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Abstract

This is the first in a series of papers devoted to an analogue of the metaplectic

representation, namely the minimal unitary representation of an indefinite orthogonal group;

this representation corresponds to the minimal nilpotent coadjoint orbit in the philosophy of

Kirillov–Kostant. We begin by applying methods from conformal geometry of pseudo-

Riemannian manifolds to a general construction of an infinite-dimensional representation of

the conformal group on the solution space of the Yamabe equation. By functoriality of the

constructions, we obtain different models of the unitary representation, as well as giving new

proofs of unitarity and irreducibility. The results in this paper play a basic role in the

subsequent papers, where we give explicit branching formulae, and prove unitarization in the

various models.
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1. Introduction

1.0. This is the first in a series of papers devoted to a study of the so-called minimal
representation of the semisimple Lie group G ¼ Oðp; qÞ: We have taken the point of
view that a rather complete treatment of this representation and its various
realizations can be done in a self-contained way; also, such a study involves many
different tools from other parts of mathematics, such as differential geometry
(conformal geometry and pseudo-Riemannian geometry), analysis of solution spaces
of ultrahyperbolic differential equations, Sobolev spaces, special functions such as
hypergeometric functions of two variables, Bessel functions, analysis on semisimple
symmetric spaces, and Dolbeault cohomology groups. Furthermore, the representa-
tion theory yields new results back to these areas, so we feel it is worthwhile to
illustrate such an interaction in as elementary a way as possible. The sequel (Part II)
to the present paper contains Sections 4–9, and we shall also refer to these here.
Part III is of more independent nature.

Working on a single unitary representation we essentially want to analyze it by
understanding its restrictions to natural subgroups, and to calculate intertwining
operators between the various models—all done very explicitly. We are in a sense
studying the symmetries of the representation space by breaking the large symmetry
present originally with the group G by passing to a subgroup. Geometrically the
restriction is from the conformal group G to the subgroup of isometries H;
where different geometries (all locally conformally equivalent) correspond
to different choices of H: Changing H will give rise to radically different
models of the representation, and at the same time allow calculating the spectrum
of H:

Thus, the overall aim is to elucidate as many aspects as possible of a distinguished
unitary irreducible representation of Oðp; qÞ; including its explicit branching laws to
natural subgroups and its explicit inner product on each geometric model. Our
approach is also useful in understanding the relation between the representation and
a certain coadjoint orbit, namely the minimal one, in the dual of the Lie algebra. In
order to give a good view of the perspective in our papers, we are giving below a
rather careful introduction to all these aspects.

For a semisimple Lie group G a particularly interesting unitary irreducible
representation, sometimes called the minimal representation, is the one correspond-
ing via ‘‘geometric quantization’’ to the minimal nilpotent coadjoint orbit. It is still a
little mysterious in the present status of the classification problem of the unitary dual
of semisimple Lie groups. In recent years several authors have considered the
minimal representation, and provided many new results, in particular, Kostant,
Torasso, Brylinski, Li, Binegar, Zierau, and Sahi, mostly by algebraic methods
[2–5,11,12,29,32]. For the double cover of the symplectic group, this is the
metaplectic representation, introduced many years ago by Segal, Shale, and Weil.
The explicit treatment of the metaplectic representation requires various methods
from analysis and geometry, in addition to the algebraic methods; and it is our aim
in a series of papers to present for the case of G ¼ Oðp; qÞ the aspects pertaining to
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branching laws. From an algebraic view point of representation theory, our
representations $p;q are:

(i) minimal representations if p þ qX8 (i.e. the annihilator is the Joseph ideal);
(ii) not spherical if paq (i.e. no non-zero K-fixed vector);
(iii) not highest weight modules of SO0ðp; qÞ if p; qX3:

Apparently our case provides examples of new phenomena in representation theory,
and we think that several aspects of our study can be applied to other cases as well.
The metaplectic representation has had many applications in representation theory
and in number theory. A particularly useful concept has been Howe’s idea of dual
pairs, where one considers a mutually centralizing pair of subgroups in the
metaplectic group and the corresponding restriction of the metaplectic representa-
tion. In Part II of our papers, we shall initiate a similar study of explicit branching
laws for other groups and representations analogous to the classical case of Howe.
Several such new examples of dual pairs have been studied in recent years, mainly by
algebraic techniques. Our case of the real orthogonal group presents a combination
of abstract representation theory and concrete analysis using methods from
conformal differential geometry. Thus, we can relate the branching law to a study
of the Yamabe operator and its spectrum in locally conformally equivalent
manifolds; furthermore, we can prove the existence of and construct explicitly an
infinite discrete spectrum in the case where both factors in the dual pair are non-
compact.

The methods we use are further motivated by the theory of spherical harmonics,
extending analysis on the sphere to analysis on hyperboloids [13,30], and at the same
time using elliptic methods in the sense of analysis on complex quadrics and the
theory of Zuckerman–Vogan’s derived functor modules and their Dolbeault
cohomological realizations [31,34,36,38]. Also important are general results on
discrete decomposability of representations and explicit knowledge of branching
laws [14,17–19].

It is noteworthy, that as we have indicated, this representation and its theory of
generalized Howe correspondence, illustrates several interesting aspects of modern
representation theory. Thus, we have tried to be rather complete in our treatment of
the various models of the representations occurring in the branching law. See for
example Fact 5.4, where we give three realizations: derived functor modules or
Dolbeault cohomology groups, eigenspaces on semisimple symmetric spaces, and
quotients of generalized principal series, of the representations attached to minimal
elliptic orbits.

Most of the results of Parts I and II were announced in [22], and the branching law
in the discretely decomposable case (Theorem 7.1) was obtained in 1991, from which
our study grew out. We have here given the proofs of the branching laws for the
minimal unipotent representation and postpone the detailed treatment of the
corresponding classical orbit picture as announced in [22] to another paper. Also, the
branching laws for the representations associated to minimal elliptic orbits will
appear in another paper by one of the authors [21].
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It is possible that a part of our results could be obtained by using sophisticated
results from the theory of dual pairs in the metaplectic group, for example the see–
saw rule (for which one may let our representation correspond to the trivial
representation of one SLð2;RÞ member of the dual pair [11,12]. We emphasize,
however, that our approach is quite explicit and has the following advantages:

(a) It is not only an abstract representation theory but also attempts new
interaction of the minimal representation with analysis on manifolds. For example,
in Part II we use in an elementary way conformal differential geometry and the
functorial properties of the Yamabe operator to construct the minimal representa-
tion and the branching law in a way which seems promising for other cases as well;
each irreducible constituent is explicitly constructed by using explicit intertwining
operators via local conformal diffeomorphisms between spheres and hyperboloids.

(b) For the explicit intertwining operators we obtain Parseval–Plancherel-type
theorems, i.e. explicit L2 versions of the branching law and the generalized Howe
correspondence. This also gives a good perspective on the continuous spectrum, in
particular yielding a natural conjecture for the complete Plancherel formula.

A special case of our branching law illustrates the physical situation of the
conformal group of space–time Oð2; qÞ; here the minimal representation may be
interpreted either as the mass-zero spin-zero wave equation, or as the bound states of
the Hydrogen atom (in q � 1 space dimensions). Studying the branching law means
breaking the symmetry by for example restricting to the isometry group of De Sitter
space Oð2; q � 1Þ or anti De Sitter space Oð1; qÞ: In this way the original system
(particle) breaks up into constituents with less symmetry.

In Part III, we shall realize the same representation on a space of solutions of the
ultrahyperbolic equation &Rp�1;q�1f ¼ 0 on Rp�1;q�1; and give an intrinsic inner
product as an integration over a non-characteristic hypersurface.

