequence is not random. One can however
calculate the probability that a truly random sequence would have the
properties seen in the finite sample.

To do this, (e.g. [36]), one evaluates x *, defined in terms of the observed
and expected frequencies p0 and pe as

x2 = it PO - PJ2/Pe. (10.1)

Here Y gives the number of degrees of freedom, or number of distinct
objects whose frequencies are included in the sum. If blocks of length n are
studied then Y = 2”. Now one must find the probability that a value of x2
larger than that observed would occur for a random sequence. This
“confidence interval” is obtained immediately from the integral of the x2
distribution (e.g. [36]).

If the confidence interval is very close to zero or one, then the observed
x2 is unlikely to be produced from a random sequence, and one may infer
that the observed sequence is not random. Of course, if say a total of k tests

CELLULAR AUTOMATA 159

TABLE 10.1

CA30 CA30 CA30 CA30 CA30 CA30
N = 17 N= 17 N = 23 N = 29 N = 37 N = 49
L= 8k L = 64k L = 64k L = 64k L = 64k L = 64k

~___-__ --__
A 0.0039 l.oooo 0.0456 0.7375 0.3852 0.8003
B 0.0171 0.9944 0.3391 0.4888 0.1010 0.1494
C 0.4164 0.4783 0.1256 0.4847 0.4083 0.9407
D 0.3227 0.9998 0.1506 0.1434 0.1678 0.6074
E 0.4576 0.4484 0.6790 0.8492 0.5414 0.7991
F 0.4306 0.8644 0.8751 0.5590 0.6681 0.6606
G 0.2942 0.944 0.1232 0.7359 0.4448 0.6961

Results of the statistical tests described in Appendix A for sequences of length L
(k = 1024) generated by the cellular automaton of Eq. (3.1) (rule number 30) in
circular registers of length N. In each case, the seed used consists of a single nonzero
site. The numbers given are the probabilities (confidence intervals) for statistical
averages of truly random sequences to exceed those of the sequences analysed. The
numbers should be uniformly distributed between 0 and 1 if the sequences analysed are
indeed truly random. Results below 0.05 and above 0.95 are shown in bold type.
Accumulations close to 0 or 1 suggest deviations from randomness. Such accumula-
tions are seen in this case only when the period of the cellular automaton is comparable
to the length of the sequence sampled. (The statistical test programs used here were
written in C by Don Mitchell.)

are done, it is to be expected that the confidence interval for at least one of
them will be less than l/k. Evidence for nonrandomness in a sequence must
come from an excess of confidence interval values close to zero or one, over
and above the number expected for a uniform distribution.

Table 10.1 gives results from the statistical tests described in Appendix A
for sequences generated by the cellular automaton (3.1) in a finite circular
register. Except when the sample sequence is comparable in length to the
period of the system, as given by Table 9.2, no significant deviations from
randomness are found.

Table 10.2 gives statistical results for sequences generated by other
procedures. Those obtained from linear feedback shift registers, while
provably random in some respects (e.g. [4]), are revealed as significantly
nonrandom by several of the tests used here. Many sequences obtained from
linear congruential generators are also found to be significantly nonrandom
with respect to these tests. No regularities are detected in the digit sequence
of fi (and other surds tried) (cf. [37]). There is, however, some possible
evidence for nonrandomness in the digit sequences of e and r (cf. [38]).
(This will be explored elsewhere.)

