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Let @ ={¢i)icn be an orthonormal system on some o-finite measure space
(£, p). We study the notion of cotype with respect to @ for an operator T between
two Banach spaces X and Y, defined by ¢ (7) :=inf ¢ such that

<c¢
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for all (x)c X,

Lyt Xy

Z ¢ Tx,
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ngxk
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where (g,), . is the sequence of independent and normalized gaussian variables. It
is shown that this @-cotype coincides with the usual notion of cotype 2 iff
collp )~ \/n/(log(n + 1)) uniformly in n iff there is a positive # > 0 such that for all
ne N one can find an orthonormal ¥ =(y,) cspan{¢, | ke N} and a sequence of
disjoint measurable sets (4,)] < Q2 with

J. Wl dp=nq forall I=1,..,n
A;

A similar result holds for the type situation. The study of type and cotype with
respect to orthonormal systems of a given length provides the appropriate
approach to this result. We intend to give a quite complete picture for orthonormal
systems in measure space with few atoms.  © 1995 Academic Press, Inc.
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INTRODUCTION AND NOTATION

The theory of type and cotype in Banach spaces is closely connected to
the probability theory and provides a good frame work to distinguish rele-
vant local properties of Banach spaces. In this paper we develop a connec-
tion between this theory and geometric properties of orthonormal systems.
We do this by means of a certain approximation of orthonormal systems
by systems of functions having disjoint supports. The main technical tool
is the use of operator ideal techniques.

Throughout this paper the standard notation of the Banach space theory
is used. All Banach spaces are real or complex, in particular K stands for
the real or complex scalars. Given a Banach space X then B, denotes the
closed unit ball, X* the dual and 7, the identity. If xe X and ae X* then
{x,a) :=al(x), whereas for the scalar product in a Hilbert space we use
(-,-). If (2,p) 1s a o-finite measure space (we will always assume
o-finiteness) and iIf 1 <r<oo then L,(X) is the Banach space of all
X-valued strongly measurable functions f: £ — X such that || |, 4, =
(§o 1FII"dp)'"" < oc. For two Banach spaces X and Y as usual #(X, Y)
is the Banach space of all linear and continuous operators from X into
Y equipped with the operator norm |[Tx|f =sup{|7Tx|||xeB,}. To
shorten some statements let us denote the formal identity /7 — /7 by 7 .
In the whole paper (g,),.n Is a sequence of independent, normalized
gaussian variables, where we use complex variables whenever the under-
lying Banach spaces are complex. Finally, let us fix the orthonormal
systems G, :=(g,)i_, and U, :=(e;)}, where (¢,) is the unit vector basis
of 1.

The starting point for our investigations is the following well-known
observation.

THEOREM 1. Let Te (X, Y) and let @ =(¢,), . be a orthonormal
system.
(1) If T is of cotype 2, then one has for all finite sequences (x,)c= X

<cy(T)

LatY)

Z ¢y Tx, Z i Xk
k «

P LX)

(1} If T is of type 2, then one has for all finite sequences (x,) = X

<1(T)

Z g Txy, Z By Xy
& k

F L Y) LX)
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Let us recall that an operator Te #(X, Y} is of cotype 2 or type 2 if
there are constants ¢ >0 or ¢ >0 such that for all finite sequences (x;)c X

1.2

(}: urxknz> <o
k

As usual ¢,(7T):=1infc¢ and #,(7T) :=inf ¢. Restricting the above inequalities
to n vectors {x,)] we obtain ¢5(7T) and ¢5(7) which can be defined for all
Te L(X,Y)

For a further discussion of Theorem 1 as well as for the first occurrence
we refer to [9] (Theorems 9.24, 9.25). Clearly, Theorem | expresses the
extreme position of gaussian variables among arbitrary orthonormal
systems. An easy approximation argument yields a converse of Theorem |
in the case of complete orthonormal systems.

fl

| <r<z rmnl)
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THEOREM 2. Let @ =(¢,),.n be a complete orthonormal system in
L,(0,1) and let Te L(X,Y). If there is a ¢>0 such that for all finite
sequences (x, )< X

I

HZ ¢, Tx,

<c
LYy

’

L2 X}

Z i Xp
k

then T is of cotype 2. If there is a ¢ >0 such that for all finite sequences
(x;)cX

<c
LYy

N

LA X)

"
2 & Ty
Iz

Z ¢kxk‘;

then T is of type 2.

Proof.  Forexample, onecanuse 377, |1y, = fo IX72 (X7, (f 6) )
¢ (1))|? dt for ﬁ(t)::\/1(1+1) L« n(t) and the fact that g;=
>l S, d:) g, are again standard gaussian variables which are inde-
pendent. ||

In this paper we mainly discuss the following two problems.
(P1) Characterize those (not necessarily complete) orthonormal
systems @ = (¢, ), ., such that the conclusions of Theorem 2 hold true.

(P2) Find a local version of Theorem 2 in the sense that we consider
systems @ = (¢, )] of a given length and ask for the usual cotype and type
constants restricted to »n vectors.

To give a systematic treatment let @ =(¢;), ., <= L,(£2, p), (I is a coun-
table index set) be an orthonormal system. An operator Te £(X, Y) is said
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to be of &-cotype and P-type, respectively, if there is a constant ¢ = 0 such
that

Y b Tx, <c Y guXk

kel La(y) kel La(X)
and

Y & T, <c | Y dixi ,

kel L2 YY) kel Lo X)

respectively. The best possible constants will be denoted by ¢,(7) and
to(T). Furthermore, Te £(X, Y) is said to be of the modified @-type, if
there is a constant ¢ > 0 such that for all fe L,(X)

;: Y & (f Tf$s dp)

kel

<c¢ ”f”Lg(X)‘
Ly y)

The best possible constant is denoted by 7,(7). In the same way one
could define the remaining case é,(7T). Since this case follows by duality
from the modified ®-type (P :=(g,) is the conjugate system) we will omit
his case. To consider the above quantities we use ideal norms as one of the
main tools. Given an orthonormal system @ = (¢,)} we first introduce for
ue L(1%, X)

L3(X)

The dual norm @* on £(X, [5) is given by trace duality, that is
@*(v) = sup{|tr(vu)| | Bu)=1}.

Note that in general the definition of @(u) and @*(v) depends on the
special choice of the orthonormal system {e, .., e,} <5 (we can consider
@ as a norm on X" via @((x,, .., x,,)) 1= X ¢r Xl 1, x, and &* as the dual
norm on [ X", @]*). There are two standard procedures to generate ideal
norms starting from @. For Te Z(X, Y) we define

(T :=sup{P(Tu) | |lu: 15— X| <1},

and, if 7 is a finite rank operator,

N
T=1Y wuv, ue L5 Y), v,e £(X, I;’)}.

AN
j=1

vo(T) ;:inf{ Y B o)

Jj=1

It is an easy exercise to check that 7, is an ideal norm on the class of
all bounded operators and that v, is an ideal norm on the class of finite
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rank operators. That is, we have for a € {n,, v} the norm properties and
the relations

IBTA|| <a(BTA) < | Bl «(T) || 4]l

and a(a® y) = |la]l y- | ¥l y for a® ye L(X, Y). To shorten the notation we
will write in the sequel a{X) instead of a(ly). The connection to the
approximation theory is given by the geometric interpretation of
the inequalities n4(/7 ) > 0" \/n and n4(1; ) 26" \/; They correspond
to the conditions (G)) and (G)), respectively, in Theorem 5 below. To
compare the usual type and cotype with the @-type and cotype we will
compare the 7 -norm with the n5-norm directly.

