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A b s t r a c t - - A n  innovative decomposition for inverting a nomingular, Mymmetric, and indefinite 
matrix [A] of order (n X n) is derived in this paper. The inveree of [A] is written u [A]-I = [LI [DI [U] 
where [L] k a lower triangular matrix, [D] is a diagonal matrix, and [U] is an upper triangular matrix. 
By the method, the sohtion of [A]{X} = {B} may be emily and diicicntly computed by matrix-vector 
mnltiplicationa as {X} = [L][D][U]{B}. This tedmique requlres a minimal amotmt of computer 
memories, and can be easily trandonned into parallel procedures with high etllciendee. Performances 
in inverting asymmetric and indefinite matrices and in solving systems of linear equations on an 
Alliant/FX8 computer are reported. 

1. I N T R O D U C T I O N  

Inverting a matrix is one of the fundamental procedures in scientific computing. It is well- 
known that many scientific and engineering problems, written in differential equations or integral 
equations, may be approximated into an algebraic system as 

[A]{X} = {B}, (1) 

where [A] is a nonsingular matrix, {B} is a coefficient vector, and {X} is the unknown vector to 
be determined. If the inverse of [A] is available, then the solution of Equation (1) may be easily 
and efficiently computed by a matrix-vector product. For some types of problems, matrix [A] 
may be symmetric and positive definite, while others may result in asymmetric and indefinite 
matrices. This paper considers the general case with an asymmetric and indefinite matrix [A]. 

The essential idea of this work is based upon the author's decomposition [1], which can effi- 
ciently decompose a matrix into its inverse. The original method [2] decomposes a symmetric 
matrix [.4] into [A] -1, and [A] -1 is written in the form 

L~ [L'J r , 

ILl [D] [L] T , 

if [.4] is positive definite; 

if [.4] is indefinite. 

This work will extend this new class of technique to decompose an asymmetric matrix into its 
inverse. The inverse of an asymmetric matrix can be then written in the form of ILl [D] [U] 
where [L] is a lower triangular matrix, [D] is a diagonal matrix, and [U] is an upper triangular 
matrix. Based upon the method, the solution of [A]{X} = {B} may he efficiently computed by 
matrix-vector multiplications as 

{ x }  = [L] [D] [u]{B}. 

The method will he discussed in the following. 

The author acknowledgee the Advanced Computing Research Facility, Matl i~at ies  and Computer Science Divi- 
don, Argonne National Laboratory, on whose machines the computations of this research were performed. 
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2. DERIVATIONS 

Let us consider a lower triangular matrix [L] of order (n × n) with unit diagonal coefficients as 

[L] = [(L1} {L~} . . -{Li} . . .  (Ln}], (2) 

where {Lj} is the jth column vector of [L]. Denote by L~j the ith coefficient of {Lj}, in which 
Li i = 0 for i < j and Lij = 1. Similarly, let us consider an upper triangular matrix [U] of order 
(n x n) with unit diagonal coefficients as 

"LUll 
W2J 

= LujJ ' (3) 

.LU.]  

where L~:~J is the jth row vector of [U]. Denote by Uj, the i th coefficient of [UiJ, in which Uji = 0 
for j > i and Ujj = 1. 

Let us consider a system of linear equations as 

[A]{X} = {B}, (4) 

where matrix [A] is a nonsingular square matrix which may be asymmetric and indefinite, {B} 
is a coefficient vector, and {X} is the solution to be determined• Since [L] is a lower triangular 
matrix with unit diagonal coefficients, det[L] = 1. This means ILl is nonsingular, such that we 
may define a transformation in term of ILl as 

{ x }  = (5) 

Substituting Equation (5) into Equation (4) yields 

[.4] [L]{)~} : {B}. (6) 

Premultiplying both sides in Equation (6) by [U] yields 

[U] [A] [L]{)~} = [U]{B}. (7) 

If [U] [A] [L] is a diagonal matrix, then [U] [A] [L] may be easily inverted and may be written as 

[U] [A] [L] = [D] -x , (8) 

where [D] is a diagonal matrix. Substitute Equation (8) into Equation (7) to yield 

{)~} = [D] [U]{B} .  (9) 

Premultiply both sides in Equation (9) by [L] and apply Equation (5) to yield 

iX} = [L] [D] [U]{B}. (10) 

Compare the results between Eqsuation (4) and (10) to obtain 

[A] -1 ---- [L] [D] [U]. (11) 

The key to Equation (11) is the condition shown in Equation (8). If we can obtain a pair of 
[L] and [U] such that the product of [U] [A] [L] is a diagonal matrix, then the inverse of [A] can 
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be written in the form of Equation (11). Apparently, based upon Equation (11), the solution of 
Equation (4) may be easily and efficiently computed by matrix-vector multiplications as shown 
in Equation (10). The definitions of ILl, [D], and [U] for the inverse of [A] will be derived in the 
following. First of all, let us discuss the conditions for decomposing [A] into [.4]-1 _ ILl [D] [U]. 