160 STEPHEN WOLFRAM

TABLE 10.2

CA60 LFSR LFSR LCG Jz e II
N = 29 N = 17 N = 29 N = 32
L = 64k L = 64k L= 64k L= 64k L= 51906k L= 9501k L= 26755k

A l.OlMO 0.0390 0.9998 0.0167 0.6255 0.5505 0.1441
B l.oooo 0.9773 0.4378 0.0841 0.0801 0.4556 0.9525
c l.oooo 0.2654 1.0000 0.1676 0.0582 0.8615 0.2799
D 1.0000 0.8797 0.8400 0.8322 0.8553 0.7605 09986
E 0.9256 Loo00 0.9435 0.5850 0.6363 0.6890 0.0049
F 0.99% l.OMO 0.%74 0.9248 0.8499 0.7031 0.1297
G l.oooO 0.9790 0.3476 0.3137 0.8465 0.4086 0.5473

Results of statistical tests for sequences generated by various procedures. CA60 is the
linear cellular automaton rule of Eq. (2.4). in a size N circular register. LFSR is a linear
feedback shift register of length N with period 2N - 1. For N = 17 the shift register taps
are at positions 14 and 17; for N = 29 they are at positions 27 and 29. For CA60 and LFSR
seeds consisting of a single nonzero site were used. LCG is the linear congruential generator
x’ = (1103515245x + 12345) mod 23’ (used, for example, in many implementations of the
UNIX operating system). The seed x = 1 was used. The behaviour of CA60, LFSR and
LCG are illustrated in Fig. 11.1. fi, e, and n are the binary digit sequences of the square
root of two, the exponential constant, and pi, respectively. (These digit sequences were
obtained by R. W. Gosper using a Symbolics 3600 LISP machine.)

TABLE 10.3

i=o i=O i=O i-l
L- 8k L = 64k L = 512k L = 512k

A 0.1536 0.2234 0.6453 0.8629
B 0.5996 0.0637 0.4891 0.7639
c 0.6448 0.6538 0.5443 0.5887
D 0.5921 0.2643 om51 0.0105
E 0.1358 0.1348 0.6631 0.8430
F 0.2622 0.1957 0.9385 0.4324
G 0.4542 0.8773 0.6658 0.1080

is -1 i = 32
L = 512k L = 512k

0.8630 0.8733
0.8343 0.2525
0.4000 0.8271
0.7030 0.4550
0.7498 0.1264
0.9009 0.4736
0.7169 0.7744

i= -32
L = 512k

0.2677
0.1751
0.8815
0.7832
0.8353
0.8022
0.2364

Results of statistical tests for vertical sequences at position i in the pattern of Fig.
6.1 generated by evolution according to Eq. (3.1) from a single nonzero initial site on
an infinite lattice. Leading zeroes in each sequence were truncated. (The sequences were
obtained by Jim Salem using a prototype Connection Machine computer.)

CELLULAR AUTOMATA 161

Table 10.3 gives statistical results for temporal sequences in the pattern of
Fig. 6.1 obtained by evolution according to Eq. (3.1) from a single nonzero
initial site on an infinite lattice. Once again, no significant deviations from
randomness are seen.

If deviations from randomness were detected by some statistical proce-
dure, then this procedure could be used to make statistical predictions about
the sequence. In addition, it could be used to obtain a compressed represen-
tation for the sequence, and would thus demonstrate that the sequence did
not have maximal information content. The fact that deviations from
randomness have not been found by any of the statistical procedures
considered lends strong support to the belief that sequences produced by
Eq. (3.1) with large N are indeed random for practical purposes.

11. PRACTICAL ID~IPLE~~ENTATI~N

The simplicity and intrinsic parallelism of the cellular automaton rule
(3.1) makes possible efficient implementation on many kinds of computers.

On a serial-processing computer, each site could be updated in turn
according to (3.1). But in practice, site values can be represented by single
bits in say a 32-bit word, and updated in parallel using standard word-wise
Boolean operations. (Additional bit-wise operations are often needed for
boundary conditions.)

On a synchronous parallel-processing computer, different sites or groups
of sites in the cellular automaton can be assigned to different processors.
They can then be updated independently (though synchronously), using the
same instructions, and with only local communications.

Very efficient hardware implementations of (3.1) should also be possible.
For short registers, explicit circuitry can be included for each site. And for
long registers, a pipelined approach analogous to a feedback shift register
can be used (cf. [39]).

