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Abstract

We give a definition of human uncertainty through subjective likelihood estimates. The

subject is asked for his estimated likelihood of different statements, given a present piece of

observation. With this interpretation of human uncertainty, we are able to perform consistent

inference about our target variables, by formally treating the input as likelihood factors. By

focusing on likelihood estimates given the present observation only, we eliminate the problem

of handling the subject�s overall judgement. The algorithm has been successfully implemented

in an expert system for classification of wildwood mushrooms.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

People frequently make statements like: ‘‘I�m 90% sure that the taxi driver spoke

Swedish in his cell phone.’’ The purpose of the present article is to give a probabilis-

tic interpretation of statements of this type, so that we can combine them, and pro-

duce consistent inference.
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A simple approach would be to claim that when a person makes the given

statement, he is right 90% of the times. This makes some sense when there are only

two alternatives, if we assume symmetry in his errors, so that his 10% error rate

applies whether the driver actually speaks Swedish or not. However, we would like

to generalize our interpretation to cases with more than two possible answers.
Suppose our subject estimates the taxi driver�s language to be ‘‘90% Swedish, 5%

Norwegian, 3% Danish and 2% Icelandic’’. Then the error rate interpretation fails

to make sense.

The article is laid out as follows: first we review different established models of

human uncertainty. Then we define our model of subjective likelihoods and give a

Bayesian inference rule for combining statements. Then we describe an application

of the algorithm in an expert system that helps a user classify wildwood mushrooms.

The last section concludes the article.
2. Established models of human uncertainty

In this section we give a broad overview of models that have been used for quan-

tifying human uncertainty.

2.1. Certainty factors

In the early days of artificial intelligence, expert systems were built that were imi-

tating human inference [9]. The typical expert system consisted of a set of facts, a set

of rules, and an inference engine. The inference engine applied a sequence of rules to

the set of facts, thereby producing new facts. Uncertainty was modelled through cer-

tainty factors associated to facts and rules. Although some expert systems of this

kind worked quite well, certainty factors are not popular nowadays, because they

tend to produce contradictions [7].
In our Swedish example, assume that the person may possibly be speaking Nor-

wegian, which sounds very similar to Swedish for non-Scandinavians. If a certainty

factor based expert system were presented with the fact that the driver was from

Norway, it would increase its certainty for the language sounding Swedish. The sys-

tem would treat this as evidence in favour of the language being Swedish. This prob-

lem is known as certainty factors� inability of ‘‘explaining away’’ [7].
2.2. Fuzzy logic

Fuzzy logic attempts to model uncertainty through vagueness, rather than prob-

abilities. In a fuzzy logic context, our taxi driver example statement would be inter-

preted as ‘‘On a swedishness scale from 0 to 100, the taxi driver�s language was 90.’’
This is an interesting and useful semantic model in many cases, but our goal is to

model the fact that the subject�s observation may be wrong, not that he is correct

to a certain degree. For a discussions on how fuzzy logic relates to probability the-



F.A. Dahl / Internat. J. Approx. Reason. 39 (2005) 85–95 87
ory, see [1,5]. More fundamental connections between the theories of standard and

fuzzy sets are made in [3].

2.3. Dempster–Schaefer theory

In Dempster–Schafer theory, uncertainty is modelled by an interval (a,b) � [0, 1]

[8]. The idea is that the span of the interval reflects the degree of uncertainty. One

might e.g. assign [0,1] to a statement of extra terrestrial intelligent life, while the

event that the future flipping of a fair coin gives ‘‘heads’’, would have a collapsed

interval {0.5}. The theory gives a consistent calculus for combining statements. It

is not readily applicable to our setting, though, because our subject does not convey

his uncertainty in the form of intervals.

