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This paper presents a new data structure called boolean expression diagrams (BEDs) for representing
and manipulating Boolean functions. BEDs are a generalization of binary decision diagrams (BDDs)
which can represent any Boolean circuit in linear space. Two algorithms are described for transforming
a BED into a reduced ordered BDD. One is a generalized version of the BDD apply-operator while
the other can exploit the structural information of the Boolean expression. This ability is demonstrated
by verifying that two different circuit implementations of a 16-bit multiplier implement the same
Boolean function. Using BEDs, this verification problem is solved efficiently, while using standard
BDD techniques this problem is infeasible. Generally, BEDs are useful in applications, for example
tautology checking, where the end-result as a reduced ordered BDD is small. Moreover, using opera-
tors for substitution and existential quantification they allow for the verification of large hierarchical
circuits. C© 2002 Elsevier Science (USA)

1. INTRODUCTION

Within the past decade reduced ordered binary decision diagrams (OBDDs2) introduced by Bryant [4]
have become a successful data structure for representing and manipulating Boolean functions. This
success is due to the fact that OBDDs are canonical (making testing of functional properties such as
satisfiability and equivalence straightforward) and that they are compact for many Boolean functions
occurring in practice. However, the applicability of OBDDs depends heavily on the size of the re-
presentation and unfortunately some (important) functions, e.g., the multiplication function, have no
subexponential representation.

This paper presents an extension of OBDDs, called Boolean expression diagrams (BEDs). BEDs
can represent any Boolean circuit (see, e.g., [3]) in linear space at the price of being noncanonical.
However, since converting a circuit into a BDD via a BED can always be done at least as efficiently
as constructing the BDD directly, many of the desirable properties of OBDDs are maintained. This is
obtained by extending the OBDD representation with operator vertices:

DEFINITION 1 (Boolean expression diagram). A Boolean expression diagram is a directed acyclic
graph G = (V, E) with vertex set V and edge set E . The vertex set V contains three types of vertices:
terminal, variable, and operator vertices.

• A terminal vertex v has as attribute a value value(v) ∈ {0, 1}.
• A variable vertex v has as attributes a variable var(v) and two sons low(v), high(v) ∈ V .

• An operator vertex v has as attributes a binary Boolean operator op(v) and two sons low(v),
high(v) ∈ V .

The edge set E is defined by

E = {(v, low(v)), (v, high(v)) | v ∈ V and v is not a terminal vertex}.

We use 0 and 1 to denote the two terminal vertices.

1 This work is supported by the Danish Technical Research Council. It was carried out while the authors were at Department
of Information Technology, Technical University of Denmark DK-2800 Lyngby, Denmark.

2 Throughout this paper, we will assume that all decision and expression diagrams are reduced and will omit the ‘R’-prefix.

194

0890-5401/02 $35.00
C© 2002 Elsevier Science (USA)
All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82617438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


BOOLEAN EXPRESSION DIAGRAMS 195

Variable vertices correspond to the if-then-else operator x → f1, f0 defined by

x → f1, f0 = (x ∧ f1) ∨ (¬x ∧ f0).

Operator vertices correspond to their respective Boolean connectives, leading to the following corre-
spondence between BEDs and Boolean functions.

DEFINITION 2. A vertex v in a BED denotes a Boolean function f v defined recursively as:

• If v is a terminal vertex, then f v = value(v).

• If v is a variable vertex, then f v is the function

f v = var(v) → f high(v), f low(v).

• If v is an operator vertex, then f v is the function

f v = f low(v) op(v) f high(v).

Before presenting the formal details of BEDs and the algorithms for manipulating them, we illustrate
the use of the data structure to prove a tautology.

1.1. A Simple Example

Consider verifying that conjunction distributes over disjunction, i.e., that the following is a tautology:

x1 ∧ (x2 ∨ x3) ↔ (x1 ∧ x2) ∨ (x1 ∧ x3). (1)

The BED for this expression is shown in Fig. 1. The low-edges are drawn using dashed lines. Notice
that vertices representing the same Boolean subexpressions are shared. A key operation on BEDs is
the up-step. To explain the up-step, let op be an arbitrary binary Boolean operator, let x be a Boolean
variable, and let fi and f ′

i (i = 0, 1) be arbitrary Boolean expressions. It is simple to verify that

(x → f1, f0) op (x → f ′
1, f ′

0) = x → ( f1 op f ′
1), ( f0 op f ′

0). (2)

This identity, illustrated in Fig. 2(a), is used to move the variable x above the operator op and is
the basis for the up-step. (Equation (2) also holds if the operator vertex op is a variable vertex. In that
case, the up-step is identical to the level exchange operation typically used in OBDDs to dynamically
change the variable ordering [24].) In cases where one of the children u does not contain the variable
x , a new variable vertex v, with var(v) = x and low(v) = high(v) = u, is inserted below the operator
vertex before performing the up-step; see Fig. 2(b). In fact, this is the only way the size of the BED can
increase during a transformation.

The up-step moves operators closer to the terminal vertices and if some of the expressions fi are
terminal vertices, the operators are evaluated and the BED simplified. By repeatedly moving variable
vertices above operator vertices, all operator vertices are eliminated and the BED is turned into an OBDD.

FIG. 1. The BED for Eq. (1).
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FIG. 2. Illustration of the up-step (a) for the case where variable x exists in both sons of the root and (b) for the case where
x only occurs in the left son.

Consider again the example of proving the distributive law (1). Figure 3 shows how the BED from
Fig. 1 is transformed into the tautology 1 by moving x1 toward the root using repeated up-steps on x1.
As the example illustrates it may not be necessary to move all variable vertices to the root in order to
obtain an OBDD. In fact, the variables x2 and x3 could have been replaced with arbitrary large BEDs,
and the tautology would still have been proven with exactly the same steps.

By repeatedly pulling up variables one by one, in a way similar to x1 in the example, a BED can
gradually be converted into an OBDD. This approach is called up one and its main advantage is that
it can exploit structural information in the expression, as was the case in the example. The efficiency
of up one is demonstrated in Section 5 where we verify that two different circuit implementations of a
16-bit multiplier are identical.

An alternative way to construct an OBDD is to move all variables up simultaneously. This approach
is called up all and it is a generalization of the OBDD apply-operation. We show that the worst-case
complexity of building an OBDD bottom up using apply (the standard way) and building it from a
BED using up all is within a constant factor. Thus, one can construct an OBDD from a BED at least
as efficiently as constructing an OBDD from scratch. In fact, it seems that the reduction rules should
in many cases be able to improve on the OBDD-construction by reducing the number of operators that
need to be converted.

