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THE VERTICES OF THE KNAPSACK POLYTOPE 
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The number of vertices of a polytope associated to the Knapsack integer programming problem 

is shown to be small. An algorithm for finding these vertices is discussed. 

1. Introduction 

We begin with a statement of the well-known Knapsack problem, namely: 

maximise C,x]+C~x2+..‘+CnXn, 

subject to alxl + a2x2 + a.. + a,x,, 5 b, (1) 

aj, Cj, Xj, b non-negative integers, 15 jl n. 

We define the Knapsackpolytope, K, to be the convex hull of the feasible solutions 

of the inequalities associated with (1). That is, we define: 

K=conv{x=(x~,...,x,)E~“:a~x~+...+a,x,sb,xj~O,lIjIn}. 

Then the principal result of this paper is to show that the set I/ of vertices of K has 

only a small number of elements. More precisely, letting ) V 1 denote the cardinality 

of V, we show that 

I v I < h?, 4” (2) 

where a=(4b)/min(a,, . . . ,a,}. In addition, the method of the proof of (2) 

reveals something about the distribution of the vertices on K. In the final section 

of the paper we use our geometric results to obtain an algorithm to find V explicitly. 

2. The geometry 

In order to prove (2), we shall partition the lattice points of K into ‘boxes’ in such 
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a way that no box may contain more than one vertex of K. We begin by defining 
a sequence (Xj],EO of integers by 

X,=0, Xj=2/-1, jrl. 

For each i= 1,2, . . . . n define an integer ZVj by 

X,+, 5 (b/ai) <XN,. 

Then it is clear that Ni<log2(4b/ai). 
Let 4 denote the closed-open interval [Xi_ i, Xj), and let /3’ be the set of boxes 

P’= ,o, Zk,: 1SkjSNj 
I 

e 

From the definition of K and of p’ it follows that 

Kc u B. 
BEfi' 

We note that the number of elements of /3’ is 

fi Nj < (log2 0)” 
,=I 

where a=(4b)/min{a,, . . . , a,,}. It is the case that some members of p’ will not meet 
K. Let /3 c p’ be those elements of /?’ which met K. We show: 

Lemma. No box in p contains more than one vertex of K. 

Proof. Let H denote the hyperplane {x : alxl + a2x2 + . ..a.,x, = b} and let u denote 
the normal of H, outward with respect to K. Let a be the real number such that 
(x, U) = a for all x E H, where ( , > is the standard Euclidean inner product. 

Now suppose for the moment that we have proven the result for the cases of 
dimension 2,3, . . . , n- 1. Suppose o=(u,,u2 ,..., 0,) and w=(w1,w2 ,..., w,) are ver- 
tices of K lying in some common element B of fi. Let B = nl= 1 Zk,, 1 I kj 5 Nj for 
some fixed choice of the kj. Suppose (u, w)< (u, 0). We show that 2w - u E K con- 
tradicting the fact that w is a vertex of K. The condition above ensures that 
(u, 2w - u>l a and so it only remains to show that 2Wi - UiZ 0, i= 1, . . . , n. We may 
suppose that B has no kj = 1. For if some kj is 1, we have an obvious l-l cor- 
respondence between the boxes 

j-l 

,G ‘ki ’ ‘1 ’ , =$! I zk~] and [,!j zk'] 

i#j 

and hence we may inductively apply the (n - 1)-dimensional result to the reduced 
problem in the hyperplane {X : Xj = 0). 

So, supposing kjr 2 for each j = 1, . . . , n, we have since v, w are in B that, 

Iwj-vjI~xk,-xk,_~=2kJ-2=xkj_~ 
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Hence 

Thus we have proven the lemma provided we establish the case n = 2. Any dif- 

ficulties arising in copying the above proof occur only if B has kj = 1 for some 

Jo (1,2}. But this restricts u and w to lie in either IR x [O, 1) or [O, 1) x R,and thus 

we are left considering the existence of two vertices in B both of which lie on the 

same axis, which is clearly impossible. 

If we now note that I/?) I /fl’l= (log, a)“, we have: 

Theorem. / V 1 <(log, a)“. 

As a simple consequence of the method of proof of the lemma we obtain: 

Corollary. Any vertex of K in a box B is the unique point of K maximising 
alxl + a2x2 + ... +a,x, over integer points of K in B. 

Proof. If u E V and WE K and both are in some BEP with (u, w>r(~, o> then 

exactly as in the proof above we show that 2w- oczK, contradicting DE V. 

To conclude this section we remark that the theorem implies that the number of 

(n - 1) faces (facets) of K is surprisingly small. By the Upper Bound Theorem for 

convex polytopes [4], the maximum number of facets of a polytope in n dimensions 

with u vertices is at most V”‘2. It therefore follows that the number of facets of K 
is at most (log, o)~*‘~. 

3. The algorithm 

Due to the interesting property that no BE/~ may contain more than one vertex 

of K, we can supply an algorithm to find V. Suppose we have an algorithm A to 

yield an optimal solution to the problem: 

maximise alxl+a2x2+...+a,x,, 

subject to alxl+a2x2+...+anxnsb, 
(3) 

LjSXjS Uj, Isjsn, 

Lj, Uj, aj, xj, b non-negative integers, 15 jl n. 

Certainly such an algorithm exists; for example, see Lenstra [3]. Given a box BE p 
it is clear that the maximisation of alxl + ... +a,,~,, over integer points of K in B is 

a problem of the form of (3). We note here that we can easily select from p’ those 

BEP since B=ny=,Zk,~fl if, and only if, a,Xk,_1+a2XkZ_-++,.+a,Xk,_,Ib. 
We now apply A to find an optimal solution x(B) for each box B EP. Let 
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S= {x(B) : B ~/3}. Then it follows from the uniqueness assertion of the corollary 

that if a box B contains a vertex u E V, then x(B) = o and hence T/c S. The set S is 

small since ISJ < (log2 a)“. Of course, not every BE/~ will contain a vertex u E I’, 

and so in this case x(B) $ I/. In order to reduce S to V we have to discard some 

elements of S. To do this, we firstly note that if u E S then u E V if, and only if, u 

is not a convex combination in S - {u} (since each vertex is an extreme point and 

each point of S is a convex combination in V). 

Let ul, . . . , u, be an enumeration of S and suppose u1 =O. Then ut is a convex 

combination in S- { ut} if, and only if, there are constants A,, . . . , A,_, such that: 

l-1 

ut= c Jlju;, 
i=l 

I-1 
(4) 

c A;=l, ~i20, 1 cirt- 1. 
I=1 

Since each ui E Z”, we can re-write (4) as a system of inequalities with integer coef- 

ficients in A=(Ai,... ,Ar_i). Call this system Q. From (4) it follows that 52 has a 

solution if, and only if, ut$ I/. Checking the solvability of 52 we conclude one of 

two possibilities: 

(Ja) Q . 
IS unsolvable implying ut E V. Relabelling S as ui’), . . . , 01’) with 01’) = 0 and 

02 - u,, 01~) = ui_ , , 3 I is t we may repeat the above procedure on S(l) = S. 

(b) Q is solvable implying ut $ I/. Then I/C S - {u,} and we repeat the procedure 

to S(l)=&{UJ. 

If we now repeat this process inductively to obtain sets S a S(l) > Sf) > ... , then 

after k< (t - 1) steps we will have established that the only points remaining in S@) 

are points of V. Thus we will have reduced S to I/. 

Finally, it may be of theoretical interest to note that the solvability of Q can be 

determined in polynomial time (Khachiyan [I] and [2]). For fixed n, the algorithm 

of Lenstra [3] is also polynomial time. 
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