Completing our discussion of different models of the minimal representation, we
find yet another explicit intertwining operator, this time to an L2-space of functions
on a hypersurface (a cone) in the nilradical of a maximal parabolic P in G: We find
the K-finite functions in the case of p þ q even in terms of modified Bessel functions.
Integration formulae involving various special functions naturally appear in our
analysis on the minimal representation [6–8]. We remark that Vogan pointed out a
long-time ago that there is no minimal representation of Oðp; qÞ if p þ q48 is odd
[33]. On the other hand, we have found a new interesting phenomenon that in the
case p þ q is odd there still exists a geometric model of a ‘‘minimal representation’’ of
oðp; qÞ with a natural inner product (see Part III). Of course, such a representation
does not have non-zero K-finite vectors for p þ q odd, but have K 0-finite vectors for
smaller K 0: What we construct in this case is an element of the category of ðg;PÞ
modules in the sense that it globalizes to P (but not K); we feel this concept perhaps
plays a role for other cases of the orbit method as well.

In summary, we give a geometric and intrinsic model of the minimal
representation $p;q (not coming from the construction of $p;q by the y-
correspondence) on Sp�1 � Sq�1 and on various pseudo-Riemannian manifolds
which are conformally equivalent, using the functorial properties of the Yamabe
operator, a key element in conformal differential geometry. The branching law for
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$p;q gives at the same time new perspectives on conformal geometry, and relates
analysis on hyperboloids to that of minimal representations, with new phenomena in
both areas. The main interest in this special case of a small unitary representation is
not only to obtain the formulae, but also to investigate the geometric and analytic
methods, which provide new ideas in representation theory.

Leaving the general remarks, let us now for the rest of this introduction be a little
more specific about the contents of the present paper.

1.1. Let G be a reductive Lie group, and G0 a reductive subgroup of G: We denote by

Ĝ the unitary dual of G; the equivalence classes of irreducible unitary representations

of G: Likewise bG0G0 for G0: If pAĜ; then the restriction pjG0 is not necessarily

irreducible. By a branching law, we mean an explicit irreducible decomposition
formula:

pjG0C
Z "bG0G0

mpðtÞt dmðtÞ ðdirect integralÞ; ð1:1:1Þ

where mpðtÞAN,fNg and dm is a Borel measure on bG0G0:

1.2. We denote by g0 the Lie algebra of G: The orbit method due to Kirillov–Kostant

in the unitary representation theory of Lie groups indicates that the coadjoint
representation Ad� : G-GLðg�0Þ often has a surprising intimate relation with the

unitary dual Ĝ: It works perfectly for simply connected nilpotent Lie groups. For
real reductive Lie groups G; known examples suggest that the set of coadjoint orbitsffiffiffiffiffiffiffi
�1

p
g�0=G (with certain integral conditions) still gives a fairly good approximation of

the unitary dual Ĝ:

1.3. Here is a rough sketch of a unitary representation pl of G; attached to an elliptic

element lA
ffiffiffiffiffiffiffi
�1

p
g�0: The elliptic coadjoint orbit Ol ¼ Ad�ðGÞl carries a G-invariant

complex structure, and one can define a G-equivariant holomorphic line bundlefLlLl :¼ Ll#ð4topT�OlÞ
1
2 over Ol; if l satisfies some integral condition. Then, we

have a Fréchet representation of G on the Dolbeault cohomology group

HS
%@
ðOl; fLlLlÞ; where S :¼ dimC Ad�ðKÞl (see [38] for details), and of which a unique

dense subspace we can define a unitary representation pl of G [35] if l satisfies
certain positivity. The unitary representation pl is irreducible and non-zero if l is
sufficiently regular. The underlying ðg;KÞ-module is the so-called ‘‘AqðlÞ’’ in the

sense of Zuckerman–Vogan after certain r-shift [34,36,37].
In general, decomposition (1.1.1) contains both discrete and continuous spectrum.

The condition for the discrete decomposition (without continuous spectrum) has
been studied in [14,17–19], especially for pl attached to elliptic orbits Ol: It is likely

that if pAĜ is ‘‘attached to’’ a nilpotent orbit, which is contained in the limit set of
Ol; then the discrete decomposability of pjG0 should be inherited from that of the

elliptic case pljG0 : We shall see in Theorem 4.2 that this is the case in our situation.
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1.4. There have been a number of attempts to construct representations attached to
nilpotent orbits. Among all, the Segal–Shale–Weil representation (or the oscillator

representation) of fSpSpðn;RÞ; for which we write *$; has been best studied, which is
supposed to be attached to the minimal nilpotent orbit of spðn;RÞ: The restriction of

*$ to a reductive dual pair G0 ¼ G0
1G0

2 gives Howe’s correspondence [10].

The group fSpSpðn;RÞ is a split group of type Cn; and analogously to *$; Kostant
constructed a minimal representation of SOðn; nÞ; a split group of type Dn: Then
Binegar–Zierau generalized it for SOðp; qÞ with p þ qA2N: This representation
(precisely, of Oðp; qÞ; see Section 3) will be denoted by $p;q:

1.5. Let G0 :¼ G0
1G0

2 ¼ Oðp0; q0Þ �Oðp00; q00Þ; ðp0 þ p00 ¼ p; q0 þ q00 ¼ qÞ; be a subgroup

of G ¼ Oðp; qÞ: Our object of study in Part II will be the branching law $p;qjG0 : We

note that G0
1 and G0

2 form a mutually centralizing pair of subgroups in G:
It is interesting to compare the feature of the following two cases:

(i) the restriction *$ jG0
1
G0

2
(the Segal–Shale–Weil representation for type Cn),

(ii) the restriction $p;qjG0
1
G0

2
(the Kostant–Binegar–Zierau representation for

type Dn).

The reductive dual pair ðG;G0Þ ¼ ðG;G0
1G0

2Þ is of the #-type in (i), that is, induced

from GLðVÞ � GLðWÞ-GLðV#WÞ; is of the "-type in (ii), that is, induced from
GLðVÞ �GLðWÞ-GLðV"WÞ: On the other hand, both of the restrictions in (i)
and (ii) are discretely decomposable in the sense of [14,17–19] if one factor G0

2 is

compact. Furthermore, the resulting branching laws are multiplicity free. (See
[10,16,20] for general theory.) On the other hand, *$ is (essentially) a highest weight
module in (i), while $p;q is not if p; q42 in (ii).

1.6. Let p þ qA2N; p; qX2; and ðp; qÞað2; 2Þ: In this section we state the main
results of the present paper and the sequels (mainly Part II; an introduction of Part
III will be given separately in [24]). The first Theorem A (Theorem 2.5) says that
there is a general way of constructing representations of a conformal group by
twisted pull-backs (see Section 2 for notation). It is the main tool to give different
models of our representation.

Theorem A. Suppose that a group G acts conformally on a pseudo-Riemannian

manifold M of dimension n:

(1) Then, the Yamabe operator (see (2.2.1) for the definition)

*DM : CNðMÞ-CNðMÞ

is an intertwining operator from $ n�2
2

to $ nþ2
2

(see (2.5.1) for the definition of $l).