The evidence presented above suggests that the cellular automaton of Eq.
(3.1) can serve as a practical random sequence generator. The most ap-
propriate detailed choices of parameters depend on the application in-
tended. The most obvious constraint is one of cycle length. To obtain a
cycle length larger than 232 a 4 X 109, Table 9.2 shows that a circular
register of length N = 49 can be used. Cycle lengths tend to increase with
N, but Table 9.2 shows some irregularities. Thus it is not clear, for example,
how large N need be to obtain a cycle length larger than 264 E 1019. But
based on Eq. (9-l), a value N = 127 should certainly suffice.

162 STEPHEN WOLFRAM

Random sequences can be obtained by sampling the sequence of values of
a particular site in a register updated according to Eq. (3.1). The theoretical
and statistical studies described above support the contention that such
sequences show no regularities. For some critical applications, it may be
best however, to sample site values only say on alternate time steps. While
this method generates a sequence more slowly, it should foil prediction
procedures along the lines discussed in Section 7.

Sequences could potentially be obtained more quickly by extracting the
values of several sites in the register at each time step. But Eq. (4.6) implies
that some statistical correlations must exist between these values. The
correlations are probably minimized if the sites sampled are equally spaced
around the register. Nevertheless, in some applications where only a low
degree of randomness is needed, it may even be satisfactory to use all site
values in the register. (An example appears to be approximation of partial
differential equations, where randomness can be used to emulate additional
low-order digits.)

The random sequences obtained from Eq. (3.1) have an equal fraction of
0 and 1. Many applications, however, involve random binary choices with
unequal probabilities. There is nevertheless a simple algorithm [40] to obtain
digits with arbitrary probabilities. First write the probability p for outcome
1 as a binary number. Then generate a random binary sequence s with a
length equal to this number. The output is obtained by an iterative proce-
dure. Begin with a “current result” of 1. Then, starting from the least
significant digit in p, successively find a new result by combining the old
result with the corresponding digit of s, using a function AND or OR,
depending on whether the digit in p is 0 or 1, respectively. The final result
thus obtained is equal to 1 with probability exactly p.

Configurations in two length N registers with slightly different seeds
should become progressively less correlated under the action (3.1) as a result
of the instability discussed in Section 5. The characteristic time for this
process is governed by Eqs. (5.1) and (5.2), and should be z 0.8 N. Thus, if
several sequences are to be generated with seeds that differ only slightly
(obtained for example from addresses of computer elements), then (3.1)
should applied at least O(N) times to the seeds before beginning to extract
random sequences.

One may compare the scheme for random sequence generation described
here with the linear methods now in common use (e.g. [l]). Figure 11.1
shows patterns produced by these various schemes. The primary feature of
linear schemes is that they can be analysed by algebraic methods. As a
consequence, certain randomness properties can be proved for the sequences
they generate, and cases that give long cycles can be identified. But the
simplicity in structure which underlies this analysis also limits the degree of
randomness that such schemes can produce. The nonlinear scheme de-

CA30
N=l7

CELLULAR AUTOMATA

CA30 CA60 LFSR LFSR
N=29 N=29 N=l7 N=29

163

LCG

FIG. 11.1. Patterns obtained by various procedures in registers of size N. CA30 stands for
the cellular automaton of Pq. (3.1). with periodic boundary conditions. CA60 is the linear
cellular automaton of Eq. (2.4). again with periodic boundary conditions. LFSR is a linear
feedback shift register with size N and period 2N - 1. For N = 17 the taps are at positions 14
and 17: for N = 29, they are at positions 27 and 29. LCG is a linear congruential sequence
generator, operating on the 32-bit integers whose binary digit sequences are given. The seed in
all cases consists of a single nonzero bit in the centre of the register. Statistical properties of the
sequences produced are given in Tables 10.1 and 10.2.

scribed here is not readily amenable to complete analysis, and no significant
limits on the degree of randomness it yields are known. But on the other
hand, no conventional mathematical proofs for particular randomness prop-
erties can be given, and it must be investigated by largely empirical
methods.