FIG. 3. Proving the distributive law. (a) BED for the distributive law. (b) x1 is moved above the three conjunctions using three
up-steps. Notice that at this point variable and operator vertices are no longer separated in two distinct layers. (c) Conjunctions
with children that are constant vertices are eliminated. (d) x1 is moved above the disjunction to the right. (e) The disjunction with
both children equal to 0 is removed and the two remaining disjunctions are identified. (f ) Identifying equivalent variable vertices.
At this point the two children of the biimplication operator are identical and (g) the BED is reduced to 1, proving the tautology.
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1.2. Related Work

Recently, a new way of constructing OBDDs, called MORE, was proposed [13, 14]. MORE is based
on the observation that the OBDD for f ∨ g can be constructed by introducing a new variable x and
implicitly existentially quantify x since ∃x .x → f, g = f ∨ g. MORE constructs the OBDD by moving
x toward the terminal vertices using the level exchange operation [10]. The method can be extended to
any Boolean connective since disjunction and negation are functionally complete.

Prior to the work on MORE, Plessier et al. [17, 23] proposed a variant of BDDs called extended
BDDs (XBDDs) obtained by adding structural variables which can be both universally and existentially
quantified. Quantifications are described as annotations on pointers leading to nodes with structural
variables. The quantifications allow Boolean operations to be expressed. During construction of an
XBDD from a circuit a trade-off can be made between removing a structural variable and performing
BDD synthesis or keeping the structural variable. Two algorithms for checking satisfiability of XBDDs
were given (one requiring up to exponential space, the other requiring linear space but exponential time).
No algorithms for converting an XBDD into a BDD were given. Using the satisfiability algorithms the
authors showed that although the growth is still exponential, the equivalence between the median bit of
two structurally different multiplier circuits could be proven for two 16-bit multipliers.

BEDs extend the ideas of XBDDs and MORE to include arbitrary binary operators and allow these
operators to remain in the graph while transforming it. (In XBDDs and in the MORE approach, two nodes
are needed to represent an exclusive-or or a biimplication.) This makes it possible to include operator
reduction rules and develop new OBDD synthesis algorithms (e.g., up one) which are essential for
obtaining the runtimes presented in this paper.

OBDDs have been extended in a number of other ways, including using other types of decomposition
rules, relaxing the variable ordering restrictions, and extending the domains. The Shannon decompo-
sition used in OBDDs can be replaced with either the positive or the negative Davio decomposition,
yielding ordered functional BDDs [18]. If all three types of decomposition are allowed in one diagram,
one obtains ordered Kronecker functional decision diagrams (OKFDD) [9]. They allow compact and
canonical representations of different classes of Boolean functions, but none of them are powerful
enough to represent all Boolean circuits in polynomial space.

Another modification of the OBDD representation is to relax the variable ordering restriction. Free
BDDs (FBDDs) [12] (also called read-once branching programs) only require that on any path from the
root, a variable is tested at most once. BEDs are exponentially more succinct than FBDDs since BEDs
are as succinct as branching programs which are exponentially more succinct than read-once branching
programs [26]. Through the use of types expressed as BDD-like graphs, which impose restrictions on
the occurrences of variables along paths, FBDDs can be made canonical. However, there are severe
problems with the BDD-like types. The types are more general and finding good types is even more
difficult than finding good variable orderings. Furthermore the Boolean operations of restriction and
quantification only work for very restricted types that are similar to BDD-orderings. Graph-driven
BDDs [25] are closely related to FBDDs and have similar properties.

Indexed BDDs [16] extend OBDDs with layers of variables. The variables in each layer are ordered
but different layers may have different orderings. Thus indexed BDDs are not canonical and are as
expressive as branching programs. This makes it possible to represent, e.g., the multiplication function
efficiently (using sufficiently many layers). Indexed BDDs are a subclass of BEDs since BEDs make
no assumptions about the ordering or freeness of variables.

Finally, OBDDs have been extended to other domains and/or codomains than Booleans. Examples
include ∗BMDs [5], MTBDDs [7], and ADDs [2]. These extensions are orthogonal to the OBDD
extension presented here and we believe similar extensions are possible for BEDs.

1.3. Overview

The paper is organized as follows. Section 2 presents some basic complexity results relating BEDs to
Boolean circuits and OBDDs. Section 3 describes the basic representation and construction of BEDs.
Section 4 describes algorithms to efficiently manipulate BEDs, including two ways to construct an
OBDD from a BED, up one and up all. Section 5 presents an application of BEDs, demonstrating an
efficient equivalence check for two multiplier circuits. Finally, Section 6 summarizes the contributions
of this paper.
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2. COMPLEXITY RESULTS

BEDs are closely related to Boolean circuits [3]. Any circuit can be transformed to a BED by replacing
each input x with the BED representing x (a variable vertex v with var(v) = x , low(v) = 0, and
high(v) = 1) and replacing each k-input gate by a tree of k − 1 operator vertices encoding the Boolean
function of the gate. This translation is clearly linear in size. Similarly, any BED can be converted to
a circuit. Each variable occurring in the BED is an input to the circuit. An operator vertex is replaced
with the corresponding gate, and a variable vertex v is replaced with the subcircuit (¬x ∧ l ) ∨ (x ∧ h),
where x = var(v), l = low(v), and h = high(v). This translation is also linear.

Using this relationship we can transfer results on circuits to BEDs. For instance, it follows immediately
from the results on CIRCUIT-SAT that determining SATISFIABILITY of a BED is NP-complete and determining
TAUTOLOGY is co-NP-complete [11]. As another consequence, we observe that BEDs are exponentially
more succinct than OBDDs. An example of this is the multiplier function. Bryant [4] showed that for
all variable orderings, the multiplier function requires BDDs of exponential size. However, since there
are combinational circuits implementing this function using only a quadratic number of gates [8] (and
even less), there exists a BED of this size representing it.

Despite the exponential succinctness over BDDs, it is still the case that most functions require
exponentially sized BEDs. Recall that there are 22n

Boolean functions over n variables. It follows from
a counting argument that a polynomially sized BED can represent almost none of these functions:

THEOREM 3 (Lower bound on size). Let #n(s) be the number of different BEDs over n variables with
at most s vertices. Then for any polynomial p(n),

#n(p(n))

22n → 0 for n → ∞ .