(2) The kernel Ker *DM is a subrepresentation of G through $ n�2
2
:
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Theorem B. (1) The minimal representation $p;q of Oðp; qÞ is realized as the kernel of

the Yamabe operator on Sp�1 � Sq�1:
(2) $p;q is also realized as a subspace (roughly, half) of the kernel of the Yamabe

operator on the hyperboloid fðx; yÞARp;q: jxj2 � jyj2 ¼ 1g:
(3) $p;q is also realized in a space of solutions to the Yamabe equation on Rp�1;q�1

which is a standard ultrahyperbolic constant coefficient differential equation.
(4) $p;q is also realized as the unique non-trivial subspace of the Dolbeault

cohomology group H
p�2
%@

ðG=L;Lpþq�4
2
Þ:

In Theorem B (1) is contained in Part I, Theorem 3.6.1; (2) in Part II, Corollary
7.2.1; and (3) in Part III, Theorem 4.7. In each of these models, an explicit realization
is given. In models (2) and (3), the situation is subtle because the ‘‘action’’ of Oðp; qÞ
is no more smooth but only meromorphic. Then Theorem A does not hold in its
original form, and we need to carry out a careful analysis for it (see Parts II and III).
The proof of statement (4) will appear in another paper. Here G=L is an elliptic
coadjoint orbit as in Section 1.3, and L ¼ SOð2Þ �Oðp � 2; qÞ:

The branching laws in Theorems C and D are the main themes in Part II; for
notation see Sections 7 and 9.

Theorem C. If q00
X1 and q0 þ q00 ¼ q; then the twisted pull-back fF�

1F�
1 of the local

conformal map F1 between spheres and hyperboloids gives an explicit irreducible

decomposition of the unitary representation $p;q when restricted to Oðp; q0Þ � Oðq00Þ:

$p;qjOðp;q0Þ�Oðq00ÞC
XN
l¼0

pp;q0

þ;lþq00
2 �1

2HlðRq00 Þ:

In addition, we give in Section 8, Theorem 8.6 the Parseval–Plancherel theorem
for the situation in Theorem C on the ‘‘hyperbolic space model’’. This may be also
regarded as the unitarization of the minimal representation $p;q:

The twisted pull-back for a locally conformal diffeomorphism is defined for an
arbitrary pseudo-Riemannian manifold (see Definition 2.3).

Theorem D. The twisted pull-back of the locally conformal diffeomorphism also

constructs X"

lAA0ðp0;q0Þ-A0ðq00;p00Þ
pp0;q0

þ;l 2pp00;q00

�;l "
X"

lAA0ðq0;p0Þ-A0ðp00;q00Þ
pp0;q0

�;l 2pp00;q00

þ;l

as a discrete spectra in the branching law.

1.7. The papers (Parts I and II) are organized as follows: Section 2 provides a
conformal construction of a representation on the kernel of a shifted Laplace–
Beltrami operator. In Section 3, we construct an irreducible unitary representation,
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$p;q of Oðp; qÞ (p þ qA2N; p; qX2) ‘‘attached to’’ the minimal nilpotent orbit
applying Theorem 2.5. This representation coincides with the minimal representation
studied by Kostant, Binegar–Zierau [2,25]. In Section 3 we give a new intrinsic
characterization of the Hilbert space for the minimal representation in this model,
namely as a certain Sobolev space of solutions, see Theorem 3.9.3 and Lemma 3.10.
Such Sobolev estimate will be used in the construction of discrete spectrum of the
branching law in Section 9. Section 4 contains some general results on discrete
decomposable restrictions [17,18], specialized in detail to the present case. Theorem
4.2 characterizes which dual pairs in our situation provide discrete decomposable
branching laws of the restriction of the minimal representation $p;q: In Section 5, we

introduce unitary representations, pp;q
7;l of Oðp; qÞ ‘‘attached to’’ minimal elliptic

coadjoint orbits. In Sections 7 and 9, we give a discrete spectrum of the branching

law $p;qjG0 in terms of pp0;q0

7;lAOðp0; q0dÞ and pp00;q00

7;l AOðp00; q00dÞ: In particular, if one

factor G0
2 ¼ Oðp00; q00Þ is compact (i.e. p00 ¼ 0 or q00 ¼ 0), the branching law is

completely determined together with a Parseval–Plancherel theorem in Section 8.
Following the suggestion of the referee, we have included a full account of our proof

of the unitarity of the minimal representation. This proof is independent of earlier
proofs by Kostant, Binegar–Zierau, Howe–Tan, and others, and we feel it in itself
deserves attention. Our argument is purely analytical, based on analysis on
hyperboloids, and avoids combinatorial calculations of the actions of Lie algebras.
The key statement is in Theorem 3.9.1 with the immediate application to the unitarity
in Corollary 3.9.2. The proof of Theorem 3.9.1 will be given in Section 8.3, and it uses a
factorization (see (8.3.8)) of the Knapp–Stein intertwining operator as the product
of a Poisson transform into an affine symmetric space (a hyperboloid), and a
boundary value map. This gives the explicit eigenvalues of the Knapp–Stein
intertwining operators on generalized principal series representations, and not only
on some subrepresentations. We think this method is promising with regard to some
higher-rank situations. In particular, one is free to choose ‘‘intermediate’’ affine
symmetric spaces.

Finally, we have included the proofs of the explicit formulas for the Jacobi
functions used in Section 8, mainly Lemmas 8.1 and 8.2. These formulas lead to the
Parseval–Plancherel formulas (see Theorem 8.6) for the branching laws of the
minimal representation realized on hyperboloids. (Incidentally, this can be applied to
give a proof of the unitarity of a certain Zuckerman–Vogan’s derived functor
module even outside the weakly fair range.)

Notation: N ¼ f0; 1; 2;yg:

2. Conformal geometry

2.1. The aim of this section is to associate a distinguished representation $M of the
conformal group ConfðMÞ to a general pseudo-Riemannian manifold M (see
Theorem 2.5).
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2.2. Let M be an n-dimensional manifold with pseudo-Riemannian metric gM

ðnX2Þ: Let r be the Levi–Civita connection for the pseudo-Riemannian metric gM :
The curvature tensor field R is defined by

RðX ;YÞZ :¼ rXrY Z �rYrX Z �r½X ;Y �Z; X ;Y ;ZAXðMÞ:

We take an orthonormal basis fX1;y;Xng of TxM for a fixed xAM: Then the scalar
curvature KM is defined by

KMðxÞ :¼
Xn

i¼1

Xn

j¼1

gMðRðXi;XjÞXi;XjÞ:

The right side is independent of the choice of the basis fXig and so KM is a well-
defined function on M: We denote by DM the Laplace–Beltrami operator on M: The
Yamabe operator is defined to be

*DM :¼ DM � n � 2

4ðn � 1Þ KM : ð2:2:1Þ

See for example [26] for a good discussion of the geometric meaning and applications
of this operator. Our choice of the signature of KM and DM is illustrated as follows:

Example 2.2. We equip Rn and Sn with standard Riemannian metric. Then

For Rn: KRn � 0; *DRn ¼ DRn ¼
Xn

i¼1

@2

@x2
i

:

For Sn: KSn � ðn � 1Þn; *DSn ¼ DSn � 1

4
nðn � 2Þ:

2.3. Suppose ðM; gMÞ and ðN; gNÞ are pseudo-Riemannian manifolds of dimension
n: A local diffeomorphism F : M-N is called a conformal map if there exists a
positive valued function O on M such that

F�gN ¼ O2gM :

F is isometry if and only if O � 1 by definition.
We denote the group of conformal transformations (respectively, isometries) of a

pseudo-Riemannian manifold ðM; gMÞ by

ConfðMÞ :¼ fFADiffeoðMÞ :F : M-M is conformalg;

IsomðMÞ :¼ fFADiffeoðMÞ :F : M-M is isometryg:

Clearly, IsomðMÞCConfðMÞ:
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If F is conformal, then we have (e.g. [9, Chapter II, Excercise A.5] [27,28])

O
nþ2
2 ðF� *DNf Þ ¼ *DMðOn�2

2 F�f Þ ð2:3:1Þ

for any fACNðNÞ: We define a twisted pull-back

F�
l : CNðNÞ-CNðMÞ; f/OlðF�f Þ; ð2:3:2Þ

for each fixed lAC: Then formula (2.3.1) is rewritten as

F�
nþ2
2

*DNf ¼ *DMF�
n�2
2

f : ð2:3:10Þ

The case when l ¼ n�2
2

is particularly important. Thus, we write the twisted pull-back

for l ¼ n�2
2

as follows:

Definition 2.3. fF�F� ¼ F�
n�2
2

: CNðNÞ-CNðMÞ; f/O
n�2
2 ðF�f Þ:

Then formula (2.3.1) implies that

*DNf ¼ 0 on FðMÞ if and only if *DMðfF�F�f Þ ¼ 0 on M ð2:3:3Þ

because O is nowhere vanishing.