Let us remember that an operator Te £(JX, Y) is absolutely g-summing
(1<g<oc) provided there is a constant ¢>0 such that for all finite
sequences (x;) < X one has

(% llTxkli">”q<c sup {(% |<_Yk,a>,q>

l/q

aeBX‘}.

The best possible constant is denoted by 7z (7). Considering the above
inequality for n vectors (x,)} only we get n;(T) which is again defined for
all Te #{X, Y).

The concept of the 7,-norms connects in a natural way the usual /-norm
with the n%-norm. Namely, if G,=(g,)} and U,=(e,;)] are defined as
below then we recover the /-norm and the n5-norm for ue £(13, X) by

Huy=mng(u)= and ni(u)=my (u).

n
Z gr ey
i

LX)
These are the extreme situations since in any case
u) <mp(u) <my(u) </ 2n%u) whenever wue LI}, X)

(see Remark 3.10, Lemma 2.1 and [17] for the latter inequality). The
following example has served us a pro type for the whole investigation and
also as a motivation for the introduction of 7, and v, norms in connection
with the problems concerning type and cotype.

EXAMPLE 3. Let ®=E,:=(e™)i_,cL(Il) be the trigonometric
system. Then

ATy < cepg (T) and (T < ctg (1) forall Te ¥P(X, Y),

whereas ¢ > 0 is an absolute constant independent from n.
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Proof. Using the Marcinkiewicz-Zygmund-inequality (see [18](II
p.30), [12])
2 ﬂ)
¥ 2n

G E 1L o) =l

implies, by a simple rotation argument, for all ue £(/%, X)

n 1/2
nh(u)= sup {( Y uwell 2) }
w3 —RE=1 k=1

n Woon 2nrilkiing
o 15— I3 =1 I=1

z e
k=1 \/I‘I

'y sup {( [

Il Ig‘*lgié =1 L\YO
Consequently,

Z %

k=1

uwe,

2>1r’2}
12 dt
e 2n> }“”b‘"‘“)'

no(u) <cmg (u). (*)

Hence n5{(Tu)<cmp(Tu)<ccg(T)Hu) and c{T)<ceg(T) for all
Te L(X,Y). Let us turn to the type situation. To deduce the type equiv-
alence from (%) we cannot use the Riesz-projections since this would
require UMD-properties (for example) for X (see e.g. [121). Instead of this
we use the de la Vallée Poussin kernel and find a sequence 4,, ..., 4, >0
with A, =1 for ny <i<wn,, whereas n, —n, > n/3, such that

I .
l] Z )~kf(k)"‘k’:J < 1
k=1

It L20x)

for all fe L,(X) and some absolute constant ¢, >0 independent from n
(flk)= ;”f( ) ""’ dtj2r). Now let 1 <r<n/3 and ue £(l%, X) be such
that f(k + No) =ue, for k=1, ..,r. Defining J: {517 by Je, :=€x 1
and & 10—>X by 5:=37_, ex®f(—ng+1+ No+k) we obtain u=iiJ
and

"E,,(“)gEn(a)gcl erii'i"OHJrNU“Hz:ﬁ 0.

Using a simple blocking argument and the definition of v, this means
for we £(15, X)

ve,(w) S ey inf{ | [l Lyon | flk)=wey, k=1, .., n}, (%%)
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This allows us to consider the bigger norm 7. Indeed, we get

n

< tE,,(T)VE,,< > €k®f(k)> <t (Dl xn

k=1

Y Tk g

k=1

Ly 1)

such that 7, (T)<c,1.(T). Now we are in the position to use a duality
argument. The Marcinkiewicz-Zygmund-inequality gives for g;:= ]/ﬂ
Z:l ()Zm'(kl/n)g—k and hELQ( Y*)

)2 >I/2 < i ‘ i e——Zni(kly’n) j T*] d H2 >l,’2
= ; — = 1
| x+ Hk \/I; B p{

=1 =1 X*
2 n 2 12
- l — ikt * i ﬂ{)
<c <J‘U I}Z;l e j T*hg, dp{ )

Using the convenient duality properties of the modified type we can
continue with

2

Y e ™ (J T*hg, dp)
k=1 I

2

di\'"?
‘ 5;> e (T) VRl gy ye,.

X

Consequently,

2

a v
(Z HJ T*hg; dp | > St g (T) [l yops)-
1=1

X*

Using again duality we arrive at 15(T) <cc 1 (7). |

The paper is organized in the following way. First we consider the
problem (P2) mentioned above and derive as a simple consequence the
answer of (P1). Concerning the problem (P2) our main theorem states that
it is sufficient to test cotype and type conditions on rather extreme
operators. More precisely we prove

THEOREM 4. Let @ =(¢,)} be an orthonormal system and let 6 > 0. For
some absolute constant ¢ >0 not depending on 6, n, and @, the following
holds true.

L If co(l")=6./n/(login+ 1)) or i,(IN)28./n then 8*ny(w)<

cng{w) for all we L%, X). Consequently, for all Te L(X, Y)

3

%‘c'ﬂnswmsﬁcgm and 57'§<T><fa>(ﬂ<ﬁ’3(”
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2. Iftd,(l'l’)zd\/r—t then 3°vg4 (W) < cmy(w*) for all we £(17%, X). Conse-
quently, for all Te (X, Y)

3

%z;(T)<z¢(T)<f¢(T)< 205(T).

It turns out that the conditions (%) and (##) from Example3 are
necessary in general. Note, that m,(u*)<®*u*)<| [, if f(k)=ue,
(k=1, .,n) (see section2) such that Theorem 4(2) implies (*%) with
¢, =c¢/6*. In section 1 we establish an abstract version of Theorem 4 in the
terms of operator ideals whereas the connection to the notion of cotype
and type is given in section 2. The proof of Theorem 4(1) consists of several
steps formulated in the next theorem which is verified in section 2. In the
first step (G,) — (G,,) one we get rid of the logarithmical factor but lose the
orthogonality. In the second one (G)) — (G, ), which is an essential part of
the proof of Theorem 4, we come back to an orthonormal system. The last
condition in the abstract corresponds to (G,) via an observation of
Bourgain.

THEOREM 5. Let @ =(¢,)] < L,(82, p) be an orthonormal system and let
9, &', 0" >0. Let us define the following conditions.

(G calll) =0 /nf(log(n+1))
(G,) There exists n functions h;espan{¢, | k=1, .., n} with |h, <1

and
(s wpra)
Q2

Jj=1..n

172

26 .

(G,) There exists an orthonormal system ¥ = ()} cspan{¢, | k=
1, .., n} with

1/2
<L sup w/,|2dp> >d" \/n.
J=1,..,n

Then (G,)—(G,)— (G))—(G,) with ¢ =06/(20¢, \/1 + log((co/d) + 1)),
6" =(1/c,) 63, and 6 = (1/c,) 8" for numerical constants ¢, ¢, ¢, >0.

In section 3 we consider orthonormal systems defined on measure spaces
with few atoms and no continuous part. We prove the following Theorem 6
which uses the local theory of Banach spaces to clarify the relations
between cotype and type conditions.
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THEOREM 6. Let 1 <n< N. Then one has the following.

(1) ¢(T)V<12 /Nincy(T) for all Te (X, Y) and all ®=(4,)} < I7.

(2) For all 2 < q< o there is an orthonormal system ® = (¢, )i <1y
such that

l/q
coll”) <c, max {\/(}n”‘l‘ 172, (%) } enin).