CONDITIONS. The requirements for Equation (11) can be written as: 

LUd[A]{L~} = O, i f  i ~ j ,  (12) 
LUd[A]{L#} ~ O, i f  i = j .  (13) 

PROOF. As mentioned previously, the key to Equation (11) is to find a pair of [L] and [U] 
such that [U] [.4] [L] is diagonal and invertible. This means that the off-diagonal coefficients of 
[U] [A] [L] should be zero as shown in Equation (12), and the diagonal coefficients of [U] [.4] [L] 
cannot be zero as shown in Equation (13). II 

Based upon Equation (12) and (13), a procedure for constructing ILl and [U] is arranged in 
backward order, i.e., [L] is constructed from column n to column 1, and [U] is constructed from 
row n to row 1. The definitions of {Lj} and LUjJ are as follows. 

LEMMA 1. A pair of {Lj } and iu J, which satisfy the requirement of triangular contigurations 
and may be determined by Equation (12), may be written as 

f~ 

LujJ - kejJ -I- ~ c~, Lu, J, (14) 
i f  j + l  

B 

{L  i }  = {e/} + ~ # i l L i } ,  (15) 
i = j + l  

where LejJ is an unit row vector with one non-zero coe/~c/ent in the jth entry, {e/} ~s an unit 
column vector with one non-zero coefficient in the jth entry, and ai and ~i are coefBcients to be 
determined. 

PROOF. There are two things to be discussed. First, let us prove the requirement of triangular 
configurations. By Equation (14), the ]c th coefficient of [UjJ may be written as 

fi 

Ujk -" ejk + ~ a, Uik. (16) 
i f j + l  

When j > k, ejk = 0; the lower hound of i in Equation (16) is (j + 1), which means i >_ j + 1 > 
k + 1 > k such that Uik = 0. Then, Equation (16) becomes 

Ujk = 0 when j > k. (17) 

Furthermore, when k = j, Equation (16) becomes 

ft 

= 1 + (18) 
i = j + l  

Since i > j + 1 > j ,  Uij = 0 and Equation (18) becomes 

Ujj = 1. (19) 

Eqsuation (17) and (19) show that [UjJ satisfies the requirement for the upper triangular con- 
figuration. Similarly, we can prove that {Lj) satisfies the requirement for the lower triangular 
configuration. Second, let us prove the determinateness. The unknowns in Equation (14) are cn 
(i = j + 1 --+ n), i.e., Equation (14) contains (n - j )  unknowns. Similarly, Equation (15) also 
contains ( n -  j)  unknowns. Therefore, the pair of [UjJ and {Lj} contain 2 ( n -  j )  unknowns. 
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Basically, the 2 ( n - j )  unknowns have to be determined by 2 ( n - j )  conditions. By Equation (12), 
we may write the corresponding 2(n - j) conditions as 

LU# J [A] { L i } = 0, i = j + 1 --. n, (20) 

LUd[A]{Li} - O, i - j ÷ 1 --. n. (21) 

This shows that Equation (14) and (15) are 'determinate,' i.e., a pair of {Lj} and LujJ may be 
written as Equations (14) and (15). This completes the proof. II 

Equations (14) and (15) are two possible forms for LUjJ and {Lj}, respectively. However, 
the existence of [UjJ and {Lj} depends on if the conditions, i.e., Equations (20) and (21), are 
solvable. The existence of {Lj} and [UjJ may be discussed by the ( n - j )  × ( n - j )  tailing principal 
submatriz of [A], denoted by [,4 (n-j)] where the superscript indicates the order of a submatrix. 
The tailing principal submatrices, opposed to the leading principal subrnatrices, lie on the down 
right-hand corner of [A]; for example, if 

[A] = 
All A12 A131 
A21 A~ A~a| , 

A31 As2 AasJ 

then 

The existence of {Lj } and LujJ will be 

[A (x)] = tans], 
[A22 A231 

[A(2)] = LAs2 Aaa., ' 

r a i l  AI~ AlS 1 
[ A(~)] =/A~, A~2 A~/ .  