If n ¼ 2; then *DM ¼ DM ; *DN ¼ DN ; and fF�F� ¼ F�: Hence, (2.3.3) implies a well-
known fact in the two-dimensional case that a conformal map F preserves harmonic

functions, namely,

f is harmonic 3 F�f is harmonic:

2.4. Let G be a Lie group acting conformally on a pseudo-Riemannian manifold
ðM; gMÞ: We write the action of hAG on M as Lh : M-M; x/Lhx: By the
definition of conformal transformations, there exists a positive valued function
Oðh; xÞ ðhAG; xAMÞ such that

L�
hgM ¼ Oðh; �Þ2gM ðhAGÞ:

Then we have

Lemma 2.4. For h1; h2AG and xAM; we have

Oðh1h2; xÞ ¼ Oðh1;Lh2
xÞ Oðh2; xÞ:

Proof. It follow from Lh1h2
¼ Lh1

Lh2
that

L�
h1h2

gM ¼ L�
h2

L�
h1

gM :
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Therefore we have Oðh1h2; �Þ2 gM ¼ L�
h1h2

gM ¼ L�
h2
ðL�

h1
gMÞ ¼ L�

h2
ðOðh1; �Þ2 gMÞ ¼

Oðh1;Lh2
�Þ2Oðh2; �Þ2gM : Since O is a positive valued function, we conclude that

Oðh1h2; xÞ ¼ Oðh1;Lh2
xÞOðh2; xÞ: &

2.5. For each lAC; we form a representation $l � $M;l of the conformal group G

on CNðMÞ as follows:

ð$lðh�1Þf ÞðxÞ :¼ Oðh; xÞlf ðLhxÞ; ðhAG; fACNðMÞ; xAMÞ: ð2:5:1Þ

Then Lemma 2.4 assures that $lðh1Þ$lðh2Þ ¼ $lðh1h2Þ; namely, $l is a
representation of G:

Denote by dx the volume element on M defined by the pseudo-Riemannian
structure gM : Then we have

L�
hðdxÞ ¼ Oðh; xÞn

dx for hAG:

Therefore, the map f/f dx gives a G-intertwining operator from ð$n;CNðMÞÞ into

the space of distributions D0ðMÞ on M:
Here is a construction of a representation of the group of conformal

diffeomorphisms of M:

Theorem 2.5. Suppose that a group G acts conformally on a pseudo-Riemannian

manifold M of dimension n: Retain the notation before.

(1) Then, the Yamabe operator

*DM : CNðMÞ-CNðMÞ

is an intertwining operator from $ n�2
2

to $ nþ2
2
:

(2) The kernel Ker *DM is a subrepresentation of G through $ n�2
2
:

Proof. Statement (1) is a representation theoretic counterpart of formula (2.3.1).
Statement (2) follows immediately from (1). &

The representation of G on Ker *DM given in Theorem 2.5 (2) will be denoted by
$ � $M :

2.6. Here is a naturality of the representation of the conformal group ConfðMÞ in
Theorem 2.5:

Proposition 2.6. Let M and N be pseudo-Riemannian manifolds of dimension n; and a

local diffeomorphism F : M-N be a conformal map. Suppose that Lie groups G0 and

G act conformally on M and N; respectively. The actions will be denoted by LM and

LN ; respectively. We assume that there is a homomorphism i : G0-G such that

LN;iðhÞ 3F ¼ F 3 LM;h ðfor any hAG0Þ:
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We write conformal factors OM ;ON and O as follows:

L�
M;hgM ¼ OMðh; �Þ2gM ðhAG0Þ;

L�
N;hgN ¼ ONðh; �Þ2gN ðhAGÞ;

F�gN ¼ O2gM :

(1) For xAM and hAG0; we have

OðLM;hxÞ OMðh; xÞ ¼ OðxÞONðiðhÞ;FðxÞÞ: ð2:6:1Þ

(2) Let lAC and F�
l : CNðNÞ-CNðMÞ be the twisted pull-back defined in (2.3.2).

Then F�
l respects the G-representation ð$N;l;CNðNÞÞ and the G0-representation

ð$M;l;CNðMÞÞ through i : G0-G:
(3) fF�F� ¼ F�

n�2
2

: CNðNÞ-CNðMÞ sends Ker *DN into Ker *DM : In particular, we have a

commutative diagram:

ð2:6:2Þ

for each hAG0:
(4) If F is a diffeomorphism onto N; then ðF�1Þ�l is the inverse of F�

l for each lAC: In

particular, fF�F� is a bijection between Ker *DN and Ker *DM with inverse gðF�1Þ�ðF�1Þ�:

Proof. (1) Because LN;iðhÞ3F ¼ F3LM;h for hAG0; we have

ðF�L�
N;iðhÞgNÞðxÞ ¼ ðL�

M;hF
�gNÞðxÞ for xAM:

Hence,

ONðiðhÞ;FðxÞÞ2OðxÞ2gMðxÞ ¼ OðLM;hxÞ2OMðh; xÞ2gMðxÞ:

Because all conformal factors are positive-valued functions, we have proved (2.6.1).
(2) We want to prove

ð$M;lðh�1ÞF�
lf ÞðxÞ ¼ ðF�

l$N;lðiðh�1ÞÞf ÞðxÞ ð2:6:3Þ
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for any xAM; hAG0 and lAC: In view of the definition, we have

the left-hand side of ð2:6:3Þ ¼ ð$M;lðh�1ÞðOlF�f ÞÞðxÞ

¼OMðh; xÞlOðLM;hxÞlðF�f ÞðLM;hxÞ

¼OðxÞlONðiðhÞ;FðxÞÞlf ðF3LM;hxÞ:

Here the last equality follows from (2.6.1).

The right-hand side of ð2:6:3Þ ¼ ðF�
lONðiðhÞ; �Þlf ðLN;h�ÞÞðxÞ

¼OðxÞlONðiðhÞ;FðxÞÞlf ðLN;iðhÞ3FðxÞÞ:

Therefore, we have (2.6.3), because LN;iðhÞ3F ¼ F3LM;h:

(3) If fACNðNÞ satisfies *DNf ¼ 0; then *DMðfF�F�f Þ ¼ O
nþ2
2 ðF� *DNf Þ ¼ 0 by (2.3.1).