(3) Aslong as 0<e<1 and 1 <n<(1 —¢)N there is an orthonormal
system @ = (¢, )i <15 with

1 1
to(l)<cq B log <1 +E>

co >0 is an absolute constant whereas c,>0 depends on q only.

Assertion (1) shows that as long as N is proportional to n the corre-
sponding cotype constants are equivalent, whereas in (3) “pathological”
orthonormal systems are found for the notion of type. The theory of
A,-sets is involved for the construction of the orthonormal systems in the
second assertion. Choosing n~ N° we obtain systems which fail the first
conclusion of Theorem 6.

1. ABSTRACT THEORY

Throughout this section we will say that a norm a on £(/5,-) (which
means the collection of all ¥(/4, X}, where # is fixed and X is an arbitrary
Banach space) is an ideal norm if

ITuAdll <ol Tud) <|IT| x(u) |41 and  «(@a@x)=lall; |xlx

forall Te (X, Y), ue L5, X), Aec (15, 14), aely and x e X. Similarly,
B 1s an ideal norm on £( -, /5) if

IAeT) < B(AVT) < ||4] Bo) ITII and  Bb®y)=1blly. ¥l

for all Ae 215, 15), ve L(Y,13), TeL(X,Y), beY* and yeli The
adjoint ideal norms a* on (X, 1}) and g* on £(/5, X) are given by

a*(v) = sup |tr(vu)| and B*(u)= sup [tr(vu)].

a(u:/':'ﬁ)l’)sl /J'((*:X—»lgisl
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Furthermore, we define 1 — z%5(7) :=inf ¢ such that

(z umu?) “<esup {(z |<x,v,a>|2>

i=1 i=1

aeBX‘}

for all x,, .., x,e X with || Tx,|| = --- =||Tx,|. The following lemma is the
key for what follows. The proof is similar to the proof of [3]
(Theorem 3.1). We thank Th. Kiihn for his hints to improve the constant
appearing in Lemma 1.1.

LEMMA 1.1. Let Te #(X, Y) and ne N. Then
22(T) < /61 — 72(T).

Proof. Assume x,, .., x,€ X with 37 || Tx,|>=1 whereas [[7x,| >0 for
all i. Setting

g, i={ie{l, .n} |2 "<|Tx]2<2' "

we obtain ¥°_, |o,,| =n. Let mye N such that 2"~ ' < 3n < 2™ Then we
get

o o o0
> ox It Y le,l2t <2 Y o, <27k
m=my+1 icoy, m=nmyp+1 m=mg+1

Now we define

I'={(,j)lj=1..2"""ifieo,; m=1,., my}

and obtain
ny oL
M=%, lo,|2m7m<2™ 3 3 ITx|*<2™<6n
m=1 nm=1 icom
as well as
ny ny
=Y la, |27 m=z2m"0 % % [Tx]|?
m=1 m=1 icay

;2”'0*‘<1— Z Y |)Tx,||2>>2”"’"(1-§)2n.

m=mp+1 icom

Defining y;; :=x,/| Tx,| for (i, j)e I and choosing a subset J < I with |J| =n
we deduce
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n=J|<1—n5T)* sup (Z |<.V,;,,a>|2>
J

ae By+

<1 -—7%T) sup <Z l<y,_,.a>l2>
i

ae By«

<IT\ I >2>

) 2 mg ] 2 2*7"
<2 —7'(T)® sup (Z > Kxpadl HT.\',-HZ>

ad€Bye \m=1 ieoy,
2
Y, a>l )

<2™) —n(T)* sup (Z |<‘<,.a>l>

ae By»
2’”!)
LEWEES
n

LEMMA 1.2, Let o and B be ideal norms on ZL(15.-) and L(-,13),
respectively. Then for all ue £(1%, X) and ve L(X, 1)

o amg—m
< sp (Y0F ¥

ae By \m=1 iea, j=1

<27 —n5(T)* sup (

ae By»

HM’

Consequently,

1-mT) </61-n3(T).

(1) ey ) <a(u) whenever |lue;|| =1 fori=1,..n
(2) PG ,) < P(v) whenever |Jv*e)| =1 fori=1, .. n
Proof. (1) Choosing a,,..,a,€ By with {ue, a;>=1 and setting
wi=3", a,Re¢;e L(X, [") we obtain

n=tr(i” wu) <a*(r? ) wl alu) <a*(?, ) a(u).

n
Wy &

Using (15 ) a*(1% ,)=n from [10] (9.1.8) we arrive at our assertion.
(2) For £¢>0 we choose Xi,..,x,€B, with {(x, v*¢,>>1—~¢ and set
w: =3 e,®@x,e £(I], X). Hence

(1 —eyn <tr(es  ow) < B*(i5 1) plo) |w

and n < f*(15 ) flv) such that we finish as in (1). |}

LEMMA 1.3. Let a and B be ideal norms on ZL(15,-) and L(-.1%),
respectively. Then
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(1) (i ) 1=y <foc ) for all ue #(1%, X),
(2) AU )T —mi( *)<f/i(v ) for all ve L(X, I%).

Proof. (1) Let we £(/5,15) be such that |uwe;|=1 for i=1, .., n
Then af15 ) <a(uw) <afu) |wl and

l\/_‘ luwe;| =1 for i=1, .., n} é\/;a(u).

(2) Let we Z(/5,15) be such that ||v*w*e( =1 for i=1, ..., n. Then
BT ) < Blwv) < [lw] B(v) and

S
[w*]i

Combining Lemmata 1.1, 1.3, and the fact that 7n,(7) < \/én’z’(T) when-
ever rank(7T) <n (see [17]) we get

a1y ) sup {

Bt ) sup {

lo*w*e,| =1 for i=1, .., n} < /nfv).

THEOREM 1.4. Let a and B be ideal norms on £(l5,-) and £L(-,1%),
respectively. Then

(1) aler ) () < /12 /na(u) for all ue 2(1%, X),
(2) B L) ma(v*) < /12 /nB(v) for all ve L(X,17).

Let us recall that the nth approximation number [ 11] of an operator
Te Z(X, Y) is defined by

a (T):=inf{|[T—L| | Le L(X, Y), rank(L) <n}.

To bring the above theorem in a form we need we will use

LemMA 1.5. Let f be a norm on L (1, 13) such that for all ve £ (17, 13)
and all orthogonal matrices we ¥£(15,15) one has f(wv)=pv)<v(v). If
sup{B(v) | v: 17— 151<1} Zéﬁ Jor some >0, then (1} ,) 253/6‘\/)_1

where ¢ >0 is an absolute constant.

Proof. Using Grothendieck’s inequality (see [ 14] (Theorem 5.10)) our
assumption ensures the existence of some ve £(!7, /5) with n,(v) < K, and
Blvy=éd ﬁ Trace duality gives some ue £(/5, /) with nz(u);é/KG\/r;
and f*(u)<1 (note that f<v implies |- | <f*). Exploiting [11] (2.7.4)
we deduce for >0

n<my(u i ak(u)<2"(\/[_{);’_]+\/’;a[(ln]+1(u))

i

Ko
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and J/(2cKg) S\/Z)—i-a[gnh ((u). Setting 6 := (6/(4cK_;))* we obtain (using
[11] (2.11.6, 2.11.8)) for some orthogonal we #(/}, I4)

o)
Slppny (M) < \/;Ia[()n]+ 1] 2 u)
4cKg

R N

STon]+1 Z“"“‘ 2) = gy 31 O]

i 1
<m Blwit ) B*(u) =m BT L) B (u).