LA31 A32 A ~ J  

discussed as follows. 

LEMMA 2. A pair of  LrJ#J and {L#} in the form of Equations (14) and (15) exist i f  the tailing 
principal submatriz [,4 (n-S)] is nonsingular. 

PROOF. The existence of [UjJ in the form of Equation (14) depends on if Equation (20) is 
solvable, and Equation (20) can be rewritten as 

Lu~J [A] [L]0+I)_.. = 0, (22) 

where [L]o÷I)_.~ = [{Lj+I} {Lj+2}...  {L.}]. Since all the coefficients before row (j + 1) in 
[L]o+I)_., are zero, Equation (22) may be simplified as 

L U i j  [A]0+I)_..[L("-J) ] = 0, (23) 

where [L( n-j)] is the (n - j)  × (n - j)  tailing principal submatrix of [L], and [A]0+t)_.n = 
[{Aj+I} {Aj+2}"'{An}]. Since Ujl = 0 (j > i) and Ujj = 1, Equation (23) may be further 
simplified as 

LU~u÷x) u~o+2) • • • U~,d [A("-~)][L ('~-~)] + t&o÷x )  AiU÷~)""" & , d  [ L(n-j)] = 0. (24) 

The condition for the existence of the unknowns Uj(j+I), UjO+2), . . . ,  and Ujn in Equation (24) is 
obviously that [,4 (n-j)] [L (n-j)] is nonsingular. This implies that [,4 (n-j)] is nonsingular because 
det[L (n-~)] = 1. Similarly, we can prove if [,4 (n-j)] is nonsingular, then the unknowns L(j+I)j, 
L0+~)j , . . . ,  and Lnj in Equation (21) are solvable. This completes the proof. II 

The existence for [L] and [U] can be guaranteed if the tailing principal snbmatrices of [A], 
i.e., [AO)], [A(2)],..., and [A(n)], are nonsingular. Certainly, it is poesible for a tailing prin- 

cipai submatriz to be singular, eventhough [A] isnonsingular; forexample [A] = [01 "~1] is 
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nonsingular, but [A (1)] = [0] is singular. Similar to the Gaussian elimination, which is a failure 
when dividing by a zero diagonal coefficient, exchanging rows (pivoting) is also a strategy to 
rearrange a matrix such that the tailing principal submatrices are nonsingular; for example the 

[0 1] [1 01] ' in which each tailing principal submatriz rows of 1 O may be exchanged to be 0 - 

is nonsingular. Properly exchanging rows (pivoting) of a nonsingular matrix [A] may guarantee 
the existence of [L] and [U], i.e., the solvability of the first requirement in Equation (12). The 
second requirement shown in Equation (13) will be discussed as follows. 

LEMMA 3. For a given nonsingular [A], if matrices [L] and [U] ex/st, then the requirement in 
Equation (13) is automatically satisfied. 

PROOF. Since the triangular matrices [L] and [U] with unit diagonal coefficients exist, det[L] = 
det[U] = 1 and det([U] [A] [L]) = det[A]. If [A] is nonsingular, then det[A] ~ 0 which implies 

det([U] [.4] [L]) ~ 0. (25) 

Furthermore, since [L] and [U] exist, which means that IU~J[A]{Li} = 0 (i ~ j )  and 

[U] [A] [L] is a diagonal matrix. (26) 

Equations (25) and (26) imply that the product of [U][A][L] does not have zero diagonal coeffi- 
cients, i.e., Lu.~J [A]{Lj} ¢ 0. This completes the proof. 1 

By Lemmas 2 and 3, we understand that a nonsingular matrix [A] can be decomposed into 
[A] -1 (with pivoting if necessary), and [A] -1 may be written in the form of ILl [D] [U]. After 
discussing the existence of [L], [D], and [U], the underlying subject is to determine them. 