Proof. A straightforward application of Theorem 2.4 in [3, p.763] using the linear transformation
to circuits. �

Fortunately, functions with exponentially sized BEDs do not seem to be of much interest in practice.
Even complicated Boolean functions, representing for instance floating-point division, have polynomi-
ally sized circuits. This is also witnessed by the fact that it is very difficult to construct explicit examples
of functions that provably require exponentially many gates. (The authors have been unable to find any
examples in the literature.)

Inspired by OBDDs, we define certain restrictions on the variables of BEDs:

DEFINITION 4. A BED is free if on all paths through the graph each variable occurs at most once; it
is ordered if on all paths the variables respect a given total order <.

We refer to a free BED as FBED and to an ordered BED as OBED. Observe that an (O)BDD is simply
an (O)BED without operators. A vertex u is an OBDD vertex if all paths from u only contain variable
vertices and they respect a given total order. From these definitions we get the following inclusions
among subclasses of BEDs:

OBDD ⊆ DAG of OBDDs ⊆ OBED ⊆ FBED ⊆ BED.

The class DAG of OBDDs represents BEDs that consist of a layer of operators on top of a layer
of OBDDs. Boolean circuits that are transformed into BEDs belong in this class (in this case, the
OBDDs are very simple, each consisting of a single variable). Furthermore, this class occurs in the
traditional synthesis of OBDDs, where the operators represent apply-calls. Since Boolean circuits can
be transformed into a DAG of OBDDs in linear time (and space) and a (general) BED can be transformed
into a Boolean circuit in linear time (and space), the last four classes are equally expressive. This is quite
unlike for OBDDs where there is an exponential gap between OBDDs and free BDDs and between free
BDDs and BDDs. Although the different classes of BEDs are equally expressive, the algorithms on
BEDs (to be presented in the following) can be optimized if the BEDs are known to belong to some of the
more specific classes. In Section 4, we describe two algorithms for transforming a (general) BED into an
OBDD and some optimizations of these algorithms for the classes OBEDs and FBEDs. The generality
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of these algorithms makes them useful, e.g., for making a free BDD ordered (i.e., transforming it to an
OBDD) or for reordering an OBDD.

3. REPRESENTATION OF BEDs

BED vertices are constructed using a single operation called mk. This operation ensures that the
BED is reduced and also performs several optimizations of the representation. Contrary to OBDDs,
reducedness will not make BEDs canonical (not even when combined with a fixed variable ordering.)

3.1. Reductions of BEDs

We shall forbid the existence of redundant vertices, i.e., two vertices representing isomorphic sub-
BEDs and vertices that are unnecessary for obvious reasons. For readability, we use α(v) to denote the
“tag” op(v) or var(v) on nonterminal vertices.

DEFINITION 5. A BED is reduced if it contains at most two different terminal vertices and for all
nonterminal vertices, u and v:

(i) low(u) = low(v), high(u) = high(v), and α(u) = α(v) ⇒ u = v,

(ii) low(u) �= high(u),

and for all operator vertices v:

(iii) low(v) and high(v) are nonterminals.

We shall assume that BEDs are always reduced. The first condition of Definition 5 is fulfilled by
proper reuse of vertices. This is conveniently taken care of during construction of a BED by testing,
whenever a new vertex is to be created, whether another vertex with the same variable–operator, low-
and high-sons exists. If this is the case, that vertex is reused; otherwise a new vertex is created. Similarly,
the second and third conditions are fulfilled by never constructing vertices that violate them. For variable
vertices, it is clear that if the low- and high-sons coincide, either one of them can be used instead of
creating a new variable vertex. For operator vertices, one should observe that if the two arguments are
identical, or one of them is a terminal vertex, all 16 Boolean connectives (shown in Table 1) reduce to
one of the following six: K 0, K 1 (constant 0/1), π1, π2 (projection onto first or second argument), π̄1,
π̄2 (the negation of the first or second argument). In the first two cases, one of the terminal vertices is

TABLE 1

The 16 Binary Boolean Operators and Their Associated Truth-Table

op(x, y)

op x
y

1
1

1
0

0
1

0
0 Name of Boolean function

0 K 0 0 0 0 0 Constant false
1 ∨̄ 0 0 0 1 Negated disjunction
2 �← 0 0 1 0 Negated left-implication
3 π̄1 0 0 1 1 Negation of first argument
4 �→ 0 1 0 0 Negated implication
5 π̄2 0 1 0 1 Negation of second argument
6 �↔ 0 1 1 0 Exclusive or
7 ∧̄ 0 1 1 1 Negated conjunction
8 ∧ 1 0 0 0 Conjunction
9 ↔ 1 0 0 1 Biimplication

10 π2 1 0 1 0 Projection on second argument
11 → 1 0 1 1 Implication
12 π1 1 1 0 0 Projection on first argument
13 ← 1 1 0 1 Left-implication
14 ∨ 1 1 1 0 Disjunction
15 K 1 1 1 1 1 Constant true
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used. The projections are avoided by using the proper low- or high-son instead. The negations require
the creation of a negating vertex, i.e., an operator vertex with the operator π̄1. Such a vertex can easily be
constructed so that it fulfills (ii) and (iii) by taking the redundant second argument to be any nonterminal
vertex different from the first. We shall assume the presence of a function

mk(α, l, h)

that performs all the checks above and returns the identity of the resulting vertex, equivalent to a vertex
u with α(u) = α, low(u) = l, high(u) = h. Using mk as the only means for constructing a BED ensures
that it is reduced. As shown by Bryant, reducedness ensures canonicity of OBDD vertices:

LEMMA 6 (Canonicity of OBDDs [4]). If u and v are OBDD vertices and f u = f v then u = v.

3.2. Operator Reductions

For operator vertices one can add more checks in order to reuse vertices, thereby reducing the
size of the BED. An immediate optimization is to extend mk to look for operator vertices that dif-
fer from the one wanted only by exchanging low and high, by a negation, or by a combination of
both.

Going a step further, considering two vertices at a time, we can eliminate all negations below binary
operators since for all binary operators op there exists another operator op′ with op′(x, y) = op(¬x, y).

Finally, taking the identity of vertices into account allows us to exploit equivalences such as the
absorption laws, e.g., x ∨ (x ∧ y) = x . There are 16n combinations of n binary Boolean operators; thus
it is feasible to tabulate them all for n up to three or four. Choosing n = 3 seems like a natural choice
since such a reduction table would include equivalences such as the distributive laws.

Another reason for choosing n = 3 is that it allows us to determine operator 2-cuts: Consider a BED
with the structure shown in Fig. 4(a); that is, for some vertex u, all paths from u to the terminals go
through either vertex w1 or w2. We call the set {w1, w2} a 2-cut. 2-cuts can be used to reduce the size
of the BED as shown in Fig. 4(b).