Hence 0°/(4cK )  /n< Bt ). 1
Now Theorem 1.4 and Lemma 1.5 imply

CorOLLARY 1.6. Let o and B be ideal norms on L(I%,-) and £( -, 1%),
respectively. Then

(1) sup{ oc(n)/f]!u 1717 | =1} ny(u)<ca(u) for all ue L7, X),
(2) sup{B(w) /f]]\u 11> D) =1} ma(o*) < cflo) for all ve L(X,13),

where ¢ >0 is an absolute constant.
Proof. (1) Setting f(v) :=x(v*) for ve L(X,5) and é > 0 such that
é/n=sup{a(w):{w:l5—1"| =1} =sup{B(v): flv: [T 15| =1}

we obtain from Theorem 1.4 and Lemma 1.5
na(u) Za(1y ) malu) = Ul 5) n, u)>—— fﬂ‘)

Consequently, 6°n,(u) < cc’a(u). (2) follows directly. |

In the following Corollary 1.6 is made applicable to our problems con-
cerning type and cotype with respect to arbitrary orthonormal systems. To
do this we need the Weyl numbers and nuclear operators. The nth Weyl
number [11] of an operator Te #(X, Y) is given by

x(T):=supla,(Tu) | ue L5 X), |u| =1}.

An operator Te #(X, Y) is nuclear [ 10] provided that 7 can be written
as

r-Y a,®y,
!
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with a,e X* y,eY, and X7 lla,| iy, <oo. We set wT):=
inf 7 |la,ll |y, where the infimum is taken over all possible repre-
sentations.

LemMa 1.7.  Let a be an ideal norm on L(15,-) and let ue L(1%5, 1"} be
such that

n

< 1 20—
u) < and afu) o\/log(n+l)

Jor some 0 >0. Then there exists an operator e L(15,1" ) with

=1 wd a2 Jn
Cor/ A

for all A>1 whenever nz(c, \//—1/6)2"“""* . Moreover

S

P
o(ad) >
! 20¢y /1 +log((ce/d) +1)

for n=1,2, ... The constant ¢, >0 is independent from n, 6, A and .

Proof. First we observe that a,(u) < c(l(u)/\/log(r + 1)) forue £(i5,1" ),
which follows for example from the much deeper factorization u = BDA
due to Talagrand used in the proof of Lemma 3.3. This gives the existence
of an orthogonal projection Pe £ (15, 13) with rank(P) >n —r and ||uP|| =
a,(u)< c/\/l +log(r+1). Hence via trace duality we find an operator
ve L(" ,1%) with a*(v) =1 and

5 /@:ﬁsmw)l<|tr(wP)|+|tr(vu(1—P>n

r—1
<v(u) JuP| +2 Y, x(v) ap(u(l—P))

k=1

r—1

Svlu)au)+2 Y x(v) alu).
k=1

Since Grothendieck’s inequality [ 14] implies
xvy<k™ !"“2772(”‘) < K(;k7 12 ol <Kok~ l\"‘zl*(u) <Kk -1z

we can continue to
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(5\/ n v(v) '*l
log(n+1) \/ﬁ)g—r_.:lﬁ A‘l klogk+1

S /;
log{r +1) log(r+1)
Hence, for 1 <r<n,

log(r+l f 20K,; \ﬂ<v(v

log(n+1)

Now we pick for A>1 an reN with I <r<nrand r<(n+ D" <r+1
and obtain

J 12 __ g0 124) < 0
c\/_n 4c'K;n <viv).
Consequently, n=(8cc'K f/é)“ 4= implies W(v) = 8/(2¢ \/A4) n"
Finally, the desired operator iie . £(/5, 1" ) is chosen such that |ajl =1 dnd
[tr(vid)| = v(v). Setting ¢, := max(8cc’K;, 2¢) we arrive at the first part of our
assertion. To prove the second assertion we put A, :=2 4+ 2 log(cy/o+1)=2.
It is clear that it remains to consider the situation ¢, \/Ag/d =1 and n<
(co \/A\O/o‘)z”"“”“"”. Here we use Ao/(Ag—1)<142/4, and (¢g1/Ao/8)>
<e?® to conclude (for any i with |a] =1)

) J < p) >1 +(2/40) Y
n< n
e’cy S A, Co/ Ay

5 Ao/ {Ap— 1)
<<~ > Jrn<i<am). |

CO\/A-O

The main result of this section is

THEOREM 1.8. Let o be an ideal norm on L(13,-) and let 6 > 0.

(1) If there is an operator ue L(15,1% ) such that (u)<1 and
xu) =0 \/n/log(n+ 1) then

&y (w) < ex(w) Sfor all we L5, X).

(2) If there is an operator ue L5, 17) such that «{u)<1 and
Ku)=0 /n then

Faw)<ema(w*)  for all we L%, X).

¢> 0 is an absolute constant independent from n, § and a.
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Proof. (1 Corollary 1.6 and Lemma 1.7 imply (for some ¢, ¢,>0)
(o/( CO\/- yay(wy<ca{w) for all we £(/5,X) whenever n>=
(co \/—/5 24/4-1) Getting A = 3/2 we obtain

mo(w) </ |wl < /na(w) <<C° f) a(w)

in the case n<(c, \/2/6)2"’/"”“. (2) Using trace duality we find
ve LI, 15) with /*(v) <1 and a*(v))&ﬁ. Applying [13] and [17]
{Theorem 12.7) we get {v*)< KX \/ log(r+ 1) for some numerical constant
K>0. Lemma 1.7 (applied to &w)=a*(w*)) produces an operator
de L5, 1% ) with |[d] <1 and a*(d*)>= o/ Kcof)\/;z whenever
n>(Keo/Aj8)**' 4=V, Corollary 1.6 (applied to (w)=a*(w)) shows
(0/(Key ﬂ))3 mo(w*) <ea*(w) for all we L(X,[5). Now trace duality
gives for we Z(/3, X) the existence of some we L(X, ;) with a*(w)=1
and

a W) = tr{ww) <, (w*) mL(W*) <a*(w)c < 0\/—> 7,(1W*)

~

<e (-IQ—"(S‘[—’ZY 7 (%),

In the case n < (¢, ﬂ/&)“""""’ D we can continue as in (1) since a(i¥) <

(W) </, (w*). |

2. ORTHONORMAL SyYSTEMS IN CONNECTION WITH TYPE AND COTYPE

To handle the @-type and cotype norms it is sometimes convenient to
introduce for orthonormal systems @=(¢,)] and ¥=(y,)7 and an
operator Te (X, Y) the quantity (7 | @, ¥) .—mf ¢, such that

<c HfHLng)

pRAIRIRD

for all feL,(X) (see [12]). It is clear that &(T|®, ¥)=&(T*| ¥, D)
whereas @ :=(¢,)" is the conjugate system of @ =(¢,)". Using the same
arguments as in [7] (Lemma 9.2) ([ 177 (Theorem 2. 7)) it turns out that

(T | D, ¥)=sup{@(Tu) | P*u*) <1, ue L3, X))},
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where ¥* stands for (¥)*. In fact, for ue £(/%, X) one obtains

A
2

=sup {U <f(a)), Y 1/;,(((0)[1,\,> dp(w)

Y*(u*)=sup {’i uey, aiy
]

o

I

<

EI

o

2 dp=uek}

=inf{”f: span {i:: l&ka,\}* KH ‘feLz(X), fflﬁk dp=uek}

and
8T |, P)y<sup{D(Tu) | P*u*) <1, ue £(15, X)}.