12. ALTERNATIVE SCHEMES

The cellular automaton of Eq. (3.1) is one of the simplest that seems good
for random sequence generation. But other cellular automata may also be
considered, and some potentially have certain advantages.

Among k = 2, r = 1 cellular automata, Eq. (3.2) is the only other serious
contender. No direct equivalence between this rule and that of Eq. (3.1) is

164 STEPHEN WOLFRAM

known, but their properties are very similar. Equation (3.2) gives however
i451

A, = (0.1724 f 0.0004), (12.1)

slightly smaller than the corresponding result (5.2) for Eq. (3.1). In addition,
it gives a slightly smaller invariant entropy h,. It seems to have no
advantages over (3.1).

Cellular automata with k > 2 or R > 3 may also be studied. (Here R is
defined as the total number of sites in the neighbourhood for the rule.) Any
class 3 (chaotic) cellular automaton rule can be considered a candidate
random sequence generator. Autoplectic rules which produce complex pat-
terns even from simple initial conditions are probably best. Some of these
rules have larger Lyapunov exponents and invariant entropies than Eq.
(3.1) but they are also more difficult to compute. In addition, many rules
that seem to produce chaotic overall patterns nevertheless yield sequences
that show definite regularities, resulting, for example, in non-maximal
temporal entropies. Permutive chaotic rules avoid such problems, but are
very similar in character to the rule of Eq. (3.1), and so potentially share any
of its possible deficiencies.

One possibility is to consider bijective cellular automaton rules, which are
invertible, so that each configuration has both a unique successor in time,
and a unique predecessor. The state transition diagrams for such cellular
automata in finite regions with periodic boundary conditions can contain
only cycles, and no transients. But only a very small fraction of all cellular
automaton rules are bijective, and very few of those that are exhibit chaotic
behaviour. Table 12.1 gives some non-trivial bijective cellular automaton
rules with k = 2 and R I 5 (cf. [41]). None of those with R I 4 are
chaotic.

With larger effective k, it is nevertheless possible to construct chaotic
bijective rules explicitly. One method [42] yields cellular automaton rules
that are most easily stated in terms of dependence on second-to-last as well
as immediately preceding site values:

@) = ‘P(&;“, . . . , &;“)XOR a!‘-*). (12.2)

Such rules may be stated in the standard form (2.1) by considering sites with
k* possible values. Some examples of patterns generated by rules of the
form (12.2) are shown in Fig. 12.1. The rules are bijective, so that all states
lie on cycles. However, there are often many distinct cycles, each quite
short, making the system unsuitable for random sequence generation.

CELLULAR AUTOMATA 165

TABLE 12.1

k=2,R=4
lkng
ls5k
lhmc
lj4s

lkng
ls5k
lhmc
lj4s

k=2,R=5
3nhlvo0
3ug5voo
39gtvo0

3nhlvo0
3ug5voo

f20nvljogtvoO

Bijective cellular automata rules with k possible values for
each site and depending on strictly R previous site values. The
rules given are “totally quiescent,” so that cp(u, a,. , a) = a
for all a. The rules are specified by giving the values of + as
digits in a binary number indexed by a number formed from the
arguments of +. The binary number is then stated in base 32,
with letters of the alphabet representing successive digits greater
than 9. Leading zeroes are not truncated. Long specifications
correspond to rules with larger values of R.

rule 22 rule 30 rule 41

FIG. 12.1. Patterns generated by various bijective (reversible) k = 2, r = 1 cellular au-
tomata with rules of the form (12.1).

166 STEPHEN WOLFRAM

13. DISCUSSION

This paper has used methods from several disciplines to study the
behaviour of the nonlinear cellular automaton of Eq. (3.1). Despite the
simplicity of its construction, all the approaches taken support the conjec-
ture that its behaviour is so complicated as to seem random for practical
purposes. It is remarkable that such a simple system can give rise to such
complexity. But it is in keeping with the observation that mathematical
systems with few axioms, or computers with few intrinsic instructions, can
lead to essentially arbitrary complexity. And it seems likely that the
mathematical mechanisms at work are also responsible for much of the
randomness and chaos seen in nature.