More formally, consider a BED represented by the graph (V, E). A path of length k from a vertex
u ∈ V to a vertex v ∈ V is a sequence 〈v0, v1, v2, . . . , vk〉 such that u = v0, v = vk , and (vi−1, vi ) ∈ E

for i = 1, 2, . . . , k. A path p from u to v is denoted by u
p� v.

DEFINITION 7 (2-cut). A set {w1, w2} ⊆ V is a 2-cut for vertex u ∈ V \{w1, w2} if any path p
from u to a terminal vertex v ∈ {0, 1} can be decomposed into two parts u

p1� w
p2� v such that

w ∈ {w1, w2}. A 2-cut is called an operator 2-cut if for all paths p, p1 only contains operator vertices.
The cut {low(u), high(u)} is called a trivial 2-cut for vertex u.

If the BED rooted at u has an operator 2-cut {w1, w2}, then there exists a binary Boolean operator op
such that

f u = f w1 op f w2 .

FIG. 4. A BED with an operator 2-cut {w1, w2}.
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FIG. 5. The data structures used to represent BEDs.

That is, all vertices from u to the 2-cut can be replaced with a single operator vertex v with α(v) = op
and low(v) = w1 and high(v) = w2. The BED can be constructed such that it contains no nontrivial
operator 2-cuts. The following lemma shows that a new operator vertex only will have nontrivial 2-cuts
among its children and grandchildren.

LEMMA 8. Let u ∈ V be an operator vertex and let l = low(u) and h = high(u) be the low- and
high-sons of u. If l and h only have trivial operator 2-cuts, then if u has any nontrivial operator 2-cut
{w1, w2}, it is a subset of {l, h, low(l), high(l), low(h), high(h)}.

Proof. By contradiction; assume u has a nontrivial operator 2-cut {w1, w2} which is not a subset of
{l, h, low(l), high(l), low(h), high(h)}.

Observe that either l or h is not in {w1, w2} (otherwise the 2-cut would be trivial). Assume without
loss of generality that l �∈ {w1, w2}. Since {w1, w2} is a 2-cut for u, every path from u to a terminal
vertex contains either w1 or w2 (or both). Any path from l to a terminal vertex also contains either
w1 or w2 since the path is a postfix of some path from u. Thus, {w1, w2} is an operator 2-cut for l
which cannot be trivial since, by assumption, {w1, w2} is not a subset of {l, low(l), high(l)}. This is a
contradiction. �

From this lemma it follows that nontrivial cuts only exist among the children and grandchildren of u.
A reduction table constructed with n = 3 makes it easy to find and eliminate all nontrivial 2-cuts when
constructing the BED.

3.3. Implementation Aspects

The data structures for representing BEDs, shown in Fig. 5, are very similar to those for BDDs. The
underlying graph of the BED is stored in a table G which to each vertex v associates a tag α(v) (special
tags are used for the terminal vertices), low(v), and high(v). Furthermore, G contains the field next(v)
which is used to implement chaining for resolving collisions in a hash table H . This hash table maps
triples of (α(v), low(v), high(v)) to v and thus implements an inverse of G used by mk. The total memory
requirements are five words per vertex. Using these data structures, it is not difficult to implement mk
as an expected constant time operation on a uniform RAM model [1].

4. OPERATIONS ON BEDs

The basic operation for constructing OBDDs, called apply, takes two OBDDs, l and h, and a Boolean
connective op and constructs a new OBDD representing the Boolean expression f l op f h . For BEDs,
constructing the representation for the Boolean expression f l op f h is simply a constant time call
to mk(op, l, h). However, other operations, like checking for tautology or satisfiability, are difficult
for BEDs but are constant time operations for OBDDs. Thus, an approach for implementing these
operations on BEDs is to convert the BEDs into OBDDs. Since an (O)BDD is simply an (O)BED
without operators, a strategy for converting BEDs into OBDDs is to gradually eliminate the operators,
keeping all the intermediate BEDs functionally equivalent. We shall show two very different ways of
elimination.
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up one(x, u) =
1: if (x, u) in M then return M(x, u)
2: else if u is a terminal then return u
3: else
4: (l, h) ← (up one(x, low(u)), up one(x, high(u)))

/∗ x can only occur in the roots of l and h ∗/

5: if α(l) and α(h) are both variable x then
6: r ← mk′(x,mk(α(u), low(l), low(h)),

mk(α(u), high(l), high(h)))
7: else if α(l) is variable x then
8: r ← mk′(x,mk(α(u), low(l), h),

mk(α(u), high(l), h))
9: else if α(h) is variable x then

10: r ← mk′(x,mk(α(u), l, low(h)),
mk(α(u), l, high(h)))

11: else
12: r ← mk(α(u), l, h)
13: insert ((x, u), r ) in M
14: return r

FIG. 6. The up one-operation. Up one takes any BED u (which could be ordered, free, or completely arbitrary) as argument
and returns an equivalent BED with x occurring at most at the root. The memorization table M must be initialized to empty prior
to the first call.

4.1. Construction of OBDDs with up one

The first elimination algorithm is based on the algorithm up one shown in Fig. 6. Up one pulls a
single variable up to the root by performing a recursive depth-first traversal of the BED and after the
recursive calls on the low- and high-sons of a vertex, it makes an up-step. Repeated calls to up one
for each variable move all variables up past the operators, which makes the operators disappear (by
requirement (iii) of reducedness). The function mk′(x, l, h) is a version of mk, which further checks for
duplicate variables. If any of l and h has x at the root, it is removed:

mk′(x, l, h) =




mk(x, low(l), high(h)) if α(l) = α(h) = x

mk(x, low(l), h) if α(l) = x, α(h) �= x

mk(x, l, high(h)) if α(l) �= x, α(h) = x

mk(x, l, h) if α(l) �= x, α(h) �= x

The table M is used to memorize previously computed results and ensures a linear expected runtime.
The introductory example was in fact a use of up one. As the example shows, in fortunate cases a

BED is converted into an OBDD after moving just a few variables up (in the example, one variable was
sufficient). In this process, identical sub-BEDs, potentially containing operator vertices, are identified.
This is quite unlike traditional OBDD construction where all operators are converted in depth-first order
into OBDDs. In particular, an OBDD is constructed for each subexpression. If the result is small and
the intermediate OBDDs are large, up one is an attractive alternative.

The following theorem characterizes key properties of up one. Let |u| denote the number of vertices
in the BED reachable from u:

|u| = |{v : u� v}| .