For the reverse inequality we take ge L,(Y*) with |g|l,<1+¢ and
D(Tu) = <X} ¢, Tue,, g> such that

¢(TM)ZJ<Z v uey, Z l/;,j¢,T*gdp> dp
k=1 I=1

1 n noo . o
<J/ Y, Viue, :span {Z l//kak}""’KH HT* | V. D) gl
k=1 1§ i
<(14¢) P*Hu*) T | D, P).
To apply the results from section 1 we remark that for Te (X, Y)

to(T) = sup [(Tu) and cp(T) = sup g (Tu).

v¢;(u:lgﬁ/\’):1 l(u:[’_;—»X):l

Using n5(u)=mny (u) and 15(T) =T | G,, U,)=46(T*| U,, G,) (U, and
G,, are defined in the introduction) it is clear that (cf. [ 17} (Theorem 25.5))

T = sup a5 T*w) and cA(T)=  sup ay(Tu).

we U5 Y Ity =1 ey - Xx)y=1
Furthermore, via t,(7)=46(T* | , G,) we obtain

to(T)= sup ng(T*w).

we A V) I wr) =1

640:/82°3-7
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Sometimes we will use
to(I7) <, <K Slogn+ 1) eulln)
which is an easy consequence of 7,(/{)=d({" | ®,G,) and of fu)<
K Jlog(n + 1) [*(u*) in the case ue.2(/2,1") ([13]. [17] (Theorem
12.I?e)t).us start with the following standard lemma (cf. [11](6.2.7)).

LemMa 2.1. Let ue L(15. X) and @ =(¢,.)7 be an orthonormal system.
Then

T (u*) < @*(u*) < Plu) < us(u).

Proof. For some normalized Borel measure x4 on B (see [10](17.3.2))

we get
(I 2 (,ip>]2
<7Tz(u)<f” L <i ¢k€k’a>

< n,(u) <[ Y IKep. ad)? d,u(a)> < my{u).
N 1

Il

D(u)

"
Y drue,
P

1/2

72

) du(a) dp)

1/2

Using trace duality and n¥(u*)=mn,(u«*) from [10] (19.2.14) we obtain
A, {u*) < P*(u*) and in the same way 7,(u*) < @*(u*). Finally, assuming
we (15, X*) the inequality @*{(u*) < @(u) follows from

[tr(u*w)] =

n
Z {ue,, we, >
k

=1
= U <Z breuer, ) Q;/Wf’/> dp{ <D(u) D(w). |
k !

Lemma 2.1 together with n,(u) <. /2n5(u) for ue £(/4, X) ([17]) imply
the easy part of Theorem 4.

COROLLARY 2.2. For all Te (X, Y) one has

1A T)<IQ(TYSJ2UT)  and  c,(T)<S2¢%T).

We come to the non-trivial part.
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Proof of Theorem 4 in_the Introduction. (1) Since [,(/])=9 \/—
implies ¢4 (/" )= /K \/n/log(n+ 1) Theorem 1.8 (1) gives

(6/K)? ma(w) < emp(w) for all we 2(1%, X)

such that the conclusion with respect to the cotype will be clear. In the
type situation we have to observe that c, (/% )=cgz(/") and hence
(6/K) my(w)<cemg(w). (2) One obtains  6vg(w)<cm,(w*) from
Theorem 1.8(2). Then we use for Te.¥(X,Y) the equality tH%T)=
sup{{(Tu) | n5(u*), ueg’(l’:',X)}, see [17] (Theorem 25.5, 242) to
conclude. §

Remark 2.3, Since t,(I7)<i,(IN < K\/log(n +1) ¢, (17) the assump-
tions in (1) of Theorem 4 are weaker than the assumption made in (2) of
Theorem 4. Theorem 6 shows that the assumptions of (1) are “strictly”
weaker than the assumption of (2).

Proof of Theorem 5 in the Introduction. Let we (/4,17 ) and
2

hy:=%4_ {wep,e> ¢y Then B(u)=(sup,_, ,|h(w)|*dp(w))'” and

{2 = {w*e;lf such that

SN y=sup{@(w) | we L5 1% ), w] <1}

12
=sup{<J sup th((o)lzdp(w)>
2 j

(< span{da). 1< 1]

and

ne(15 ) =sup{@(5 , w)|we L5 1%), Iw]| <1}

2

P2

()1

< spanf{¢,} orthonormal} .

For the latter equality we use the fact that it is sufficient to take the
supremum over all orthogonal matrices we #(/4, /%). The implications
(G,)— (G)) —~ (G)) follow immediately from Lemma 1.7 and Corollary 1.6
(n,(15 )= \/1_1). For (G})— (G,) we use Theorem 1.4 to deduce 0"m,(u) <

V1274 (u) such that 8"¢3(1% )</ 12¢,(1% ). 1

Finally we prove the infinite versions of Theorem 4. Before doing this we
need
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LEMMA 24. Let (f)|cL(Q.p) be a normalized sequence and
H< L,(92, p) be an n-dimensional subspace such that

20 B < A2
1

Sor all he H. If supt |(f;, h)| | he By} =0 for all I=1, ..., n then there exists
an orthonormal basis ()} of H and a subset < {1, .., n} with I = (0%/c)n
such that

3

0
Nl >~C~ Jor all kel

where ¢ = | is an absolute constant.

Proof. Our assumption ensures (f, #,) = 0 for some 4, .., h,€ B, We
fix an isometry T: /4 — H and define a norm f on #(/7,13) by

n 1/2
Buyi—  sup (z |<ﬁ.Twu<e,))|2).

w:ly =<t \ ]

Let us note that the first inequality of our assumption gives fla® x) <
lal;~ |x| ., which implies # <v on the component #(/{, [%). Furthermore,
the (;peratbr u:=3"e,@T'(h)e £, 1) is of norm at most one and
satisfies B(u) > 0 ./n. In this situation we can apply Lemma 1.5 to deduce
for some ¢ > 1

3

0
LERES NG

By convexity we find an orthogonal matrix O such that
N TO(e))]? = (6% ¢ n. Clearly,

|TO0(e)). )]

=T0 T
¥, (e)) (TO(e). /)

where we assume 0/0=1, defines an orthonormal basis in H. From
[(f;, TO(e,})| <1 we derive that the set

Izz{ll (l/mﬁ);%}

is of cardinality at least (6°/2¢?)n. |



TYPE AND ORTHONORMAL SYSTEMS 419

THEOREM 2.5. Let ®=(¢y), .n<= Lo(2, p) be an orthonormal system.
Then the following assertions are equivalent.

(1) There exists a constant ¢ >0 such that ¢,(T)<ccy,(T) for all
operators Te L(X, Y).

(2) There exists 0 >0 such that ¢ (I" )26 /nflog(n+ 1) for all
n=1,2,..

(3) There evcists n >0 such that for all n=1,2, .. there is an ortho-
normal system =(y)7_,<span{¢,} and disjoint measurable subsets
A,, .., A, such that

[ Witdpzn  for 1=1 ..n
!