2.4. Lower previsions

The theory of lower (and upper) previsions can be seen as a generalization of

Dempster–Schafer theory [10]. The lower prevision of a statement can be interpreted

as a lower limit of the probability of the statement being true. The theory is related to

gambling situations where one assumes that the opponent may have more informa-

tion than oneself. As an example, you might assign a 0.4 lower prevision on the event

that the flipping of a coin gives ‘‘heads’’, if you suspect that the coin may be unfair,
but you are sure that even an unfair coin will give heads at least 40% of the time. The

theory is by nature pessimistic, as it always works through worst-case values of prob-

abilities. This is good for the purpose of making robust inference, but does not cap-

ture the meaning of out taxi driver example statement.

2.5. Subjective probability

A natural interpretation of our example statement is that the subject�s subjective
probability of the driver�s conversation being in Swedish is 0.9. The term subjective

probability (as opposed to frequency based probability) means that the subject

merely assigns numbers to different events and statements, which obey the rules of

probability calculus.

A problem with subjective probabilities is that one cannot easily combine different

subjective probability statements in a meaningful way, because the statement is de-

rived from the subject�s internal probability model. Suppose we want to combine the

given statement with the fact that the event took place in Sweden, we would first
need to know whether the subject had already included this important piece of infor-

mation in his 0.9 probability estimate.

Also, it is very hard for people to produce consistent subjective probabilities in

cases where they simply do not know. The attempt of assigning uniform probabilities

to reflect ignorance often fails, and the question of extra terrestrial intelligent life is a

good example: if you assign a 0.5 probability of extra terrestrial intelligent life in our

galaxy, you cannot readily assign the same probability for the left arm of the galaxy,

or for entire universe. The difficulty in representing ignorance in a consistent way is a
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big problem with subjective probability models. For elaboration of this problem, see

e.g. Section 3 of [10] and references therein.

2.6. Bayesian networks

In a Bayesian network [4], nodes represent random variables, which are connected

through edges that represent causal relations. When new evidence is presented, prob-

abilities are propagated through the network in a consistent way.

Bayesian networks represent a different perspective than that of classical expert

systems: rather than imitating the human thought process, with uncertainty associ-

ated to inference rules, one creates a consistent causal probability model, and uses

probability calculus for inference. Under this paradigm, certain and uncertain hu-

man knowledge is included in the model of the world, rather than in the automatic
reasoning. Hence, Bayesian network modelling does not offer any immediate inter-

pretation of our taxi driver statement, but it gives a framework within which we

would like our interpretation to fit.
3. Subjective likelihood

Our interpretation of the taxi-driver statement, which we introduce in this article,
is this: ‘‘The probability of me hearing what I heard, if he did speak Swedish, is nine

times higher than the probability of me hearing what I heard if he didn�t speak

Swedish.’’

With this interpretation, the statement only refers to the present observation, not

the subject�s overall judgment concerning the driver�s language. By only referring to

the subject�s present observation, and not to his personal beliefs about the probabil-

ity of meeting Swedish-speaking people in this given situation, the statement is made

context free. This enables us to use it in a formal probabilistic Bayesian model, and
combining it with other statements, without worrying about the statement�s context.

Now assume that the subject is in Sweden, where the a priori probability of a taxi

driver speaking Swedish on the phone is, say, 95%. Then the likelihood of the con-

versation having been in Swedish is the prior probability of 0.95 multiplied by the

observation weight 0.9, while the likelihood of the opposite is 0.05 times 0.1. This

gives

P ½Conversation in Swedish� ¼ 0:95� 0:9

0:95� 0:9þ 0:05� 0:1
� 0:994

This high estimate is reasonable, because the conversation both sounded Swedish to

the subject, and took place in Sweden.