THEOREM 9 (Up one). Assume u is a vertex in a BED and let v = up one(x, u). The following
properties hold:

(i) f v = f u .

(ii) x does not occur below v.

(iii) |v| ≤ 2|u| − 1.
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(iv) If u is ordered ( free) then v is also ordered ( free).

(v) Up one can be implemented with expected running time O(n) with n = |u| on a uniform
RAM model using hashing.

Proof. We prove (i) by induction on the number of vertices below u. In the proof we ignore the
memorization table M , which speeds up the algorithm but does not influence its correctness provided
only correct values are inserted into it. The base case in line 2, when u is a terminal, clearly satisfies
f v = f u since v = u. For the induction step assume that

f l = f low(u) and f h = f high(u).

There are now four cases to consider, corresponding to the four branches. We consider only the first
case since the other three are similar (or simpler). We shall use the following properties of mk and mk′:

f mk(op,l,h) = f l op f h

f mk(x,l,h) = f mk′(x,l,h) = x → f h, f l .

From the assignment of r in line 6:

f r = x → f mk(α(u),high(l),high(h)), f mk(α(u),low(l),low(h))

= x → (
f high(l) α(u) f high(h)

)
,
(

f low(l) α(u) f low(h)
)

= (
x → f high(l), f low(l)

)
α(u)

(
x → f high(h), f low(h)

)

= f l α(u) f h

= f low(u) α(u) f high(u)

= f u .

The first two steps use the properties of mk′ and mk. The third step is an up-step. The fourth step uses
the semantics of variable vertices. The fifth step uses the induction hypothesis. The final step uses the
definition of the semantics of an operator node α(u). The proof is similar for a variable node.

Property (ii) is also proven by induction on the number of vertices below u. The base case is trivial and
in the induction step the four cases corresponding to the four branches follow directly by the induction
hypothesis (which states that x does not occur below l and h) and the definition of mk′.

For property (iii) observe that, due to the table M , the body of up one is executed at most once for
each node below u. Let |u|x be the number of vertices labeled with variable x below u:

|u|x = |{v : u� v and v is a variable vertex with var(v) = x }|.

Let n = |u| and nx = |u|x . There are n − nx vertices with a label different from x . We shall first count
only the new vertices with labels different from x that are being generated by the mk′ and mk calls
in up one. For each call to up one on vertices u with α(u) �= x , at most two new vertices with labels
different from x are generated (in lines 6, 8, 10, and 12). This gives a total of at most 2(n − nx ) new
vertices. From property (ii) it follows that in the result v at most one x-vertex can occur; i.e., the total
number of vertices reachable from v is

|v| ≤ 2(n − nx ) + 1 = 2n + 1 − 2nx .

For nx ≥ 1, we have that |v| ≤ 2n − 1. When nx = 0, all calls to up one will fall into the last branch
(line 12) and v = u; thus clearly |v| ≤ 2n − 1.

Property (iv) is also proven by an induction on the number of vertices below u. We prove that if u
is ordered the BED v is still ordered. The proof for freeness is similar. Assume that x1 < · · · < xn is
an ordering for u. If x = xi , the ordering for v is xi < x1 < · · · < xi−1 < xi+1 < · · · < xn . The
induction hypothesis for a vertex u is that up one(x, u) has the new ordering and that up one(x, u) does
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not contain variables that where not already present in u. The base case is trivial. For the induction step
we can assume from the induction hypothesis that l and h both have the new ordering. We consider only
the first of the four branches. The remaining three are similar or simpler. If α(u) is an operator, then
clearly r has the new ordering. If α(u) is a variable different from x , then α(u) must precede the variables
in low(u) and high(u) according to the old ordering. Therefore α(u) also precedes any variables of l
and h in the new ordering. If α(u) is the variable x , from the induction hypothesis, x also precedes the
variables below l and h. From property (ii), variable x can only occur at the root of l and h and thus mk′

ensures that x can only occur at the root of r .
For property (v) observe again that due to the table M the body of up one is executed at most once

on each node below u. Insertion and searching in M can be performed in expected constant time on a
uniform RAM model using hashing. Similarly, mk and mk′ can be performed in expected constant time
due to the hash table H . Thus, the expected running time for each call to up one is constant. This yields
an overall running time of O(n), where n = |u|. �

The analysis of up one above makes no assumptions about how the variables occur in the BED.
However, if the BED is known to be at least free (see Section 2), several optimizations can be performed.
Although these optimization do not improve on the bounds given in the theorem above, they reduce
the actual runtime of the algorithm. The first optimization is that mk′ can be replaced with the slightly
simpler mk. The second optimization is based on the observation that if u is a vertex with variable x , the
recursive calls in line 4 and the following tests can be omitted. This is done by adding the following line

2 1
2 : else if α(u) is variable x then return u

after line 2.
Up one is a very versatile algorithm. In Section 4.3 we show how up one is used to implement

substitution and existential quantification in BEDs. Here we show how it is used to transform an
arbitrary BED into an OBDD. Let x1 < · · · < xn be the variable ordering of the OBDD. The OBDD
with root v is constructed by calling up one for each variable in this ordering:

v ← up one(x1, up one(x2, . . . up one(xn, u) · · · )) .

These calls pull up the variables in reverse order; that is, first xn is pulled to the root, then xn−1 is pulled
up and so on. This is clearly inefficient since each variable has to pass through all the variables that
have already been pulled up.

A more efficient approach is to pull up the variables in order and instead of pulling a variable all
the way to the root each time, it is only pulled up until it reaches a variable which precedes it in the
ordering. This is done by modifying up one by adding the lines

4 1
3 : if α(u) is a variable with var(u) < x then r ← mk(α(u), l, h)

4 2
3 : else

after line 4. Let up one′ be this modified version of up one. Then we construct the OBDD by

v ← up one′(xn, up one′(xn−1, . . . up one′(x1, u) · · · )) .

The runtime of this computation is exponential in the worst case, even though up one has linear runtime
and it is called only n times. However, since BEDs are provably exponentially more succinct than
OBDDs, any transformation algorithm will have exponential worst-case behavior.