(4) There exists 0>0 such that for all n=1,2,. there is an
n-dimensional subspace H < span{¢,} and an orthonormal system f=
()] < Ly(R2, p) such that the f; have disjoint support and

sup [(fu ) =0  for I=1,..n

he By

Proof. (1)—(2) is trivial.
(2)— (3) For fix n there are x,, .., xy€/" such that

; >5 / n and
.- 2V log(n+1)

Assuming span{x,,.,xy} =17 it is easy to see that there are

Vivew ¥, €17 and a matrix (p,)r ,_, such that Y, p,p, =0, and

x,=%,p,¥y for j=1,_, N. Consequently,

S
71,72 N logn + 1)

<1

<L

and

!
. )!i

if ¥ :=(y)7 ZJ_, P;%)7_ . Applying Theorem 1.8 yields (372 mr(w) <
cng(w) for all we £(1%, X). Especially, ny (15 ) = e (6/2)° ﬁ such that
there is an orthonormal system (h,)} < span{y;,} with

, 1\2 /0\°¢
[ sup |hk|-dp><;> @ "
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Applying [17] (Lemma 31.3) we find an index set J< {1, n} with
[J] = ((5/2 *))n and disjoint measurable sets 4, such that {, |h,|> dp >
(6/2)%(2¢*) for kel

(3) > (1) It is clear that we have
fStklp Yl* dp = nn

such that 7,(12 , )= ./n \/n. Applying Theorem 1.4 we obtain 7,(u)n"? <
cnp(u) for all we #(I15,Y). Assuming ¢, =%7%  p,4 such that
S PyPy =04 we obtain for P:=(p,)e LI} 1), ueL(l}. X),
Te £(X,Y)and some 4. £(/5,15) with |4 =1

7 (Tu)<cen P (Tu)=cnp "> W(Tud)=cn ">®(TuAP)
such that
75(Tu) ey~ ey (T) HuAP) < on ey (T) Ku).

(3)—>(4) We take H:=span{y,|/=1,..n} and f:=yx./IIWx.l
such that [(£. y)| > /7.

(4)—(3) We apply Lemma 2.4 and get an orthonormal basis ¥ = ()}
of H and a proportional subset / < {1, ..., n} with |/| > (0°/¢)n such that for
lel and A4,:=supp( /) one obtains

0
—< () <AL Wl

Hence | ,, |W|* dp = 0%/c* for ie 1.

THEOREM 2.6. Let @ =(¢,), . < LAQ,p) be an orthonormal system.
Then the following assertions are equivalent.

(1) There exists a constant ¢>0 such that t,(T)<cty(T) for all
operators Te L (X, Y).
(2)  There exists 6> 0 such that t,(1}) =20 ﬁfor alln=1,2, ..
Proof. Clearly it remains to show (2)— (1). Using the argument as in

(2) > (3) of the above theorem we find an orthonormal system ¥,=
(¥,)} cspan{¢} and y, .., y,€!] such that

< and

J
25\/_

Zg,’»y
1

o,
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Theorem 1.8 yields

5 ki
(§> Ve (W) Semp(w*) for all we &5, X).

Consequently, for all Te (X, Y)and all n=1, 2, ..

$3

" 1 TY<ty (T)<t1,(T). 1
C

Remark 2.7. In Proposition 3.11 we will see that there exists an
orthonormal system @ = (¢,);” < (¢™"), _ < L,(I1) such that the ®-cotype
and type does not coincide with the usual cotype 2 and type 2, but is non-
trivial, 1e., there are Banach spaces without @-cotype and type.

3. ORTHONORMAL SYSTEMS ON DISCRETE MEASURE SPACES

In this section we compare (sometimes for simplicity in the real situa-
tion) ordinary type and cotype constants with the @-type and cotype
constants in the case that the orthonormal system @ lives on a discrete
measure space 2:={w, .., w,}. We start with the positive part by
showing that the n,-norm and the n-norm are close to each other when-
ever n ~ N (which clearly implies the same for the corresponding cotype
constants). In order to apply Theorem 1.4 we need the following lemma
which contains an argument discovered in a discussion with B. Kashin.

LeMMA 3.1. Let 1 <n< N and let H< 1Y be an n-dimensional subspace.
Then there exists an orthonormal basis (h;)] and pair wise different coor-
dinates je {1, ... N} such that

(i, )7 27

. n
¢ < —
IN for all l\\3.

Proof. Let P, be the orthogonal projection onto H. It is well-known
that
N
n=my(Py)° =3, 1Pyle)l”.

1

Hence there exists j, € {1, .., N} such that

1Pale, )12 2
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We consider the normalized element h, = Py (e, )/|Pyle; )l which satisfies
(Py; is a projection)

_(Pn("jl)sejl) \/dlm(H)
o) =p e~ Wt ==y

Now we can proceed by induction setting H':=H and H**':=H*n
span{e, , h «} +- Here j, and h; e H, are chosen by the construction above
and sansfy hel =1 and

,_dim(H,) _n—2k+2

l(hkv ejk)l P N Z N .

If we continue as far as k <n/3 we get an orthonormal sequence (/1;), <3
in H with the desired properties. Note that by construction the elements ¢,
are disjoint. Finally we complete the sequence (/,) to an orthonormal basis
of H |

Now we compare the n,-norm with the n%-norm.

PROPOSITION 3.2, Let @ =(¢,); <15 be an orthonormal system. Then

ni(u) <12 \/En(b(u) for all ue F(14, X).

Proof. First we show \ﬁ? <2 \/5 \/N/n w415 ). Since my(i5 ) =1 we
can assume n3>>12. Setting H :=span{¢,} we choose an orthonormal
system (4,); and pair wise different k, according to Lemma 3.1. Now the
lower estimate of 7 (15 ) follows from

N

ﬂ¢(13.w)2=sup{2 sup [ ))?

cspan{¢,} orthonormal}
j=1k=1l...n

N

= Z sup l(hk, esz? Z |{hk’ Jol Z

j=1 k=1..n k<nid

§4=

Finally, Theorem 1.4 yields the desired assertion. [

The above proposition gives

ATy 12 \/gn,,,(T) whenever @ =(¢,) <!y

which was claimed in Theorem 6(1). To prove the remaining parts of
Theorem 1.4 we have to construct orthonormal systems with small type or
cotype constants. The notion of a A ,-system originally introduced for
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Fourier series turns out to be a useful tool. For 1 < p < oc an orthonormal
system @ = (¢,),., (I is a countable index set) on a probability space (£2, p)
is said to be a A ,-system if there exists a constant ¢ =0 such that for all
finitely supported sequences («;); < K one has

(L=l @) s, [ nele

By A,(®) we denote the best constant in the inequality above. In order
to construct orthonormal systems with small cotype constants we also need
the notion of a K -system. For 2<g<o an orthonormal system
@ =(¢,);,., on a probability space (£, p) is said to be a K -system if there
exists a constant ¢ =0 such that for all finite sequences («;), < K one has

(.

By K, (@) we again denote the best constant in the inequality above. In
fact for g >2 every K -system is a A -system and vice versa. Note that any
finite orthonormal system, that is the index set 7 is assumed to be finite,
@<L, is a A,-system and any finite orthonormal system @<L, is a
K ,-system but the constants could be different and are important in the
sequel. In the following it will be convenient to use L7 :=[ K", ||| 4] with

el o) <)’

w»

1 N 1
G0 = % )

instead of /. We will start with the construction of orthonormal systems
@ such that ¢, (/7 ) 1s small.