Hence fF�F�ðKer *DNÞCKer *DM : The commutativity of the diagram (2.6.2) follows from

(2) and Theorem 2.5 (2), if we put l ¼ n�2
2
:

(4) Because ðF�1Þ�gM ¼ ðO3F�1Þ�2
gN ; the twisted pull-back ðF�1Þ�lF is given by

the following formula from definition (2.3.2):

ðF�1Þ�l : CNðMÞ-CNðNÞ; F/ðF�1Þ�lF ¼ ðO3F�1Þ�lðF3F�1Þ:

Now statement (4) follows immediately. &

3. Minimal unipotent representations of Oðp; qÞ

3.1. In this section, we apply Theorem 2.5 to the specific setting where M ¼
Sp�1 � Sq�1 is equipped with an indefinite Riemannian metric, and where the
indefinite orthogonal group G ¼ Oðp; qÞ acts conformally on M: The resulting
representation, denoted by $p;q; is non-zero, irreducible and unitary if p þ q

A2N; p; qX2 and if ðp; qÞað2; 2Þ: This representation coincides with the one
constructed by Kostant [25] and Binegar–Zierau [2], which has the Gelfand–Kirillov
dimension p þ q � 3 (see Part II, Lemma 4.4). This representation is supposed to be
attached to the unique minimal nilpotent coadjoint orbit, in the sense that its
annihilator in the enveloping algebra UðgÞ is the Joseph ideal if p þ qX8; which is
the unique completely prime primitive ideal of minimum non-zero Gelfand–Kirillov
dimension.

Our approach based on conformal geometry gives a geometric realization of the
minimal representation $p;q for Oðp; qÞ: One of the advantages using conformal
geometry is the naturality of the construction (see Proposition 2.6), which allows us
naturally different realizations of $p;q; not only on the K-picture (a compact picture
in Section 3), but also on the N-picture (a flat picture) (see Part III), and on the
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hyperboloid picture (see Part II, Section 7, Corollary 7.2.1), together with the
Yamabe operator in each realization. In later sections, we shall reduce the branching
problems of $p;q to the analysis on different models on which the minimal
representation $p;q is realized.

The case of SOð3; 4Þ was treated by Sabourin [29]; his method was generalized in
[32] to cover all simple groups with admissible minimal orbit, as well as the case of a
local field of characteristic zero.

3.2. We write a standard coordinate of Rpþq as ðx; yÞ ¼ ðx1;y; xp; y1;y; yqÞ: Let

Rp;q be the pseudo-Riemannian manifold Rpþq equipped with the pseudo-
Riemannian metric:

ds2 ¼ dx2
1 þ?þ dx2

p � dy2
1 �?� dy2

q: ð3:2:1Þ

We assume p; qX1 and define submanifolds of Rp;q by

X :¼ fðx; yÞARp;q: jxj ¼ jyjg\f0g; ð3:2:2Þ

M :¼ fðx; yÞARp;q: jxj ¼ jyj ¼ 1gCSp�1 � Sq�1: ð3:2:3Þ

We define a diagonal matrix by Ip;q :¼ diagð1;y; 1;�1;y;�1Þ: The indefinite

orthogonal group

G ¼ Oðp; qÞ :¼ fgAGLðp þ q;RÞ: tgIp;qg ¼ Ip;qg

acts isometrically on Rp;q by the natural representation, denoted by z/g � z

(gAG; zARp;q). This action stabilizes the light cone X: The multiplicative group R�
þ :

¼ frAR : r40g acts on X as a dilation and the quotient space X=R�
þ is identified with

M: Because the action of G commutes with that of R�
þ; we can define the action of G

on the quotient space X=R�
þ; and also on M through the diffeomorphism MCX=R�

þ:

This action will be denoted by

Lh : M-M; x/Lhx ðxAM; hAGÞ:

In summary, we have a G-equivariant principal R�
þ-bundle:

F : X-M; ðx; yÞ/ x

jxj;
y

jyj

� 	
¼ 1

nðx; yÞðx; yÞ; ð3:2:4Þ

where n : X-Rþ is defined by

nðx; yÞ ¼ jxj ¼ jyj: ð3:2:5Þ

3.3. Suppose N is a ðp þ q � 2Þ-dimensional submanifold of X: We say N is
transversal to rays if FjN : N-M is locally diffeomorphic. Then, the standard
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pseudo-Riemannian metric on Rp;q induces a pseudo-Riemannian metric on N which
has the codimension 2 in Rp;q: The resulting pseudo-Riemannian metric is denoted

by gN ; which has the signature ðp � 1; q � 1Þ: In particular, MCSp�1 � Sq�1 itself is
transversal to rays, and the induced metric gSp�1�Sq�1 ¼ gSp�1"ð�gSq�1Þ; where gSn�1

denotes the standard Riemannian metric on the unit sphere Sn�1:

Lemma 3.3. Assume that N is transversal to rays. Then FjN : N-M is a conformal

map. Precisely, we have

ðF�gMÞz ¼ nðzÞ�2ðgNÞz for z ¼ ðx; yÞAN: ð3:3:1Þ

Proof. Write the coordinates as ðu1;y; up; v1;y; vqÞ ¼ Fðx; yÞASp�1 � Sq�1: Then

F�ðdujÞ ¼
dxj

jxj �
xj

jxj3
Xp

i¼1

xi dxi:

Therefore, we have

F�
Xp

j¼1

ðdujÞ2
 !

¼ jxj�2
Xp

j¼1

ðdxjÞ2 � 2 jxj�4
Xp

j¼1

xj dxj

 !2

þjxj�6
Xp

j¼1

x2
j

 ! Xp

i¼1

xi dxi

 !2

¼ jxj�2
Xp

j¼1

ðdxjÞ2 � jxj�4
Xp

j¼1

xj dxj

 !2

:

Similarly, we have

F�
Xq

j¼1

ðdvjÞ2
 !

¼ jyj�2
Xq

j¼1

ðdyjÞ2 � jyj�4
Xq

j¼1

yj dyj

 !2

:

Because jxj2 ¼ jyj2 and
Pp

j¼1 xj dxj ¼
Pq

k¼1 yk dyk; we have

F�
Xp

j¼1

ðdujÞ2 �
Xq

j¼1

ðdvjÞ2
 !

¼ 1

jxj2
Xp

j¼1

ðdxjÞ2 �
Xq

k¼1

ðdykÞ2
 !

:

Hence, we have proved (3.3.1) from our definition of gM and gN : &

3.4. If we apply Lemma 3.3 to the transformation on the pseudo-Riemannian

manifold M ¼ Sp�1 � Sq�1; we have:
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Lemma 3.4.1. G acts conformally on M: That is, for hAG; zAM; we have

L�
hgM ¼ 1

nðh � zÞ2
gM at TzM:

Proof. The transformation Lh : M-M is the composition of the isometry M-h �
M; z/h � z; and the conformal map Fjh�M : h � M-M; x/ x

nðxÞ: Hence Lemma

3.4.1 follows. &

Several works in differential geometry treat the connection between the geometry
of a manifold and the structure of its conformal group. For the identity

ConfðSp�1 � Sq�1Þ ¼ Oðp; qÞ; ðp42; q42Þ;

see for example [15, Chapter IV].