LEMMA 4. For a given nonsingular [A], if{Lj} and LU~J exist, then the coefficients as and ~i in 
Equations (14) and (15) may be respectively written as 

~, = -D.(I&J {Li}), 
~, = -D.(LUd {& }), 

(27) 
(28) 

where D .  -- 1/(LU/j [A]{Li}), LAiJ is the jth rOW v e c t o r  siC[A], and {Aj} is the jth colunln v e c t o  r 

o:[A]. 
PROOF. Post-multiply each term in Equation (14) by [A]{Lk} (where k > j)  to yield 

LU.~J[A]{Lk} - [A#J{Lk} + ~ ~iLU~J[A]{Lk}. (29) 
i=j-F1 

By Equation (12), the left hand-side in Equation (29) is zero. By Equation (13), the second term 
in the right hand-side of Equation (29) is cq[U,J [A]{L~} where k = i. Therefore, Equation (29) 
may be simplified as 

L&J {L,}  + a, LU, J [A]{Li} = O. (30) 

By Lemma 3, we know LU~J [A]{L~} ~ 0, and Equation (30) becomes 

LAiJ {Li} : -D,,( L&J {L,}). 
a i :  LUd[A]{L,} 

Similarly, we can pre-multiply each term in Equation (15) by (IUkJ[A]) where k > j, and apply 
Equations (12) and (13) and Lemma 3 to obtain 

~ - - D . (  LUd {& } ) .  

' This completes the proof. 1 



100 J.-C. Luo 

Equations (14), (15), (27), and (28) determine {Lj} and W~I. As mentioned previously, the 
procedure for constructing [L] and [U] is from j = n to j = 1. Once a pair of {Lj} and [UjJ 
have been obtained, Djj = 1/([UjJ[A](Lj})  can he computed. However, D H = 1/(LUjJ[A]{Lj}) 
is an expensive expression. An alternative is discussed as follows. 

LEMMA 5. The jth diagonal coefficient Djj  of[D] may be written as 

1 
Djj = LUjj{Aj}. (31) 

PROOF. Pre-multiply each term in Equation (15) by [UjJ[A] to yield 

n 

/UiJ[AI{Li} = WjJ[AI{e~} + ~ ~LUjJ[A]{Ld. 
i = j + l  

By Equation (12), the second term in the right-hand side of the previous equation is zero. This 
shows that 

LUjJ [A]{Lj } = LVjJ {Ai }, 

where (Aj } = [A]{ej }, and implies that 

1 

DH -- iUj] {Aj }" 

This completes the proof. | 
Equation (31) computes the jth diagonal coefficient of [D]. Based upon Lemmas 1-5, a non- 

singular matrix [.4] is decomposed into [A] -1 = [L] [O] [el. Algorithms for computing Equa- 
tions (14), (15), (27), (28), and (31) will be discussed in the following section. 

3. COMPUTATIONAL CONSIDERATIONS 

A computational algorithm transforms mathematical equations into a procedure. Several fac- 
tors have to be considered when developing an algorithm, which usually include computer mem- 
ories, storage schemes, possibilities of the reduction in arithmetic operations, and parallelism. 
Certainly, it is not always possible to optimize these factors in an algorithm. In some situations, 
we can use a small amount of computer memories to save temporary results so as to avoid the 
repeat of certain arithmetic operations; on the other hand, if the requirement of more computer 
memories to save some information is impossible, we can re-compute such information when nec- 
essary. Parallel computations also require temporary computer memories to increase the degree 
of data independence, and to improve the parallelism. It usually happens in an algorithm that 
when a factor has been optimized, another factor may go worse. The most common procedure 
to design an algorithm begins with the consideration of computer memories, and then modifies 
the steps with a few computer memories so as to improve performances. 

A sequential algorithm with the minimal computer memories for the computation of Equa- 
tions (14), (15), (27), (28), and (31) is as follows. 

ALGORITHM I. A Sequential Procedure for Decomposing [A] into [A] -1 = [L] [D] [U]. 

For j = n -~ 1 with step (-1) ,  do 

(a) For i = j + 1 ~ n with step 1 do 

k----i+l 

(b) For i = n --* j + 1 with step ( -1)  do 
i - 1  

Aji  ~ - A j i  * A ,  - ~ Ajk * A ~  * Aki; 
k= j+ l  
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1 
(e) Ay~ ,-- &~ + E~=i+l  &~ * Ak~ ; 