LEMMA 33. Let 2<g<oc and let @ =(¢,)7 be an orthonormal system.
Then

nlia
co(I” )< ¢, —=m=——= K (D),

/ Jlog(n+1) !

where ¢, >0 is an absolute constant depending on g only.
g 74 4 q )

Proof. (1) First we show for ue £(15,1%)

nlie

< —_—
ru)<c ’-———log(n+1)

l(u)
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Applying [9] (Theorem 12.10} in the situation
X,::<Z g, ue;, e,> for teT:={1,..,n},
i=1

where (e,}] i1s the unit vector basis of /], yields a sequence (Y,),., of
gaussian variables with || Y, ||, < cl(u)//log(k + 1) such that

| ~

X, =Y aln) Y,
k=1

for a,(¢) =0 with X, «,(#} <1 (in the complex case we consider the real
and complex part separately and obtain complex o, () with 3, |a.(#)] < 1).
Setting u, :=/loglk + 1)({ Y, g>)_ €%, v i=(oa ()., €l”, A:=
Sion i ®ee LU L), D=3, 1(J/loglk +1) e, ®ee LU, 1),
B:=Y,., e.®u,e L, 1") we deduce |lull</loglk+1) (Y.<
cllu), 14] <cl(u), |Bl <1, and the factorization

. n A D B n
w2y, 2 Eyn

Considering D= D, + D,, whereas D, is the diagonal operator associated
to the sequence (1/\/log2,..., l/\/log(n-(- 1), 0,..) we obtain from [6]
(Theorem 5) and = (D,) < ||lal|,. if the diagonal operator D, e #(/,,1,)is
generated by the sequence «,

q*

1
7 ) < B 7,(D) 4] +(B) — e | 4]
log(n+1)
<) 1B~ A 4 | B) e 4
\('( — ! e ————-d
' 1og(n+1) \/log(n+1)

n l/g

<), ———
“ \/log(n+ 1) )

(2) Assuming ve L(/5,1" ) it is easy to see that there is a factoriza-
tion v=uP where Pe £(I5,15) and ue £(/5,1%)) such that |P{ =1 and
{u)=Iv). Using the continuous version of the g-summing norm (which
follows by an easy approximation argument, see [ 14] (Proposition 1.2))
we can deduce
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N q 1/g q liq
RS <f Y, drviex) dp> <m,(v) sup U dp)
@ |7 Q

[EINEES
K(®) Ku)

N

Z ay by

1

nle

() K (P) <7 (u) K (P)< ) ——=————=
log(n+1)

s~

nl,’q
<)) —mmmme K () [(0). |}

? Slogn+1)

The following proposition provides small orthonormal systems with
small cotype constants.

PrOPOSITION 3.4, Let 2<q<oc and 1 <n< N. Then there exists a real
orthonormal system @ = (¢, )} < LY with

() /N <K, (@) <cmax{/q, /n/N"},
(2) coll?) \/WSC(, max{\/(_ln”‘l*‘/{ (n/NYV9}

where ¢ >0 is an absolute constant and c,> 0 depends on g only. In par-
ticular, for 0 <8< 1 and N=[n'?] one has c4(I" ) < csn’”

Proof. (1) We will use a random argument. By the comparison prin-
ciple for random orthonormal matrices and gaussian variables of Marcus
and Pisier, see [ 1], and Chevet’s inequality, see [5], we deduce

Al vl

\/N[E HZ Y o e®@ei o qH

Hl\fl j=1

</\f“’ u\_l/—] sn®es ]".*l}\
<5 (5[5 0] o T mel )
3

<oy ﬂ(\/(}—k\/;N’ fay,

Here the expectation is taken with respect to the Haar-measure on the
group ("(N) of orthonormal matrices and with respect to the standard
gaussian density in R™. For a random matrix ¢ satisfying the above
inequality we define the orthonormal system @ = (¢, )} < L} by

N
dx ::\/IV > o0, e,

Ji=1
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Therefore we have proved

EK,(®) < 3coc, max{,/q, /nN "%}

and can choose our system randomly {with an obvious change of constants

the same estimate for the K -constant is valid if we compute this constant

with complex coefficients). To obtain the lower estimate of the K -constant

we first claim that \/ﬁén,,,(ljz ). In order to prove this claim we find

(a_/)‘;vc B such that (37 _, é.()) e, aj> =251 e Deil " and define

the operator R:=YY ¢,®@e,e L(/5, 1) with |R|| < 1. Then it follows that
1,2

(L 1 u) =(5 2

Using the argument given in the end of the proof of Lemma 3.3 we
continue with

:

J=1

n 2N\ 172
LY delies ) <P(R) <mo(I7).
4

k=1 s

(I ) =sup{@u) | lu: I5—17 | <1}
<K,(@) sup{m, (u) | [lu: 15> 17| <1}.

Finally, [6] (Theorem 5) implies #,(u) <N [u|. (2) is a consequence
of (1) and Lemma 3.3. The last assertion follows by ¢=2/6. |

We continue by constructing orthonormal systems with small type con-
stants in the proportional case.
LEMMA 3.5. Let @=(¢,)7 be an orthonormal system. Then t4(l,) <

cA5(@) for some absolute constant ¢ > Q.

Proof. Let x,,..x,<!,. Using the Kahane inequality for gaussian
averages due to Hoffmann-Jérgensen, see [9], we deduce

Z gk<xkv ej)

k=1

L S€ J Z

: JjeN

d<c T (z l<xk,e,->|2)m

jeN =1

o

S Gulxn e | dp

k=1

<cdy(®d) ¥

jen U

n
Z i Xk
k=1

=cAy(P)

Lith)y

A more abstract version of this argument can be applied for Banach
lattices with finite cotype, see [ 8]. In contrast to the previous results large
orthonormal systems will now be constructed in L.
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PROPOSITION 3.6. For all 1 <n< N there exists a real orthonormal

system @ =(¢,) < LY such that for some absolute constant ¢ >0

(1) Ay(®)<c/NAN—n)log(l + N/(N —n)),
(2) t4(l))<c/N/N—n)log(l1+ N/(N —n)).

In particular, for 0 <e<1 and 1 <n<(1 —¢&)N there is an orthonormal

system satisfying
1 |
to(l)<e [—log{l+-)
& &

Proof. By [4] (Theorem 22) there exists a subspace Ec/} with
n=N-—m=dim(E) such that for all xe F

Tos(l = N/m)
Ixl.<e \/~——~°g( NI |
m

Now we consider £ as a subspace of LY, L}, respectively. Then we have
forall xe E

¢ log(1 + N/m)

1
—( Xl = |/ llx
N Tt

=c N log <1 +ﬁ> Ixf v
m m 2

If we choose an orthonormal system @ =(¢,)} in E with respect to the
scalar product of LY we obtain for all sequences (x,)} € R" (and with the
constant 2¢ instead of ¢ also for complex (a,))

HXH ng:

Z A P H

1 HLl\

i

Srar) = Snnl <o Fos(ie2)

1 L

Therefore assertion (1) is proved. Assertion (2) follows immediately from
Lemma 3.5. |

For n=4N we can again choose a random orthonormal system in LY
satisfying the assertion of the above proposition, because for random
subspaces the corresponding norm estimate is valid, see [16] (cf. [15]
(Theorem 6.1)). We are now in position to complete the

Proof of Theorem 6 in the Introduction. (1) follows from Proposi-
tion 3.2. {2) and (3) are consequences of Proposition 3.4 (2) and 3.6. |
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Analyzing Theorem 4 one can ask whether it is possible or not to replace
the space /", or /% by an arbitrary space. We will show in Proposition 3.8
that this is not possible in some sense. Let us begin with the following
construction which yields n-dimensional quotients of /% with large ®-type
constants. Given an arbitrary orthonormal system @ = (¢,)| < L,(£, p) we
consider the convex body

21 b)) ey
(X4 ()P

and the associated Banach space £, :=[K", B,] via the Minkowski func-
tional of B, (we will see that £, is correctly defined). From the definition
it is clear that, for example, B, is the convex combination of at most N
points if the measure space has N atoms and no continuous part. The next
lemma summarizes some properties of the convex body B,,.

B, :=absconv {

Z | (@)]? >0}cl"

LemMa 3.7. Let @ =(¢,)| be an orthonormal system. Then the following
holds true.