As in Example 2.2, the Yamabe operator on M ¼ Sp�1 � Sq�1 is given by the
formula:

*DM ¼DSp�1 � DSq�1 � p þ q � 4

4ðp þ q � 3Þ ðp � 1Þðp � 2Þ � ðq � 1Þðq � 2Þð Þ

¼ ðDSp�1 � 1

4
ðp � 2Þ2Þ � ðDSq�1 � 1

4
ðq � 2Þ2Þ

¼ ð *DSp�1 � 1

4
Þ � ð *DSq�1 � 1

4
Þ: ð3:4:1Þ

We define a subspace of CNðSp�1 � Sq�1Þ by

V p;q :¼ ffACNðSp�1 � Sq�1Þ : *DMf ¼ 0g: ð3:4:2Þ

By applying Theorem 2.5, we have

Theorem 3.4.2. Let p; qX1: For hAOðp; qÞ; zAM ¼ Sp�1 � Sq�1; and fAVp;q; we

define

ð$p;qðh�1Þf ÞðzÞ :¼ nðh � zÞ�
pþq�4

2 f ðLhzÞ: ð3:4:3Þ

Then ð$p;q;V p;qÞ is a representation of Oðp; qÞ:

3.5. In order to describe the K-type formula of $p;q; we recall the basic fact of
spherical harmonics. Let pX2: The space of spherical harmonics of degree kAN is
defined to be

HkðRpÞ ¼ ffACNðSp�1Þ : DSp�1f ¼ �kðk þ p � 2Þf g;
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which is rewritten in terms of *DSp�1 ¼ DSp�1 � 1
4
ðp � 1Þðp � 3Þ (see Example 2.2) as

¼ fACNðSp�1Þ : *DSp�1 f ¼ 1

4
� k þ p � 2

2

� 	2
 !

f

( )
: ð3:5:1Þ

The orthogonal group OðpÞ acts on HkðRpÞ irreducibly and we have the dimension
formula:

dimC HkðRpÞ ¼
p þ k � 2

k

 !
þ

p þ k � 3

k � 1

 !
: ð3:5:2Þ

For p ¼ 1; it is convenient to define representations of Oð1Þ by

HkðR1Þ :¼
C ðtrivial representationÞ ðk ¼ 0Þ;
C ðsignature representationÞ ðk ¼ 1Þ;
0 ðkX2Þ:

8><>:
Then we have irreducible decompositions as OðpÞ-modules for pX1:

L2ðSp�1ÞC
XN
k¼0

" HkðRpÞ ðHilbert direct sumÞ:

3.6. Here is a basic property of the representation ð$p;q;V p;qÞ:

Theorem 3.6.1. Suppose that p; q are integers with pX2 and qX2:

(1) The underlying ðg;KÞ-module ð$p;qÞK of $p;q has the following K-type formula:

ð$p;qÞKC "
a;bAN

aþp
2¼bþq

2

HaðRpÞ2HbðRqÞ: ð3:6:1Þ

(2) In the Harish-Chandra parametrization, the ZðgÞ-infinitesimal character of $p;q is

given by ð1; pþq
2

� 2; pþq
2

� 3;y; 1; 0Þ:
(3) V p;q is non-zero if and only if p þ qA2N:
(4) If p þ qA2N and if ðp; qÞað2; 2Þ; then ð$p;q;Vp;qÞ is an irreducible representation

of G ¼ Oðp; qÞ and the underlying ðg;KÞ-module ð$p;q
K ;V

p;q
K Þ is unitarizable.

Although Theorem 3.6.1 overlaps with the results of Kostant [25], Binegar–Zierau
[2], Howe–Tan [11], Huang–Zhu [12] obtained by algebraic methods, we shall give a
self-contained and new proof from our viewpoint: conformal geometry, discrete
decomposability of the restriction with respect to non-compact subgroups, and
analysis on affine symmetric spaces (hyperboloids). The method of finding K-types

ARTICLE IN PRESS
T. Kobayashi, B. Ørsted / Advances in Mathematics 180 (2003) 486–512502



will be generalized to the branching law for non-compact subgroups (Sections 7, 9).
The idea of proving irreducibility (see Theorem 7.6) is new and seems interesting by
its simplicity, because we do not need rather complicated computations (cf. [2,11])
but just use the discretely decomposable branching law with respect to Oðp; q0Þ �
Oðq00Þ: The point here is that we have flexibility in choosing ðq0; q00Þ such
that q0 þ q00 ¼ q: We shall give a new proof of the unitarizability of $p;q because
of the importance of ‘‘small’’ representations in the current status of
unitary representation theory, see Theorem 3.9.1, Corollary 3.9.2 and Part II [23,
Section 8.3].

Proof. Let FAV p;qCCNðMÞ: Then F is developed as

F ¼
X

a;bAN

Fa;b ðFa;bAHaðRpÞ2HbðRqÞÞ;

where the right side converges in the topology of CNðMÞ: Applying the Yamabe
operator, we have

*DMF ¼
X

a;bAN

� a þ p � 2

2

� 	2

þ b þ q � 2

2

� 	2
 !

Fa;b:

Since *DMF ¼ 0; Fa;b can be non-zero if and only if

a þ p � 2

2

���� ���� ¼ b þ q � 2

2

���� ����; ð3:6:2Þ

whence (1) and (3). Statement (2) follows from Lemma 3.7.2 and (3.7.4). An explicit
(unitarizable) inner product for $p;q will be given in Section 3.9 (see also Remark in
Sections 3.9 and 8.3).

We shall give a simple proof of the irreducibility of $p;q in Theorem 7.6 by using
discretely decomposable branching laws to non-compact subgroups (Theorems 4.2
and 7.1). &

Remark 3.6.2. (1) $2;2 contains the trivial one-dimensional representation as a

subrepresentation. The quotient $2;2=C is irreducible as an Oð2; 2Þ-module and
splits into a direct sum of four irreducible SO0ð2; 2Þ-modules. The short exact

sequence of Oð2; 2Þ-modules 0-C-$2;2-$2;2=C-0 does not split, and $2;2 is
not unitarizable as an Oð2; 2Þ-module.

This case is the only exception that $p;q is not unitarizable as a

ConfðSp�1 � Sq�1Þ-module.
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(2) The K-type formula for the case p ¼ 1 or q ¼ 1 is obtained by the same method
as in Theorem 3.6.1. Then we have that

V p;qC

C4 if ðp; qÞ ¼ ð1; 1Þ;
C2 if ðp; qÞ ¼ ð1; 3Þ; ð3; 1Þ;
f0g if p ¼ 1 or q ¼ 1 with p þ q44 or if p þ qe2N:

8><>:
V p;q consists of locally constant functions on Sp�1 � Sq�1 if ðp; qÞ ¼ ð1; 1Þ; ð1; 3Þ
and (3,1).

(3) In the case of the Kepler problem, i.e. the case of G ¼ Oð4; 2Þ; the above K-
type formula has a nice physical interpretation, namely: the connected component of
G acts irreducibly on the space with positive Fourier components for the action of
the circle SOð2Þ; the so-called positive energy subspace; the Fourier parameter n ¼
1; 2; 3;y corresponds to the energy level in the usual labeling of the bound states of
the Hydrogen atom, and the dimension (also called the degeneracy of the energy

level) for the spherical harmonics is n2; as it is in the labeling using angular
momentum and its third component of the wave functions cnlm: Here n corresponds
to our b:

3.7. Let us understand $p;q as a subrepresentation of a degenerate principal series.

For nAC; we denote by the space

SnðXÞ :¼ ffACNðXÞ : f ðtxÞ ¼ tnf ðxÞ; xAX; t40g ð3:7:1Þ

of smooth functions on X of homogeneous degree n: Furthermore, for e ¼ 71; we
put

Sn;eðXÞ :¼ ffASnðXÞ : f ð�xÞ ¼ ef ðxÞ; xAXg:

Then we have a direct sum decomposition

SnðXÞ ¼ Sn;1ðXÞ þ Sn;�1ðXÞ;

on which G acts by left translations, respectively.