We formalize this calculation for observations with n different values. Let

h 2 H = {h1,h2, . . . ,hn} be the true state of Nature, and let the prior distribution p

be a probability vector of length n, so that pi = P(hi). Let {o1,o2, . . . ,on} be a vector
of random variables with values in some space X. We interpret X as the set of pos-

sible observations that the subject can make, and the random variable oi represents
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the random observation that the subject makes, given h = hi. Assume now that the

subject has made observation x. We can then calculate the conditional distribution

(pjx) using Bayes formula:

ðpjxÞi ¼ P ðhijxÞ ¼
P ðhiÞP ðxjhiÞPn
j¼1PðhjÞP ðxjhjÞ

¼ piP ðoi ¼ xÞPn
j¼1pjP ðoj ¼ xÞ ð1Þ

In this formula, we use the standard statistical convention of interpreting P(oi = x) as

a probability if the oi�s are discrete variables, and as probability density (likelihood)

otherwise. (In theory, one should link this to the structure of the observation space
X, but we will return to this below.)

So far, our construction is one of standard Bayesian inference. The next step in an

applied Bayesian analysis would usually be to collect data (x), and compute (pjx),
treating the distributions of the oi�s as given. Our approach is simpler mathemati-

cally, as we leave the assessment of o, x and X to the subject. We define the subjective

likelihood vector of observation x 2 X by

q ¼ ½P ðo1 ¼ xÞ; Pðo2 ¼ xÞ; . . . ; P ðon ¼ xÞ� ð2Þ

Again, we either treat P(oi = x) as a probability or a probability density. Note that

the observation x and the random variables oi are ‘‘private’’ for the subject, which is

the reason why we can disregard the mathematical structure of the domain X. For

our purpose, a rescaling of the vector q is also of no importance, as only the compo-

nents� relative values affect our computation below.

In a sense, we condition p by the vector q (which is what our subject reports), so

write (pjq) instead of (pjx). This is a slight abuse of notation, but we prefer to hide
the private variable x.

With our definitions, Eq. (1) now simplifies to

ðpjqÞi ¼
piqiPn
j¼1pjqj

ð3Þ

If the denominator is zero, the observation contradicts p, in which case we define

pjq = p, for convenience.

Observe that if qk = 1 for some k, in which case q represents certainty, then (3)

implies pjq = q, provided the denominator is nonzero (i.e. pk > 0). On the other hand,

if is uniform, in which case q represents complete ignorance, then pjq = p.

The (normalized) subjective likelihood vector also has a different but equivalent

interpretation: imagine that the subject happened to have a uniform prior probabil-
ity distribution vector p ¼ 1

n ½1; 1; . . . ; 1�, and that we asked him for his subjective

probability vector ~p given his observation: ~p ¼ pjx. We easily see that ~p elicited in this

way is equal (up to multiplication with a constant) to q defined by (2). Therefore, our

subjective likelihood vector may alternatively be defined as hypothetical posterior dis-

tribution under a uniform prior. This definition may be useful for explaining to the

subject how to respond, and emphasizes the fact that he should disregard any prior

information regarding the probabilities of h.
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3.1. Underlying model

We now proceed to the more complex case with an underlying model.

Again, let the true state of Nature be h 2 {h1,h2, . . . ,hn} with a prior distribution

vector p. We also have a set of m features: {F1,F2, . . . ,Fm}. Each feature Fj has a do-
main of nj feature values: fmj1; m

j
2; . . . ; m

j
nj
g. For each hi, we have a probability distri-

bution P hi ¼ P i over
Qm

j¼1f1; 2; . . . ; njg. We use the compact notation P iðj; kÞ ¼
P ðF j ¼ mjkjhiÞ, where 1 6 j 6 m and 1 6 k 6 nj. Hence, each state of nature hi gives
a probability vector Pi(j, Æ ) over the nj different values, for each feature j. We assume

that the m feature distributions of Pi are independent.

Let qj be a subjective likelihood vector for feature j. Just like in the previous sec-

tion, this means that there exist random variables foj1; o
j
2; . . . ; o

j
nj
g (corresponding to

the nj different values for feature j), with values in some space X, such that
qj ¼ ½P ðoj1 ¼ xÞ; P ðoj2 ¼ xÞ; . . . ; P ðojnj ¼ xÞ�. Again, we need not worry about what X

and the distributions of oji look like, because our subject supplies us with qj directly.