(1) There exists a normalized Borel measure u supported by
S, .1 N By, satisfying j" B[,‘<x, eiy{x,e;) du(x)=1(1/n)d,; and, for all Banach
spaces X and all ue (1, X),

1,2
<D(u)=ﬂ<L Hutzdu(x)> .

If 1515 Eg is the formal identity then [i,'|<1 and
m(13) <

(3) In the real situation one has

l(ld,) S <V0l(B,g)>lul nd r(1¢) >l <V01(Blg)>l,‘n
[4

s \vol(By,) Jn ¢ \vol(B,)

where ¢>0 is an absolute constant, r(u) .= (E |37 epue,?)'?, and (&)
is the sequence of independent random variables with p(e,=1)=
pleg=—1)=13.

Proof. (1) Considering F: [, #,p]—[15, #(5)] with Flw):=
(¢,(w), ..., ¢.(w)) we obtain an image measure p, on #(/;) such that

J [EIFp J Zwm (o) =

n
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Hence dv(x):=(|x||5/n) dp c(x) defines a normalized Borel measure on /}
with v({0})=0.
Finally, the image measure u of v with respect to

P: 1IN0}, BUIN{0})] — [ By, A(By)]  whereas P(x):=—

RN

is the desired measure. (2) Since we have a measure u supported by B,
with a standard coveriance matrix it is easy to see that dim(span{ B,})=n.
Consequently, the formal identity i, is correctly defined and we have
15" <1 as well as m,(1 ) Sfp(l(b):\/; {see Lemma 2.1). (3) For the first
inequality we can use well-known volume estimates for the corresponding
I-norm, namely

172

1 2 {
il/? - <L %12, da,,(x)>

. ., —im vol( B\ 1
><J Il da,,m) :<vol(B,,,)> ,

where o, is the normalized Haar measure on the sphere S, ;. The second
inequality of (3) follows from the results of Carl and Pajor, see [4]
(Corollary 1.4(b)), since

<VO](B,SI)

1in
<
VO](B(D)> \ze"(lqs),

where ¢,(1,) denotes the nth dyadic entropy number of 1,. |
We deduce the lower estimates for the @-type and -cotype constants
which emphasize the special role of the spaces /7 and /*, in Theorem 4.

PROPOSITION 3.8. Let @ = ()i <=L} be an orthonormal system. Then,
for some constant 0> 0 not depending on @, n, and N, the following holds
true.

(1) There exists an n-dimensional subspace E <17 with

log(n+1) n
Ey=0 .
calE)>6 \/log(N+1)\/log(n+l)

(2) In the real situation there exists an n-dimensional quotient I“;V/L
with

I
Ny .
foll /L) 20 \/log(N/n+ 1) Vn
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Proof. (1) We define the operator Re £(I5,1%) with |R||<1 and
ﬁ < @(R) as in the proof of Proposition 3.4. Then we consider the space
E := R(!%) of dimension at most n. From /{(R) < ¢, \/log(N+ 1) |R| and
the above inequality it follows that

n o log(N +1)
\/log<n+ 17 S0l fognr 1)

(2) Since L,(2,p)=LY we get B,=absconv{x,, .., xy} for some
Xy, ..Xy€S, ; and E,=1[7/L. Corollary 2.4(i) in [4] implies

172
(vol(B¢,)> <c log(N/n+1)
vol(B) n

for some absolute constant ¢ > 0. Using Lemma 3.7 (3) we deduce

\/l—-ﬁ———<c MSCM)(EQD) M=Cfo(E¢)- 1

og(N/n+1) ﬁ \/ﬁ

Remark 39. Note that assertion (1) can formulated as follows in the
cotype situation: As long as N does not grow faster than a polynomial in
n there is an n dimensional subspace of /%) with “worst possible” cotype-®
constant, although this constant can be quite small on /7 , see Proposi-
tion 3.4. On the other hand assertion (2) in the type situation means: As
long as N ~ n there is an n dimensional quotient of /" with “worst possible”
type-@ constant, although this constant can be bounded on /,, see

Proposition 3.6.

Remark 3.10. 1. For any orthonormal system & =(¢,)] and any
ue £L(1%, X) we have l(u) < my(u). This is known and follows (for example)
from Lemma 3.7 (1).

In fact, we have

12
7o) =+/n sup <[ truw.x-nldu(x)>
15

wedl,

;ﬂ(f

we 'y,

~/n (L Huxl]zda,,(.‘c))

where dw stands for the integration with respect to the Haar measure on
the group ¢'(n) of the n-dimensional orthogonal matrices.

12
f lawx || du(x) dw>
2
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2. Let @=(¢,)7 <!} be an (real) orthonormal system such that

n
Y e Xy
1

S
5

n
Z By X
1

2

holds for all Banach spaces X and all x,, .., x,€ X. Then N > n(e™“" — 1)
for some numerical constant ¢ > 0. To see this we consider E, =/%/L as in
the proof of Proposition 3.8 and observe

r(,¢)>i<vol(B,;)>|/n> 1 jw—n
ﬁ/cl vol(Bg)/) 7~ ¢ e, Vlog(N/n+1)

according to Lemma 3.7 (3) and [4] (Corollary 2.4). Since ®(i,) =\/t; we

get
r{ie) 1 n
=P(15) = > /
" (ta) Co ol Ca \/’; log(N/n+1)

such that n/(cyc, c,)* <log(N/n+1).

\

Finally, we are in a position to complete Remark 2.7.

ProOPOSITION 3.11.  There exists an orthonormal system @ = (¢, <
(e*") o S Lo(IT) such that

up ) _ o a0
nocollh)  n (]

and  co(l,)=14(l,)= 0.

Proof. We use the system constructed in [2] (Theorem?2). For
2<g<oc and k=1, 2, ... there are chosen subsets S, < {n:2*¥<n<2¢+1}
satisfying |S,| = [4"] such that for A =1{);"_, S the system &= (&™), _
is a K, system. Using Lemma 3.3 we obtain

1/q ln
" K () and sup ~€—2—(—°’—l =

c [’;)SC,E =
2l I\/Iog(n+l} ‘ n colll)

Applying 1,(17) < K /log(n+ 1) c,(!% ) one also gets sup,, 1,({])/15(17)
=oc. Now let us consider the system ¥, :=(e’),. s It follows from the
Marcinkiewicz-Zygmund-inequality and a shift argument that

N 12 2n 2 g\12
i ]2k
l Z e27ul.\l,2 )x.\‘ ) <e <f >
f,x'+2l"71€Sk i 0 27[

>
2x,

ist
e X,
=1 Y

se S;

630:823-8
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for all x,,.,xg,€X and all Banach spaces X. Setting ¥j:=
(N2 IS = L2 we get

nl,,g(T)gcn.,,k(T) forall TeX(X,Y)

Applying Proposition 3.2 we continue to

1 S N
E(B-:') T S T) S cmg (T)

for all Te #(X, Y). Setting n = 2% this reads as

1 < [n2]

12¢\ n

1,2 ‘
> 2T <y (T).

If 7 is the embedding of /5”7 into /U7"") this gives

l 5 ‘ 2
2/g71/2 + 1,2 1,2 2y
e [na] FU2 L <7thk(l£_"—f])-

On the other hand,
1577y ~ /log[n”]

which yields for 2/g — 1/2 > 0 (¢ < 4) the equality sup, ¢4 (/" ) = oc. Finally,
we have for any subsystem (¥,)} =@ the estimates ({(e,) is the standard
basis of /7 )

o

ui Ve =1 and

Ly(1% )

such that sup, 1,(/”)=0cc. |
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