The simplicity of Eq. (3.1) makes it amenable to highly efficient practical
implementation. And the analyses carried out here suggest that the se-
quences it produces have a high degree of randomness. In fact, if any
regularity could be found in these sequences, it would probably have
substantial consequences for studies of many complex and seemingly ran-
dom phenomena.

APPENDIX A: STATISTICAL PROCEDURES

This Appendix describes the statistical randomness testing procedures
used in Section 10. The procedures are mostly taken from [l], although their
numbering has been changed slightly. The basic method in each case is to
compare an observed distribution with that calculated for a purely prob-
abilistic sequence.

The sequences studied consist of strings of binary bits. In many of the
tests, these bits are grouped into blocks: either length 8 (non-overlapping)
bytes, or length 4 (non-overlapping) nybbles. The possible bit sequences in
these blocks can be represented by integer “values” between 0 and 255 or
16, respectively.

A. Block Frequency Distribution. Each of the 2” possible n-blocks
should occur with equal frequency. (n = 8 is used.)

B. Gap Length Distribution. The lengths of runs of n-blocks whose
values are all greater than i, or less than i, should follow a binomial
distribution. (n = 8, i, = 100, i, = 200 are used; runs longer than 16 blocks
are lumped together.)

C. Distinct Blocks Distribution. The frequencies with which p out of q
successive m-blocks are distinct should follow a definite distribution. (m = 4,
q = 4 are used.)

CELLULAR AUTOMATA 167

D. Block Accumulation Distribution. The number of successive n-blocks
necessary for all possible m-blocks to appear in order as their first m
elements should follow a definite distribution. (n = 8, m = 3 are used;
numbers greater than 40 are lumped together.)

E. Permutation Frequency Distribution. The values of q successive
n-blocks should occur in all q! possible orderings with equal frequency.
(n = 8, q = 5 are used.)

F. Monotone Sequence Length Distribution. The lengths of sequences in
which successive n-blocks have monotonically increasing values should
follow a definite distribution. (n = 8 is used; lengths greater than 6 are
lumped together; elements immediately following each run are discarded to
make successive runs statistically independent.)

G. Maxima Distribution. The maximum values of n-blocks in sequences
of q n-blocks should follow a power law distribution. (n = 8, q = 8 are
used.)

ACKNOWLEDGMENTS

Many people have contributed in various ways to the material presented here. For specific
suggestions I thank: Persi Diaconis, Carl Feynman, Richard Feynman, Shafi Goldwasser, Peter
Grassberger, Erica Jen, and John Milnor.

For discussions I thank: Lenore Blum, Manuel Blum, Whit Diffie, Rolf Fiebrich, Danny
Hillis, Doug Lind, Silvio Micah, Marvin Minsky, Andrew Odlyzko, Steve Omohundro,
Norman Packard, and Jim Reeds.

For help with computational matters I thank: Keira Bromberg, Bill Gosper, Don Mitchell,
Bruce Nemnich, Holly Peck, Jim Salem, Tsutomu Shimomura, Steve Strassmann, and Don
Webber.

The computer mathematics system SMP [43] was used for some of the calculations. I thank
the Science Office of Sun Microsystems for the loan of a SUN workstation on which most of
the graphics and many of the calculations were done. And finally I thank Thinking Machines
Corporation for the use of a prototype Connection Machine computer [44], without which
much more about the cellular automaton of Eq. (3.1) would still be unknown.

Note udded in proof. Eq. (3.1) can also be used to generate efficiently a key sequence for
stream encryption [46].