(d) For i = j + 1 ---, n with step 1 do 
fl 

Aij *" Aij + E Aik * Akj; 
k = i + l  

(e) For i = n -* . /+  1 with step ( -1)  do 
i - 1  

Aij #- - A i i  * Aij - E Aik * Atk  * Akj.  
/ = j + l  

In this algorithm, all the decomposed matrices share the computer memories with the original 
matrix, so that no additional computer memories are required. When i > j ,  Lit shares the 
computer memory with Aij; when i = j ,  Djj shares the computer memory with A j j; when 
i < j ,  Uij shares with the computer memory with Aij.  Step (a) computes [AjJ{Li}.  Step (b) 
computes Equation (14), excluding the coefficient Ujj. Step (c) computes Equation (31), which 
is invalid when the denominator is zero. This situation indicates the condition in Equation (13) 
is not held. By Lemma 3, there are two possibilities for this situation, one is that {Lj) and [UjJ 
do not exist, i.e. the corresponding tailing principal submatrix is singular, the other is that [A] 
is singular. If {Lj} and [UjJ do not exist, we may apply pivoting strategies to rearrange [A] 
such that the new tailing principal submatriz is nonsingular and [UjJ {A t } is not zero. If [A] 
is singular, the inverse of [A] does not exist. Step (d) computes [Uij {Aj }. Step (e) computes 
Equation (15), excluding the coefficient Ljj. Based upon Algorithm I for computing [A] -1, the 
solution of Equation (4) may be computed as follows. 

ALGORITHM II. A Sequential Procedure For Computing {X} = [L] [D] [U]{B}. 

(a) For i = l ---, n do 
n 

Xi ~ Xi  + Z Aik * Xk; 
k = i +  I 

(b) For i = 1 ~ n do 

Xi  ~ hii  * Xi; 
(c) For i = n ---, 1 with step ( -1)  do 

i - 1  

Xi  ~ Xi  + E Ai~ * Xk,  
k=l  

in which the solution vector {X) shares the computer memory with the coefficient vector {B}. 
It can be seen that a complete procedure for solving Equation (4) requires the minimal computer 
memories, a total of (n 2 + n) in which n 2 is for [A], [L], [D], and [U], and n is for {X} and {B}. 

The algorithms also can be easily transformed into parallel procedures with a temporary vec- 
tor {S} of order n. The parallel algorithm for [A] -1 - [L] [D] [U] is as follows. 

ALGORITHM III. A Parallel Procedure for Decomposing [A] into [A] -1 = [L] [D] [U]. 

For j = n --* 1 with step ( -1)  do 

(a) For i = j + 1 ~ n, do independently 
71 

s ,  . -  a i ,  + ~ Ask * ak,; 
k = i + l  

(b) For i = j + 1 -* n do independently 
i - 1  

Ai~ . -  - S i  * Aii - Y]~ S~ * akk * A~i; 
k=j+l 
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1 

(c) A~i ,-- A~ + E~=~+I A~t • Ati ; 

(d) For i = j + 1 ~ n do independently 
11 

Si *-- Aij + E Air • A t i ;  
k = i + l  

(e) For i = j + 1 ---, n do independently 
i -1  

Aij ~" - A i i  * Si - E Ai&.* Ar t  * S t ,  
t=j+l 

in which the components in Steps (a), (b), (d), and (e) can be computed concurrently, and the 
summation in Step (c) may be computed by a parallel inner product. Efficient performances in 
parallel environments can be expected. Then, the corresponding parallel version of the matrix- 
vector multiplication for the solution of Equation (4) may be written as the following algorithm. 

A L G O R I T H M  IV. A Parallel Procedure For Computing {X} = [L] [D] [U](B}. 

(a) For i = 1 --* n, do independently 

Si ~ Xi  + ~ Aik * Xh; 
t f i +  1 

(b) For i = 1 ~ n, do independently 

Si  ~-  A i i  * Si;  i 

(c) For i = 1 ---, n, do independently 
i--1 

x,  ~- s, + ~ A,t • s t  
t = l  

If [A] is a banded and sparse matrix, then the bounds of each loop in Algorithms I and III 
may be modified by the procedures as shown in [2] so as to reduce the number of arithmetic 
operations. 

4. EXAMPLES AND DISCUSSION 

An Alliant/FX8 computer, which is a memory-sharing machine and permits certain instructions 
to be executed concurrently, will be employed to demonstrate the method. A parallel computer 
code in FORTRAN 77 has been developed for inverting nonsingular matrices, which also can be 
applied to solve a system of linear equations. The first example is a (3 x 3) nonsingular matrix 
a s  

[A]  - 9 , (32) 
4 

which is then decomposed by the computer code. The output of the first example is 

-0.437500 -0.571429 -0.714286] 
0.380952 0.238095 - 1.200000] . 