4.2. Construction of OBDDs with up all

The second elimination algorithm, up all, is a generalization of Bryant’s apply-operator, shown in
Fig. 7. Construction of OBDDs from a Boolean expression using recursive calls of apply suggests a
bottom up conversion of BEDs into OBDDs. The up all algorithm does that by moving all variables
up as a block past the operator vertices. Up all is shown in Fig. 8. As when building an OBDD using
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apply(op, l, h) =
if (l, h) in M then return M(l, h)
else if l and h are terminals then

r ← op(value(l), value(h))
else if var(l) = var(h) then

r ← mk(var(l), apply(op, low(l), low(h)),
apply(op, high(l), high(h)))

else if var(l) < var(h) then
r ← mk(var(l), apply(op, low(l), h),

apply(op, high(l), h))
else var(l) > var(h) :

r ← mk(var(h), apply(op, l, low(h)),
apply(op, l, high(h)))

insert ((l, h), r ) in M
return r

FIG. 7. The apply-operation. Assumes l and h are OBDDs. The imposed total order on the variable vertices is denoted <.
In the code it is assumed that terminal vertices are included at the end of this order when comparing var(l) and var(h). The
memorization table M must be initialized to empty prior to the first call.

apply, up all requires that a total ordering < of the variables is selected prior to the OBDD construction.
Based on the ordering up all converts any BED into an OBDD. Key properties of up all are:

THEOREM 10 (Up all). Assume u is a vertex in a BED and x1 < · · · < xn is an ordering of the
variables, and let v = up all(u). The following properties hold:

(i) f v = f u .

(ii) v is an OBDD.

(iii) If l and h are OBDDs, then apply(op, l, h) = up all(mk(op, l, h)).

(iv) If l and h are OBDDs, the running time of up all(op, l, h) is expected O(|l||h|) on a uniform
RAM model using hashing.

up all(u) =
1: if u in M then return M(u)
2: else if u is a terminal then return u
3: else
4: (l, h) ← (up all(low(u)), up all(high(u)))

/∗ l and h are OBDDs ∗/

5: if l and h are terminal vertices then
6: r ← mk(α(u), l, h)
7: else if α(u) is a variable x with x ≤ var(l) and x ≤ var(h) then
8: r ← mk′(x, l, h)
9: else if var(l) = var(h) then

10: r ← mk(var(l), up all(mk(α(u), low(l), low(h))),
up all(mk(α(u), high(l), high(h))))

11: else if var(l) < var(h) then
12: r ← mk(var(l), up all(mk(α(u), low(l), h)),

up all(mk(α(u), high(l), h)))
13: else var(l) > var(h) :
14: r ← mk(var(h),up all(mk(α(u), l, low(h))),

up all(mk(α(u), l, high(h))))
15: insert (u, r ) in M
16: return r

FIG. 8. The up all-operation on a BED u. The total order < is defined as for apply (see Fig. 7). The memorization table M
must be initialized to empty prior to the first call.
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Proof. Let |u|¬ OBDD be the number of vertices below u that are not OBDD vertices according to
the given ordering:

|u|¬ OBDD = |{v : u� v and v is not an OBDD vertex}.

Properties (i) and (ii) are proven simultaneously by well-founded induction on the lexicographical
ordering ≺ of the measure

(|u|¬ OBDD, |u|).

As in the proof of Theorem 9 we ignore the memorization table M . The induction hypothesis is that
f w = f up-all(w) and up all(w) is an OBDD for all vertices w with w ≺ u. The base case, when u is a
terminal, clearly fulfills properties (i) and (ii). For the induction step, we first argue that low(u) ≺ u and
high(u) ≺ u. If u is already an OBDD with the given variable ordering, low(u) is also an OBDD with the
given ordering, and the first part of the measure is zero for both low(u) and high(u). However, the sizes
of both low(u) and high(u) are less than u and thus low(u) ≺ u and high(u) ≺ u. If u is not an OBDD
with the given variable ordering, then low(u) and high(u) contain at least one non-OBDD vertex less
than u, showing that low(u) ≺ u and high(u) ≺ u.

This allows us to use the induction hypothesis to conclude that f l = f low(u) and f h = f high(u) and that
l and h are OBDDs. If l and h are both terminals, the if-branch in line 5 is chosen and properties (i) and
(ii) clearly hold for r . If α(u) is a variable x smaller than the variables in l and h, the if-branch in line 7
is chosen and r fulfills (i) and (ii) using the fact that mk′ will remove duplicate occurrences of x .

For the remaining three if-branches, we first argue that the arguments of the recursive calls are before
u in the order ≺. We consider only the first of the three branches since the remaining two are similar.
The argument of the first recursive call in line 10 is

w = mk(α(u), low(l), low(h));

thus we must show that w ≺ u. Since l and h are OBDDs, the number of non-OBDDs vertices in w

is at most one; i.e., |w|¬ OBDD ≤ 1. If we reach this if-branch, α(u) is either a variable larger than l
and h or u is an operator vertex. Therefore, u cannot be an OBDD-vertex and |u|¬ OBDD ≥ 1. Thus,
either the measure decreases in its first component, i.e., |w|¬ OBDD < |u|¬ OBDD, or it is the case that
|u|¬ OBDD = |w|¬ OBDD = 1. In the first case we immediately have that w ≺ u. In the second case, u
contains only one non-OBDD vertex and this must be in the root, i.e., u. Therefore low(u) and high(u)
are already OBDDs with the given variable ordering. The canonicity of OBDDs together with the fact
that f l = f low(u) implies that l = low(u) and similarly h = high(u). The size of w is therefore strictly
less than that of u and w ≺ u.

A similar argument allows us to conclude that the measure is also decreasing in the second recursive
call. We can then rewrite from the definition of r and use the induction hypothesis and the semantics
of mk to obtain the following equivalences (assuming α(u) is an operator, the steps are similar for a
variable):

f r = var(l) → f mk(α(u),high(l),high(h)), f mk(α(u),low(l),low(h))

= var(l) → (
f high(l) α(u) f high(h)

)
,
(

f low(l) α(u) f low(h)
)

= (
var(l) → f high(l), f low(l)

)
α(u)

(
var(l) → f high(h), f low(h)

)

= f l α(u) f h

= f low(u) α(u) f high(u)

= f u .

This completes the proof of properties (i) and (ii).
Property (iii) is shown by induction on the size of |u| using the induction hypothesis apply(α(u),

low(u), high(u)) = up all(u) where α(u) is an operator and low(u) and high(u) are OBDDs. From (ii)
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and the canonicity of OBDDs, it follows that up all(u) = u if u is an OBDD. Thus, the calls to up all
in line 4 just return the arguments; i.e., l = low(u) and h = high(u). When α(u) is an operator, the
if-branch in line 7 is never taken and it is then clear how the four cases of apply correspond exactly to
the remaining four cases of up all.