REFERENCES

1. D. KNUTH, “Seminumerical Algorithms,” Addison-Wesley, Reading, Mass., 1981.
2. A. SHAMIR, “On the generation-of cryptographically strong pseudorandom sequences,”

Lecture Notes in Computer Science Vol. 62, p. 544, Springer-Verlag, New York/Berlin,
1981: S. GOLDWA~ZXER AND S. MICALI, Probabilistic encryption, J. Comput. System Sci. 28,
(1984) 270; M. BLUM AND S. MICALI, How to generate crytographically strong sequences
of pseudorandom bits, SIAM J. Comput. 13 (1984) 850; A. YAO, Theory and applications
of trapdoor functions, in “Proc. 23rd IEEE Symp. on Foundations of Computer Science,”
1982.

168 STEPHEN WOLFRAM

3. G. CHAITIN, On the length of programs for computing finite binary sequences, I, II, J.
Assoc. Comput. Much. 13 (1966) 547; 16, (1969) 145, Randomness and mathematical proof,
Sci. Amer. 232, No. 5 (1975) 47; A. N. KOLMOGOROV, Three approaches to the concept of
“the amount of information,” Problems Inform. Transmission 1 (1965) 1; R. SOLOMONOFF,
A formal theory of inductive inference, Inform. Control 7 (1964) 1; P. MARTIN-L• F, The
definition of random sequences, Inform. Control 9 (1966) 602; L. LEVIN, On the notion of
a random sequence, Soviet Math. Do/d. 14 (1973), 1413.

4. S. W. GOLOMB, “Shift Register Sequences,” Holden-Day, San Francisco, (1967).
5. M. GAREY AND D. JOHNSON, “Computers and Intractability: A Guide to the Theory of

NP-Completeness,” W. H. Freeman, San Francisco, 1979.
6. L. BLUM, M. BLUM, AND M. SHUB, Comparison of two pseudorandom number generators,

in “Advances in Cryptology: Proc. of CRYPTO-82” (D. Chaum, R. Rivest, and A. T.
Sherman, Eds.), Plenum, New York, 1983.

7. W. ALEXI, B. CHOR, 0. GOLDREICH, AND C. SCHNORR, RSA/Rabin bits are f +
l/poly(logN) secure, in “Proc. Found. Comput. Sci.,” (1984); U. VAZIRANI AND V.
VAZIRANI, Efficient and secure pseudorandom number generation, in “Proc. Found.
Comput. Sci.,” 1984.

8. L. KUIPERS AND H. NIEDERREITER, “Uniform Distribution of Sequences,” Wiley, New
York, 1974.

9. J. LAGARIAS, The 3x + 1 problem and its generalizations, Amer. Math. Monthly 92
(1985), 3.

10. K. MAHL.ER, An unsolved problem on the powers of I, Proc. Austrd. Math. Sot. 8 (1968),
313; G. CHOQUET, Repartition des nombres k(i)“; mesures et ensembles associes, C. R.
Ad. Sci. Paris A 2% (1980) 575.

11. S. WOLFRAM, Origins of randomness in physical systems, Phys. Rev. Left. 55 (1985), 449.
12. S. WOLFRAM. Cellular automata as models of complexity, Nature 311 (1984), 419.
13. D. FARMER, T. TOFFOLI, AND S. WOLFRAM, (Eds.), Cellular automata, Physica DlO Nos. 1,

2, (1984).
14. S. WOLFRAM, Cellular automata and condensed matter physics, in Proc. NATO Advanced

Study Institute on Scaling phenomena in disordered systems, April 1985.
15. S. WOLFRAM, Universality and complexity in cellular automata, Physicu DlO (1984), 1.
16. S. WOLFRAM, Computation theory of cellular automata, Comm. Math. Phys. % (1984), 15.
17. S. WOLFRAM, Statistical mechanics of cellular automata, Rev. Modern Phys. 55 (1983), 601.
18. S. WOLFRAM, Undecidability and intractability in theoretical physics, Phys. Rev. Lett. 54