Then the distribution of p conditioned by x, through qj, is given by

ðpjqjÞi ¼
pi
Pnj

k¼1P iðj; kÞqjkPm
l¼1pl

Pnj
k¼1P lðj; kÞqjk

ð4Þ

Here too, we disregard the subjective likelihood vector, if it contradicts p:

If
Xm

l¼1

pl
Xnj

k¼1

Plðj; kÞqjk ¼ 0; then ðpjqjÞ ¼ p:

Observe that if qj is uniform, then pjqj = p. Again, this means that a uniform subjec-

tive likelihood successfully represents complete ignorance, because conditioning by it

makes no difference. The intuition behind this is clear: a uniform subjective likeli-

hood means that the subject reports that his observation is equally likely for each

possible feature value.
If qjk ¼ 1 for some k, then qj represents certainty. In this case, (4) simplifies to

standard conditioning: ðpjqjÞi ¼ PðhijF j ¼ mjkÞ, which is what we want.

The following simple proposition states that the order in which we condition by

subjective likelihood vectors makes no difference. We apply an abbreviated inner

product notation: hP i; qji ¼
Pnj

k¼1P iðj; kÞqjk.

Proposition 1. Let j;�j 2 f1; 2; . . . ;mg, and let qj and q�j be corresponding subjective

likelihood vectors that do not contradict the prior p. Then we have

ððpjqjÞjq�jÞi ¼ ððpjq�jÞjqjÞi ¼
pihP i; qjihP i; q

�jiPm
l¼1plhP l; qjihP l; q

�ji :

The result is a trivial consequence of Bayesian inference theory [6], but for readers

unfamiliar with this, we give a direct proof.
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Proof. We apply the formula (4):

ððpjqjÞjq�jÞi ¼
ðpjqjÞihP i; q

�jiPm
l¼1ðpjqjÞlhPl; q

�ji ¼

pihP i; qjiPm
l¼1plhP l; qji

hP i; q
�ji

Pm
l¼1

plhP l; qjiPm
ll¼1pllhPll; qji

hPl; q
�ji

¼
Pm

ll¼1ðpllhP ll; qjiÞpihP i; qjihP i; q
�jiPm

l¼1ðplhP l; qjiÞ
Pm

l¼1plhPl; qjihPl; q
�ji ¼

pihP i; qjihP i; q
�jiPm

l¼1plhP l; qjihP l; q
�ji :
The result follows because this expression is symmetric in qj and q�j. h

4. Mushroom application

We now give an application in the domain of mushroom classification. The setting

is this: the subject has found a mushroom in the woods, and needs help in determin-

ing to which species it belongs.
4.1. The model

Each hi corresponds to a species (or in some cases a union of similar species). The

prior probability distribution p over the h�s corresponds to how frequent the differ-

ent species are in the woods. Features are observable properties of mushrooms. An

example is ‘‘Color of the cap’’, with a given listing of colors, as its value set. Other

features, such as ‘‘Has white spots on the cap’’ have the binary value set of ‘‘yes’’

and ‘‘no’’.

Each species has a given probability distribution for each feature, which rep-
resent its variability. As an example, the well-known Fly Agaric (amanita musc-

aria) very often has white spots on the cap, but not always. Therefore,

P(yes) = 0.95 and P(no) = 0.05 is a reasonable distribution for the feature ‘‘Has

white spots on the cap’’. The main color of the cap may also vary; a reasonable

distribution is P(red) = 0.7, P(orange) = 0.2, and P(yellow) = 0.1. Also, it nor-

mally has a collar on the stalk, but it sometimes falls off, and P(yes) = 0.9 and

P(no) = 0.1 is our distribution of the feature ‘‘Has collar on the stalk’’ for the

Fly Agaric. Currently the implementation includes about 100 different species
and 20 features.