Property (iv) is shown by bounding the number of elements inserted into M . By induction one can
show that for all pairs (w, r ) inserted in M , one of the following two cases hold:

• r = w and either low(u)� w or high(u)� w, or

• w is an operator vertex with op(w) = α(u), low(u)� low(w), and high(u)� high(w).

Thus, the number of elements in M is bound by |low(u)| + |high(u)| + |low(u)||high(u)| and since the
body of up all takes constant time, the total runtime is O(|low(u)||high(u)|). �

The worst-case runtime of up all is exponential in |u|. For the same reason as up one, this is optimal.
As presented above, up all makes no assumptions about how the variables occur in the BED. However,

up all can be optimized for several special cases:

Free BEDs: The call to mk′ can be replaced by mk in line 8.

Ordered BEDs: The condition of the if-statement in line 7 can be simplified to

7’: if α(u) is a variable x then

since x < var(l) and x < var(h) in an ordered BED.

DAG of OBDDs: The condition of the if-statement in line 2 can be relaxed to

2’: if u is a terminal or α(u) is a variable then return u

since if α(u) is a variable, u is an OBDD.

An operator on OBDDs: If u is an operator vertex such that low(u) and high(u) are OBDDs,
line 4 can be replaced with (l, h) ← (low(u), high(u)) since up all(w) = w when w is an OBDD.
Furthermore, the test in line 7 is always false; thus in this case there is a one-to-one correspondence
between up all and apply. The number of calls to mk on variables generated by up all(mk(op, l, h)) is
exactly the same as for apply(op, l, h), and the number of calls to mk on operators is the same as the
number of calls to apply(op, l, h).

Up one and up all are significantly different strategies for building an OBDD. Figure 9 illustrates
how the operator vertices are converted into variable vertices by the two algorithms.

4.3. Further BED Operations

Two commonly used Boolean operations are substitution and existential quantification. Substitution
replaces all occurrences of a variable x with a Boolean function f . The simplest way to perform

FIG. 9. Converting a BED to an OBDD. To the left, using up one repeatedly, to the right, during an up all call. Gray areas
represent variables and white areas represent operators.
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FIG. 10. (a) Elimination of substitution vertex. (b) Elimination of existential quantification vertex.

substitution on a BED rooted at v is the following. First perform a call to up one:

w ← up one(x, v).

From Theorem 9 we know that low(w) and high(w) do not contain any occurrences of variable x . If w

is not the variable x , then x is not in the BED rooted at w and the result is w. Otherwise, var(w) = x
and the result is the BED for

(u ∧ high(w)) ∨ (¬u ∧ low(w)),

where u is the root of the BED representing f . This expression follows immediately from the definition
of a variable vertex.

Existential quantification of the variable x can also be implemented using up one. Again we call
up one obtaining w and if w does not contain x the result is w. Otherwise, the result is low(w)∨high(w)
since ∃x .x → f, g = f ∨ g. For both operations, the complexity is determined by up one which is
linear in the size of the BED.

An alternative way to implement substitution and existential quantification is to consider them special
operator vertices in the BED; see Fig. 10. The up-step from Fig. 2 is exactly the same for these new
operator vertices, except in the case where the variable below the operator is the variable x . In those
cases, the special operator vertex is replaced with the sub-BED shown in Fig. 10. These eliminations
can easily be performed by adding reduction rules to mk. The substitution and existential quantification
operators can be eliminated like any other operator in the BED by pulling the variables up past the
operators. An operator is eliminated either when it meets a corresponding variable or when it reaches
terminal vertices.

One need not immediately eliminate these newly added operator vertices. Keeping them in the BED
allows efficient reuse of subexpressions. Consider the BED in Fig. 11. If the vertices v and v′ are
identified at some point in the manipulations, the biimplication is proven immediately, without actually
performing the substitution.

Other standard BDD operations include restriction x := b, where b is a Boolean constant. Clearly,
restriction is a special case of substitution with f equal to either true or false. Notice that all the
operations described in this section have linear running times which is better than the corresponding
OBDD operations. Other operations, like finding a satisfying truth-assignment, can be performed by
constructing an OBDD using up all and performing the operation on the OBDD. Since up all never has

FIG. 11. A BED containing substitution operators. The low-edge points to the expression in which x is to be substituted with
f u , pointed to by the high-edge.
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TABLE 2

Experimental Results for Verifying Equivalence of the Redundant and Nonredundant Circuits in the ISCAS 85 Benchmark
with and without Performing Operator Reductions

Up one Up all

Circuit Reductions [s] No reductions [s] Reductions [s] No reductions [s]

c432, c432nr 2.5 2.9 2.1 2.5
c499, c499nr 5.2 166.1 2.4 2.5
c499, c1355 1.6 532.5 1.6 3.9
c1355, c1355nr 5.3 743.5 2.6 4.1
c1908, c1908nr 1.0 — 1.0 1.0
c2670, c2670nr 1.4 — 1.0 1.4
c3540, c3540nr 16.9 111.7 17.0 56.9
c5315, c5315nr 17.8 — 3.1 3.5
c6288, c6288nr 2.0 — — —
c7552, c7552nr 4.6 7.4 2.6 3.1

Note. All runtimes are in seconds and measured on a 300 MHz Pentium II PC running Linux with a memory limit of 32 MB.

a worse running time than apply, the total running time for these operations is no worse than if they are
performed directly on an OBDD.

5. AN APPLICATION OF BEDs

Tautology checking of a BED is an application where the end-result as an OBDD is known to be
small (the terminal vertex 1) if the BED indeed is a tautology. An example of this is the combina-
tional logic-level equivalence problem which is to determine whether two given combinational circuits
implement the same Boolean function. By combining the two circuits into one using biimplications,
it becomes an instance of the tautology problem. We have carried out a detailed investigation of the
application of BEDs to the verification of combinational circuits, including experiments on more than
250 circuits with up to 100k gates [15]. In summary, the BEDs either outperform or achieve results
comparable to any other published technique including those specifically developed for the equivalence
problem.

When using up one or up all an ordering of the variables must be selected. Since up one works quite
differently than up all, the variable ordering heuristics developed for OBDDs may not be effective
when using up one. However, our experiments show that this is not so; a good OBDD variable order
also keeps the intermediate BEDs small when constructing an OBDD with up one. Among the many
published ordering heuristics, the FANIN heuristic [19] and the DEPTH FANOUT heuristic [20] have turned
out to perform particularly well on BEDs.