Lemma 3.7.1. The restriction CNðXÞ-CNðMÞ; f/f jM induces the isomorphism of

G-modules between S�lðXÞ and ð$l;CNðMÞÞ (given in (2.5.1)) for any lAC:

Proof. If fAS�lðXÞ; hAG and zAM; then

f ðh � zÞ ¼ f nðh � zÞ h � z

nðh � zÞ

� 	
¼ nðh � zÞ�l

f ðLhzÞ ¼ ð$lðh�1Þf jMÞðzÞ;

where the last formula follows from definition (2.5.1) and Lemma 3.4.1. &
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Let us also identify Sn;eðXÞ with degenerate principal series representations in
standard notation. The indefinite orthogonal group G ¼ Oðp; qÞ acts on the light
cone X transitively. We put

xo :¼ tð1; 0;y; 0; 0;y; 0; 1ÞAX: ð3:7:2Þ

Then the isotropy subgroup at xo is of the form Mmax
þ Nmax; where Mmax

þ COðp � 1;

q � 1Þ and NmaxCRpþq�2 (abelian Lie group). We set

E :¼ E1;pþq þ Epþq;1Ag0;

where Eij denotes the matrix unit. We define an abelian Lie group by Amax :¼
expRE ðCGÞ; and put

m0 :¼ �IpþqAG: ð3:7:3Þ

We define Mmax to be the subgroup generated by Mmax
þ and m0; then

Pmax :¼ MmaxAmaxNmax

is a Langlands decomposition of a maximal parabolic subgroup Pmax of G: If a ¼
exp ðtEÞ ðtARÞ; we put al :¼ exp ðtlEÞ for lAC: We put

r :¼ p þ q � 2

2
:

For e ¼ 71; we define a character we of Mmax by the composition

we : Mmax-Mmax=Mmax
þ Cf1;m0g-C�;

such that weðm0Þ :¼ e: We also write sgn for w�1 and 1 for w1: We define F to be the

A; B; CN or D0 valued degenerate principal series by

F-IndG
Pmaxðe#ClÞ :¼ ffAFðGÞ : f ðgmanÞ ¼ weðm�1Þa�ðlþrÞf ðgÞg;

which has ZðgÞ-infinitesimal character

l;
p þ q

2
� 2;

p þ q

2
� 3;y;

p þ q

2
� p þ q

2

h i� �
ð3:7:4Þ

in the Harish-Chandra parametrization. The underlying ðg;KÞ-module will be

denoted by IndG
Pmaxðe#ClÞ: We note that IndG

Pmaxðe#ClÞ is unitarizable if lA
ffiffiffiffiffiffiffi
�1

p
R:

In view of the commutative diagram of G-spaces:
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we have an isomorphism of G-modules:

CN-IndG
Pmaxðe#ClÞCS�l�pþq�2

2 ;eðXÞ: ð3:7:5Þ

It follows from Theorem 2.5 and Lemma 3.7.1 that ð$p;q;Vp;qÞ is a subrepresenta-

tion of S�pþq�4
2 ðXÞ: Furthermore, $p;qðm0Þ acts on each K-type

HaðRpÞ2HbðRqÞ ða þ p
2 ¼ b þ q

2) as a scalar

ð�1Þaþb ¼ ð�1Þ2aþp�q
2 ¼ ð�1Þ

p�q
2 :

Hence, we have the following:

Lemma 3.7.2. $p;q is a subrepresentation of Sa;eðXÞ with a ¼ �pþq�4
2 and e ¼ ð�1Þ

p�q
2 ;

or equivalently, of CN-IndG
Pmaxðð�1Þ

p�q
2 #C�1Þ:

The quotient will be described in (5.5.5).

Remark 3.7.3. (1) $p;q splits into two irreducible components as SOðp; qÞ-modules,

say $p;q
7 ; if p ¼ 2 and qX4: Then, $p;q (or $p;q

7 if p ¼ 2 and qX4) coincides with the

‘‘minimal representations’’ constructed in [2,25,32].
(2) In [2], it was claimed that the minimal representations of SOðp; qÞ are realized

in the subspace of fcACNðSp�1 � Sq�1Þ : cð�yÞ ¼ ð�1ÞdcðyÞg for d ¼ 2 � pþq
2
: But

this parity is not correct when both p and q are odd.

(3) Our parametrization of Sa;eðXÞ is the same with Sa;eðX 0Þ in the notation of [11].

3.8. Let pX2: The differential operator �DSp�1 þ ðp�2Þ2
4

acts on the space HaðRpÞ of

spherical harmonics as a scalar aða þ p � 2Þ þ 1
4
ðp � 2Þ2 ¼ ða þ p�2

2
Þ2: Therefore, we

can define a non-negative self-adjoint operator

Dp : L2ðSp�1Þ-L2ðSp�1Þ ð3:8:1Þ

by

Dp :¼ �DSp�1 þ ðp � 2Þ2

4

 !1
4

with the domain of definition given by

DomðDpÞ :¼ F ¼
XN
a¼0

FaAL2ðSp�1Þ :
XN
a¼0

a þ p � 2

2

� 	
jjFajj2L2ðSp�1ÞoN

( )
:

Here is a convenient criterion which assures a given function to be in DomðDpÞ:
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Lemma 3.8.1. If FAL2ðSp�1Þ satisfies YFAL2�2
pðSp�1Þ for any smooth vector field Y

on Sp�1 then FADomðDpÞ: Namely, DpF is well-defined and DpFAL2ðSp�1Þ:

In order to prove Lemma 3.8.1, we recall an inequality due to Beckner:

Fact 3.8.2 (Beckner [1, Theorem 2]). Let 1pdp2 and FALdðSnÞ: Let F ¼
P

N

k¼0 Fk

be the expansion in terms of spherical harmonics FkAHkðRnþ1Þ; which converges in the

distribution sense. Then

XN
k¼0

gkjjFkjj2L2ðSnÞpjjF jj2LdðSnÞ; gk :¼
Gðn

dÞGðk þ n � n
dÞ

Gðn � n
dÞGðk þ n

dÞ
: ð3:8:2Þ

For our purpose, we need to give a lower estimate of gk in Fact 3.8.2. By Stirling’s
formula for the Gamma function, we have

kb�a Gðk þ aÞ
Gðk þ bÞB1 þ ða � bÞða þ b � 1Þ

2k
þ?

as k-N: Hence, there exists a positive constant C depending only on n and d so
that

Cknð1�2
dÞpgk ð3:8:3Þ

for any kX1: Combining (3.8.2) and (3.8.3), we have:

C
XN
k¼1

knð1�2
dÞjjFkjj2L2ðSnÞpjjF jj2LdðSnÞ: ð3:8:4Þ

Now we are ready to prove Lemma 3.8.1.

Proof of Lemma 3.8.1. Let fXig be an orthonormal basis of oðpÞ with respect to

ð�1Þ� the Killing form. The action of OðpÞ on Sp�1 induces a Lie algebra

homomorphism L : oðpÞ-XðSp�1Þ: Then we have DSp�1 ¼
P

i LðXiÞ2: We write F ¼P
N

k¼0 Fk where FkAHkðRpÞ: We note that LðX ÞFkAHkðRpÞ for any k and for any

XAoðpÞ; because DSp�1 commutes with LðX Þ: If we apply (3.8.4) with d ¼ 2 � 2
p
and

n ¼ p � 1; then we have

C
XN
k¼1

k�1jjLðXiÞFkjj2L2ðSp�1ÞpjjLðXiÞF jj2
L

2�2
pðSp�1Þ

:

Because LðXiÞ is a skew-symmetric operator, we haveX
i

jjLðXiÞFkjj2L2ðSp�1Þ ¼ �
X

i

ðDSp�1Fk;FkÞL2ðSp�1Þ ¼ kðk þ p � 2ÞjjFkjj2L2ðSp�1Þ;
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and therefore

C
XN
k¼1

ðk þ p � 2ÞjjFkjj2L2ðSp�1Þp
X

i

jjLðXiÞF jj2
L

2�2
pðSp�1Þ

oN:

Hence, we have proved that DpF is well-defined and

jjDpF jj2L2ðSp�1Þ ¼
XN
k¼0

k þ p � 2

2

� 	
jjFkjj2L2ðSp�1ÞoN:

This completes the proof of Lemma 3.8.1. &

3.9. Let pX2 and qX2: We extend Dp to a self-adjoint operator (with the same

notation) on L2ðMÞ: Then Dp is a pseudo-differential operator acting on

HaðRpÞ2L2ðSq�1Þ as a scalar
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a þ p�2

2

q
: Likewise, we define Dq as a self-adjoint

operator on L2ðSq�1Þ and extend it to that on L2ðMÞ: It follows from (3.6.2) that

Dp ¼ Dq on V
p;q
K : ð3:9:1Þ

Let us unitarize ð$p;q;V p;qÞ by finding an explicit inner product by means of the
operator Dp (or Dq).