In order to handle otherwise contradictive evidence, we have also defined a ‘‘de-

fault species’’ with uniform distribution for all features, and low prior probability.

When the computation gives a high probability to this ‘‘species’’, it either means that

the mushroom in question is of a species not included in the model, or the user has

made incorrect observations.
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4.2. Choice of features

So far we have focused on calculations used for updating the probability distribu-

tion over species, given input from the user. A different problem is the order in which

the system asks its questions. For this problem of feature choice, we have imple-
mented an optimization algorithm, which seeks to minimize the expected posterior

total variance.

We define the total variance of a probability distribution p by V ðpÞ ¼Pn
i¼1pið1� piÞ. The minimum value of V is zero, which is realized if and only if p

places all probability on one species.

Assume that the system chooses feature j. The current probability distribution p

generates a distribution f over the nj different feature values:

fk ¼
Pn

i¼1piP iðj; kÞPnj
k0¼1

Pn
i¼1piP iðj; k0Þ

:

For the purpose of feature choice, we assume that the user is able to observe the

feature j without uncertainty, so that his subjective likelihood vector qj will be a unit

vector with weight 1 on component k̂, denoted by ek̂. Under this assumption, the dis-

tribution of k̂ is given by f above. Now we can calculate the expected total variance

after conditioning by the user�s response to feature j: E½V ðpjqjÞ� ¼
Pnj

k¼1fkV ðpjekÞ.
The chosen feature is the one minimizing the posterior expected total variance:

j* = argminjE[V(pjqj)] (with some arbitrary rule for breaking ties).

The following proposition states that the total expected variance cannot increase

by posing question j.
Proposition 2. E[V(pjqj)] 6 V(p).
Proof. Due to the linearity of the expectancy, it suffices to show

E½ðpijk̂Þð1� pijk̂Þ� 6 pið1� piÞ. The result follows from Jensen�s inequality [2],

because E½pijk̂� ¼ pi and p(1 � p) is concave in p. h

This property is rather important from a practical point of view. We have exper-

imented with other objective functions than V, which appear intuitively reasonable,

such as the probability of the most probable species, negated. This often works fine,

but in some cases it asks completely irrelevant questions, that offer no information,

because the relevant questions give an expected increase in the objective function.
Hence the program avoids the critical questions, for fear of what it might discover.

Proposition 2 guarantees that this will not happen with the objective function V.

4.3. User interface issues

It turns out to be impractical for a user to assign numbers to his uncertain obser-

vations. We have therefore implemented a user interface where he checks the differ-

ent values he considers possible, in descending order of likelihood. We assign a
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weight of 1.0 to his first choice, 1/3 to his next, 1/5 to his third, and so on. This, of

course, is not the only reasonable choice, but it appears to capture human uncer-

tainty reasonably well. The user may choose not to check any values, which gives

the uniform distribution (or equivalently: passes the question).

4.4. Experience

The system has been tested by more than 10 people, ranging from beginners to

experts in the Norwegian mushroom community. Over all, the system works very

well, as even complete novices in the area of mushroom classification have classified

a broad range of mushrooms successfully with the support of our system. A big

improvement in performance came when we included sample pictures of feature val-

ues, rather than mere text descriptions.

4.5. Practical problems

The biggest practical problem we encountered was convincing the subjects to re-

port their uncertainty by checking more than one feature value, particularly for yes/

no questions. People find it easier to describe a color as ‘‘most likely beige, but pos-

sibly brown, grey or white’’ than to answer both ‘‘yes’’ and ‘‘no’’ to a question.