(1985) 735.
19. S. WOLFRAM, Computer software in science and mathematics, Sci. Amer., September 1984.
20. 0. MARTIN, A. ODLY~KO, AND S. WOLFRAM, Algebraic properties of cellular automata,

Comm. Math. Phys. 93 (1984), 219.
21. J. MILNOR, Notes on smjective cellular automaton-maps, Institute for Advanced Study

preprint, June 1984.
22. E. JEN, “Global Properties of Cellular Automata,” Los Alamos report LA-UR-85-1218,

1985; J. Statist. Phys., in press.
23. J. GUCKENHEIMER AND P. HOLMES, “Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields”, Springer-Verlag, New York/Berlin, 1983.
24. J. MILNOR, Entropy of cellular automaton-maps, Institute for Advanced Study preprint,

May 1984; Directional entropies of cellular automaton maps, Institute for Advanced Study
preprint, October 1984.

25. YA. SINAI, An answer to a question by J. Milnor, Comment Math. Helv. 60 (1985), 173.
26. N. PACKARD, Complexity of growing patterns in cellular automata, in “Dynamical systems

and cellular automata,” (J. Demongeot, E. Goles, and M. Tchuente, Ids.), Academic Press,
1985.

CELLULAR AUTOMATA 169

27. R. FEYNMAN, private communication.
28. R. BRAYTON, G. HACHTEL, C. MCMULLEN, AND A. SANGIOVANNI-VINCENTELLI, “Logic

Minimization Algorithms for VLSI Synthesis,” Kluwer, 1984.
29. R. RUDELL, “Espresso software program,” Computer Science Dept., University of Cali-

fornia, Berkeley, 1985.
30. S. WOLFRAM, Geometry of binomial coefficients, Amer. Moth. Monthly 91 (1984), 566.
31. M. FURST, J. SAXE, AND M. SIPSER, Parity, circuits, and the polynomial-time hierarchy,

Muth $vstem.s Theory 17 (1984). 13.
32. C. FEYNMAN AND R. FEYNMAN, private communication.
33. M. MINSKY, “Computation: Finite and Infinite Machines,” Prentice-Hall, Englewood

Cliffs, N.J., 1967.
34. B. HARRIS, Probability distributions related to random mappings, Ann. Murh. Statist. 31

(1960) 1045.
35. G. MARSAGLIA, A current view of random number generators, in “Proc. Comput. Sci. and

Statistics, 16th Sympos. on the Interface,” Atlanta, March 1984.
36. G. W. SNEDECOR AND W. G. COCHRAN, “Statistical Methods,” Iowa State Univ. Press,

Ames, 1967.
37. W. BEYER, N. METROPOLIS AND J. R. NEERGAARD, Statistical study of digits of some

square roots of integers in various bases, Math. Comp. 24 (1970) 455.
38. S. WAGON, Is rr normal?, Math. Intelligencer. 7 (1985), 65.
39. T. TOFFOLI, CAM: A high-performance cellular-automaton machine, Physicu DlO (1984),

195: K. STEIGLITZ AND R. MORITA, A multi-processor cellular automaton chip, in “Proc.
1985 IEEE International Conf. on Acoustics, Speech, and Signal Processing,” March 1985.

40. J. SALEM, Thinking Machines Corporation report, to be published.
41. G. HEDLUND, Endomorphisms and automorphisms of the shift dynamical system, Math.

Svstenrs Theory 3 (1969), 320; G. HEDLUND, private communication.
42. N. MARGOLUS. Physics-like models of computation, Physica DlO (1984), 81.
43. S. WOLFRAM, “SMP Reference Manual,” Computer Mathematics Group, Inference Corpo-

ration, Los Angeles. 1983.
44. D. HILLIS, “The Connection Machine,” MIT Press, Cambridge, Mass., 1985.
45. P. GRASSBERGER, “Towards a quantitative theory of self-generated complexity,” Wuppertal

preprint (1986).
46. S. WOLFRAM, Cryptography with cellular automata, in “Proc. CRYPT0 85,” August 1985.