To demonstrate the efficiency of BEDs, we consider two implementations of a 16-bit multiplier (c6288
and c6288nr from the ISCAS-85 benchmarks). Checking whether these two versions implement the
same functionality corresponds to a tautology check for each pair of outputs. A BED is built directly
from the circuit netlist as explained in Section 2. The circuits c6288 and c6288nr contain 2416 and
2399 gates, respectively, and the resulting reduced BED contains 3478 vertices. All 32 outputs are
verified using up one in 2.0 CPU seconds on a standard PC.

This example was chosen since multipliers are notoriously difficult to verify using OBDDs [4]. Due
to the exponential growth of the size of the OBDD representation (in the number of operand bits),
the straightforward approach of building and comparing the OBDD for the two circuits c6288 and
c6288nr is infeasible. The OBDD representation of a 16-bit multiplier uses more than 40 million
vertices [27] and this number is approximately 2.7 times larger for each additional bit in the operands
[22]. With up one the verification takes 2 s, which clearly demonstrates the effectiveness of up one.

To investigate the effect of operator reductions, we have carried out a series of experiments on the
ISCAS 85 benchmark.3 The equivalence of the circuits was verified using up one and up all with and

3 Available from The Collaborative Benchmarking Laboratory (http://www.cbl.ncsu.edu/).
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TABLE 3

Verifying Equivalence of Hierarchically Specified n-Bits Multipliers

n Ops Subst Ntotal CPU [s]

32 6505 8192 26665 1.6
64 9827 40960 75070 3.1

128 16447 172032 270275 8.6
256 29783 696320 1.05 · 106 29.5
512 56401 2793472 4.19 · 106 119

1024 109643 11192080 14.3 · 106 408

Note. ‘Ops’ is the number of ordinary operator vertices in the BED specification, ‘Subst’ is the number
of substitution vertices, and Ntotal is the total number of vertices used.

without performing any of the operator reductions described in Section 3.2. (The reductions needed to
maintain reducedness, see Definition 5, are applied in all experiments.) The operation of up all then
reduces to that of apply; that is, the performance of up all corresponds very closely to that of apply in
a reasonable implementation of an OBDD package.

The results are shown in Table 2. Clearly, the efficiency of up one relies heavily on the operator
reductions to identify identical nodes in the BED and thus avoid transforming them into OBDDs.
Without reductions, a large number of the circuits cannot be verified (with 32 MB of memory) and the
runtimes for those that do succeed are up to several orders of magnitude longer.

When using up all the situation is quite different. In building an OBDD using up all, any vertex that
is constructed during the transformation will have nonoperator vertices as the children. I.e., whenever
mk(α, l, h) is called in the body of up all, both l and h are variable or terminal vertices. Thus, the
operator reductions only affect the performance of up all by reducing the initial size of the BED. For
some circuits (e.g., c3540) this initial reduction has a large impact on the runtime of up all. On the
other hand, the time to perform a table lookup is saved for each BED vertex that is created when no
operator reductions are used. Thus the runtimes for some of the circuits do not improve.

Substitution operators can be used to represent a circuit hierarchy. Consider a circuit with two
instances of a subcircuit cell; see Fig. 12(a). Instead of flattening the hierarchy, the two instances of
cell are represented in the BED data structure using substitutions; see Fig. 12(b). This information can
greatly improve the performance when verifying equivalence of large hierarchical circuits.

We illustrate this by verifying equivalence between two implementations of n-bit multipliers. A
combinational n-bit multiplier can be constructed using four n/2-bit multipliers. The four multipliers
each compute partial products which are shifted and added to form the result. In this way we build two
versions of hierarchically specified n-bit multipliers based on the 16-bit multipliers c6288 and c6288nr.
Table 3 shows the results of our experiments. The BED representing two hierarchically specified 1024-
bit multipliers contains 11.3 million vertices (requiring approximately 226 MB of memory), yet the
equivalence can be established in only 7 CPU minutes.

FIG. 12. (a) Two instances of a sub-circuit cell. (b) Representing the same circuit using substitutions.
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6. CONCLUSION

We have presented a new data structure called Boolean expression diagram for representing and ma-
nipulating Boolean expressions. BEDs are as succinct as Boolean circuits. Properties such as TAUTOLOGY

and SATISFIABILITY are determined by transforming the BED representation into a reduced ordered BDD.
This can typically be done efficiently by using one of the two algorithms up one or up all although, of
course, the worst-case behavior is exponential. As shown in Theorem 10, the cost of constructing an
OBDD from scratch using apply and the cost of building a BED and transforming it into an OBDD using
up all are within a constant factor. In fact, recent research [14] has shown that an algorithm similar to
up all is a highly efficient approach to the construction of OBDDs; it uses considerably less memory
and no more time than when the OBDD is constructed with apply.

Up one is a new way to construct an OBDD which can exploit structural similarities between sub-
expressions. For some applications up one is highly efficient, for example as demonstrated by proving
the identity of two 16-bit multipliers (c6288 and c6288nr from the ISCAS 85 benchmarks) in 2 s.
Up one is also the basis for other operations such as existential quantification and substitution, making
the running times of these operations linear in the size of the BED.

BEDs are particularly useful when the end result is expected to have a small OBDD representation,
e.g., for tautology checks. Another area that may benefit from using the BED representation is in sym-
bolic model checking. Several researchers have observed that when performing fixed-point iterations
using OBDDs, the intermediate results are often much larger than the final result. Clearly, the succinct-
ness of BEDs compared to BDDs can alleviate this problem. This is possible because all operations
used in performing the fixed-point computation can be performed directly on the BED without first
expanding it to an OBDD. In fact, some of the tricks researchers have used to make OBDDs more
efficient are embodied in BEDs. For example, Burch et al. [6] demonstrated that the complexity of
BDD-based symbolic verification is drastically reduced by using a partitioned transition relation where
the transition relation is represented as an implicit conjunction of OBDDs. This corresponds to repre-
senting the transition relation as a BED with conjunction vertices at the top level and only lifting the
variables up to just under these vertices.

BEDs can be seen as an intermediate form between circuits and the highly structured OBDDs. In
this paper we have focused on ways to obtain an OBDD from the BED description. However, there
seems to be an unexploited potential for manipulating the BEDs directly, without necessarily converting
them to OBDDs. For example, it seems plausible that ideas from theorem proving can be transferred to
BEDs; the reduction of operator vertices described in Section 3.2 is only a first step in this direction.
An indication of the benefits is given by the recent work on generation of BDDs for fault trees which
has shown that initial rewritings more powerful than the operator reductions allow for the generation of
BDDs for fault trees of larger complexity than possible without the rewrites [21].
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