4.6. Problems of uncertainty interpretation

We have not found it necessary to explain the exact interpretation of subjective

likelihood vectors to our test subjects. However, if the subject has prior experience

with mushroom classification, he may start by making up his mind about which spe-

cies the present mushroom belongs to, and then bias his responses toward what he

knows to be typical features values for that species. This is a problem of separating

observation and judgement, which one gets with the use of subjective probabilities,
and which we try to avoid with subjective likelihoods. It is therefore important to

instruct the subject to observe each feature individually, and leave the overall judge-

ment to the program. Fortunately, this is only a real problem for subjects that do not

need the expert system support.

4.7. Dependency problems

Our calculation scheme relies on independence of the different features for each
species. This has given some problems.

We have mentioned the binary feature ‘‘Has a collar on the stalk’’. A few species

of the amanita family have a collar with clearly visible stripes. In order to distinguish

the edible Blusher (Amanita rubescens) from poisonous amanita species, we therefore

included the binary feature ‘‘Has collar with stripes’’. Clearly, a mushroom with

striped collar has a collar, so these features are not independent, which may cause

problems. Suppose the user reports that that his mushroom has a collar, with 75%

certainty, and then reports that it has a striped collar, also with 75% certainty.
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The computation would then place too much weight on the striped collar species, as

both of the collar related observations appear to count in their favour. A good solu-

tion to this problem would be to merge these two features into one: ‘‘Has collar on

the stalk’’ with values ‘‘no’’, ‘‘yes, without stripes’’, and ‘‘yes, with stripes’’.

A different dependence problem arose with the Cantrell (Cantharellus cibarius)
species. We use three different features for the color of a mushroom: its color on

the cap, underneath the cap, and on the stalk. The Cantrell is normally yellow,

but it may vary from whitish to orange. However, it invariably has the same color

all over, so the independence assumption fails for the three color-related features.

This is best solved by splitting the species into different variants, each with the same

color all over.

These dependency problems are mainly of academic interest, as they do not ap-

pear to affect the frequency of misclassifications significantly.
4.8. Robustness

It turns out that users tend to underreport their uncertainty, and sometimes miss

an obviously correct answer. This may be because they misread or misunderstand the

question, or even accidentally check the wrong box. If this happens even once, and

the correct species has zero probability for the given feature value, it will eliminate

the correct species completely.
Fortunately, the systems contains more than sufficient information to distinguish

between its set of species, and this gives us the possibility of trading some accuracy

for robustness. We do this by assigning a small ‘‘background noise’’ likelihood

weight to feature values that the user does not report. We also in general define

the feature distributions slightly more variable than we believe to be the case.
4.9. Subjective likelihood vs. subjective probability

In our definition of subjective likelihood we deliberately eliminate the subject�s
own assessment of probabilities regarding the actual state of the world. We do this,

because we want to make automatic inference, by combining several uncertain state-

ments made by the subject. If we instead ask for the subject�s subjective probabilities,
combining these directly would reinforce his prior beliefs, an error source that is

hard to eliminate.

Hence, the upside of using subjective likelihood estimates is that we can combine

them in a consistent way. The downside is that we lose potentially valuable informa-
tion. In situations where the subject has excellent domain knowledge with a good

subjective probability model himself, and you can only ask him a few questions,

the value of his expert opinion is likely to dominate the problem of combining his

statements in a formal way. In the mushroom classification case, this means that

if your subject is a trained mycologist, and you can only ask him a few questions,

you would do better by simply asking him to name the samples you are showing

him, and take his word for it.
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5. Conclusion

We conclude that our interpretation of uncertainty in human observation through

subjective likelihood estimates is successful. It appears to capture human semantic in

a reasonable way, and in particular models complete ignorance successfully. Our
interpretation also has the advantage of being firmly rooted in Bayesian statistics.

Our application to Mushroom classification confirms the methods practical use-

fulness. In order to make the system more robust we have added a small baseline

likelihood, even in cases where the user reports no uncertainty.

In our opinion, our inference model combines the ‘‘modern expert system ap-

proach’’ of building formally sound probabilistic models of the world, with the

‘‘classical expert system approach’’ of modelling human uncertainty explicitly.
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