-0.904762 -0.800000 0.200000 J 
(33) 

Equation (33) represents 

r l [L] = 0.380952 1 , 
L-0"904762 -0.8 

(34) 
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-0.4i7500 0 0 ] 
[D]= 0.238095 0 , 

0 0.2 

i -0.571429 -0.714286" 
[U] = 1 -1.200000 

0 1 
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(35) 

(36) 

It can be verified that [L] [D] [U] is the inverse of [A]. The method shows a special feature 
for inverting a nonsingular matrix, and is classified as a direct method. It can be counted 
from Algorithms I-IV that the complexity of the method is O(nS), which is equivalent to the 
Ganssian elimination, the conventional direct method. Since Ganssian elimination does not 
have sufficient degree of data independence, the conventional direct method cannot take full 
advantage of multiprocessors. The presented method provides an efficient algorithm for parallel 
computations. An algorithm for distributing the computing streams of this class of decomposition 
among employed processors had been studied in [3]. 

In order to demonstrate the performance on an Alliant/FX8 computer, a series of examples in 
the form of Equation (4) had been tested. The elapsed CPU time including the user time, the 
system time, and the total time can be collected by the system call ETIME on an Alliant/FX8 
computer. Table 1 shows a performance in solving a system of linear equations with a dense, 
asymmetric, and indefinite matrix of order (256 x 256) in single precision, in which the time 60.20 
seconds spent on one processor can he significantly reduced to 8.05 seconds on 8 processors, giving 
a speedup of 7.48 and an efficiency of 93.50%. From the 4th column in Table 1, it can be seen 
that the required time is almost reduced by half when doubling the processors. This performance 
convinces that the presented method is a paralleliable direct method. 

Table 1. Performance in solving a dense, asymmetric and  indefinite system of order 
(256 x 256) in single precision. 

Number  of User Time System Time Total Time Speedup Efficiency 
Proce~ors (see.) (sec.) (see.) (%) 

1 60.19 0.01 60.20 1.00 100.00 

2 30.15 0.00 30.15 2.00 100.00 

4 15.52 0.00 15.52 3~8  97.00 

8 8.05 0.00 8.05 7.48 93.50 

Tables 2 and 3 also show two sets of timing results in solving systems of linear equations 
with asymmetric and indefinite matrices in double precision. These performances also show high 
efficient parallelism, especially in the example shown in Table 3 of order (1024 × 1024) with an 
almost perfect speedup. This is consistent with a common fact in parallel computations that 
a larger scale problem may produce a better performance. Since the examples with respect to 
Tables 1 and 2 are of the same order, we can conclude that the performances on an Alliant/FX8 
computer do not significantly change in different precisions. The characteristics of this class of 
decomposition can be summarized as follows: 

(a) The method is a direct method without the requirement of convergence, which can be 
applied to some types of problems where the iterative methods, such as Jacobian method, 
Gauss-Seidel Iteration, and Conjugate Gradient method, are not available; 

(b) The decomposed matrices have represented the inverse, the presented method provides a 
more convenient way of applications; 

(c) The method requires the minimal amount of computer memories; 
(d) The method provides efficient algorithms for inverting an asymmetric and indefinite ma- 

trix. 

This new class of decomposition can be a fundamental tool in scientific and engineering comput- 
ing. 
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Table 2. Performance in solving ,~ dense, asymmetric and  indefinite system of order 
(256 x 256) in double precision. 

Number  of . User Time System Time Total Time Speedup Efficiency 
PrcN:e~MK~rs (se~:.) (sec.) (s¢~.) (%) 

I 65.72 0.00 65.72 1.00 I00.00 

2 32.96 0.00 32.96 1.99 99.50 

4 17.10 0.00 17.10 3.84 96.00 

8 8.79 0.00 8.79 7.48 93.50 

Table 3. Pedormance  in solving a dense, asymmetrical  and  indefinite system of order 
(256 × 258) in double precision. 

Number  of User Time System Time Total Time Speedup F_JBciency 
Pr~e~ (sec.) (sec.) (sec.) (%) 

I 5164.24 0.00 5164.24 1.00 I00.00 

2 2584.90 0.00 2564.90 2.00 I00.00 

1303~6 

665.18 

0.00 

0.00 

1303.86 

655.18 

3.96 

7.76 

99.00 

97.00 
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