First, we note that the meromorphic continuations of the distributions jxjn and

jxjnsgnx have simple poles at n ¼ �1;�3;�5;y; and at n ¼ �2;�4;�6;y;
respectively. Therefore, for e ¼ 71; one defines a non-zero distribution with
holomorphic parameter nAC by

cn;eðxÞ :¼
1

Gð2nþ3�e
4

Þ
jxjnweðsgn xÞ; ð3:9:2Þ

where the Gamma factor cancels exactly every pole. For example, a residue
computation shows that c�1;1ðxÞ ¼ dðxÞ; Dirac’s delta function.

We are now ready to define the Knapp–Stein intertwining operator

Al;e : IndG
Pmaxðe#ClÞ-IndG

Pmaxðe#C�lÞ

by

ðAl;ef ÞðxÞ :¼
Z

M

cl�r;eð½x; b�Þ f ðbÞ db ðxAMÞ: ð3:9:3Þ

Here, r ¼ pþq�2
2

and db is the Riemannian measure on MCSp�1 � Sq�1; a double

cover of G=Pmax:
In view of the K-type formula of the degenerate principal series representation

IndG
Pmaxðe#ClÞ ¼ "

a;bAN

ð�1Þa�b¼e mod 2

HaðRpÞ2HbðRqÞ;
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we have the following spectral decomposition of Al;e that intertwines G-actions,

especially, K-actions:

Theorem 3.9.1. Let a; bAN and e ¼ 71 such that ð�1Þa�b ¼ e: On the subspace

HaðRpÞ2HbðRqÞ; the intertwining operator Al;e acts as a scalar:

4p
pþq�2

2 ð�1Þ½
a�b
2 �GðlÞGð�Bþþ

l Þ
Gð�2lþpþq�1�e

4
ÞGð1 þ B� �

l ÞGð1 þ Bþ�
l ÞGð1 þ B�þ

l Þ
; ð3:9:4Þ

where for e1; e2 ¼ 7; we define

B
e1;e2
l � B

e1;e2
l ða; bÞ :¼ 1

2
l� 1 � e1 a þ p

2
� 1

� �
� e2 b þ q

2
� 1

� �� �
: ð3:9:5Þ

We remark that the above functions B
e1;e2
l ða; bÞ define ‘‘barriers’’ which determine

irreducible subquotients of non-unitary degenerate principal series representations

IndG
Pmaxðe#ClÞ; as in the diagrams of the paper of Howe and Tan [11].

Though the statement of Theorem 3.9.1 itself concerns only with the degenerate
principal series representations, we take a new approach for the proof, which is
based on analysis on an affine symmetric space (a hyperboloid). An (elementary)
setup for hyperboloids will be given in Part II [23], and so, we shall postpone the
proof of Theorem 3.9.1 until Part II, Section 8.3.

Since the integration on G=PmaxCM=BZ2 gives a G-invariant non-degenerate
sesquilinear form

IndG
Pmaxðe#C1Þ � IndG

Pmaxðe#C�1Þ-C;

we have the following corollary by applying Theorem 3.9.1 to the case l ¼ 1:

Corollary 3.9.2. Let p þ qA2N; pX2; qX2; ðp; qÞað2; 2Þ and e ¼ ð�1Þ
p�q
2 :

(1) The Knapp–Stein intertwining operator

A1;e : IndG
Pmaxðe#C1Þ-IndG

Pmaxðe#C�1Þ

is non-zero exactly on the submodule ð$p;q
K ;V

p;q
K Þ:

(2) A1;e acts on the subspace HaðRpÞ2HbðRqÞ ða þ p
2
¼ b þ q

2
Þ of V

p;q
K as a scalar

ð�1Þ½
q�p
4 �

c1

a þ p
2
� 1

¼ ð�1Þ½
q�p
4 �

c1

b þ q
2
� 1

;

where we define a constant c1 (independent of a and b) by

c1 :¼
1

2p
pþq�1

2

G
p þ q � 3 � ð�1Þ

p�q
2

4

 !
: ð3:9:6Þ
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(3) The ðg;KÞ-module ð$p;q
K ;V

p;q
K Þ is unitarizable with the inner product:

ðf1; f2ÞM :¼
Z

M

ðDpf1ÞDpf2 do ¼
Z

M

ðDqf1ÞDqf2 do; f1; f2AV
p;q
K ; ð3:9:7Þ

where do is the standard Riemannian measure on M: Namely, if F ¼P
a Fa;bAV

p;q
K with Fa;bAHaðRpÞ2HbðRqÞ and b ¼ a þ p�q

2
; then DpF ¼P

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a þ p�2

2

q
Fa;b and

jjF jj2M ¼
X

N{aXmaxð0;p�q
2 Þ

a þ p � 2

2

� 	
jjFa;bjj2L2ðMÞ: ð3:9:8Þ

We denote by Vp;q the Hilbert completion of V p;q with respect to the above inner

product ð; Þ: On V p;q; we can define an (irreducible) unitary representation of G; for
which we use the same notation $p;q:

In view of Section 3.8, we can describe the Hilbert space Vp;q more explicitly as
follows: Let V be the Hilbert space of the completion of CNðMÞ by the norm
defined by

jjF jj2L2ðMÞ þ jjðDp þ DqÞF jj2L2ðMÞ for FACNðMÞ:

Then, V is a dense subspace of L2ðMÞ and

V ¼ DomðDpÞ-DomðDqÞ:

With this notation, the closure V p;q is characterized directly by the following:

Theorem 3.9.3. Let p and q as in Corollary 3.9.2. The minimal (unitary) representation

$p;q of Oðp; qÞ is defined on the Hilbert space Vp;q which is given by

V p;q ¼ ffAV : Dpf ¼ Dqf g ¼ ffAV : *DMf ¼ 0g;

where *DMf ¼ 0 is in the distribution sense.

Remark. By comparing the construction of [2], (3.9.8) coincides with the formula
obtained by Binegar–Zierau by a different method (see Remark 3.7.3(1)). They
defined a similar operator Dn of [2, p. 249]; we remark that there is a typographical

error in their definition of Dn; n � 2 should read ðn � 2Þ2: Then, the square D2
p of our

operator corresponds to Dp if pa2; jDpj if p ¼ 2; with the notation in [2].

3.10. The following lemma is rather weak, but is clear from the Sobolev estimate.
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Lemma 3.10. Suppose W is an open set of M such that the measure of M\W is zero.

Suppose F is a CN function on W satisfying *DMF ¼ 0 on W : If FAL2ðMÞ and if

YY 0FAL1ðMÞ for any Y ;Y 0AXðMÞ (differentiation in the sense of the Schwartz

distributions), then FAV p;q:
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