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a b s t r a c t

Let S be a finite non-commutative semigroup. The commuting
graph of S, denoted G(S), is the graph whose vertices are the non-
central elements of S andwhose edges are the sets {a, b} of vertices
such that a ≠ b and ab = ba. Denote by T (X) the semigroup of full
transformations on a finite set X . Let J be any ideal of T (X) such that
J is different from the ideal of constant transformations on X . We
prove that if |X | ≥ 4, then, with a few exceptions, the diameter of
G(J) is 5. On the other hand,we prove that for every positive integer
n, there exists a semigroup S such that the diameter of G(S) is n.

We also study the left paths in G(S), that is, paths a1 − a2 −

· · · − am such that a1 ≠ am and a1ai = amai for all i ∈ {1, . . . ,m}.
We prove that for every positive integer n ≥ 2, except n = 3,
there exists a semigroup whose shortest left path has length n. As
a corollary, we use the previous results to solve a purely algebraic
old problem posed by B.M. Schein.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The commuting graph of a finite non-abelian group G is a simple graph whose vertices are all non-
central elements of G and two distinct vertices x, y are adjacent if xy = yx. Commuting graphs of
various groups have been studied in terms of their properties (such as connectivity or diameter), for
example in [4,6,8,15]. They have also been used as a tool to prove group theoretic results, for example
in [5,12,13].
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The concept of the commuting graph carries over to semigroups. Let S be a finite non-commutative
semigroup with center Z(S) = {a ∈ S : ab = ba for all b ∈ S}. The commuting graph of S, denoted
G(S), is the simple graph (that is, an undirected graphwith nomultiple edges or loops) whose vertices
are the elements of S − Z(S) and whose edges are the sets {a, b} such that a and b are distinct vertices
with ab = ba.

This paper initiates the study of commuting graphs of semigroups. Our main goal is to study the
lengths ofminimal paths.We shall consider two types of paths: ordinary paths and so called left paths.

We first investigate the semigroup T (X) of full transformations on a finite set X , and determine
the diameter of the commuting graph of every ideal of T (X) (Section 2). We find that, with a few
exceptions, the diameter ofG(J), where J is an ideal of T (X), is 5. This small diameter does not extend to
semigroups in general. We prove that for every n ≥ 2, there is a finite semigroup S whose commuting
graph has diameter n (Theorem 4.1). To prove the existence of such a semigroup, we use our work on
the left paths in the commuting graph of a semigroup.

Let S be a semigroup. A path a1 − a2 − · · · − am in G(S) is called a left path (or l-path) if a1 ≠ am
and a1ai = amai for every i ∈ {1, . . . ,m}. If there is any l-path in G(S), we define the knit degree of S,
denoted kd(S), to be the length of a shortest l-path in G(S).

For every n ≥ 2 with n ≠ 3, we construct a band (semigroup of idempotents) of knit degree n
(Section 3). It is an open problem if there is a semigroup of knit degree 3. In Section 4, the constructions
presented in Section 3 also give a band S whose commuting graph has diameter n (for every n ≥ 4).
As another application of our work on the left paths, we settle a conjecture on bands formulated by
B.M. Schein in 1978 (Section 5). Finally, we present some problems regarding the commuting graphs
of semigroups (Section 6).

2. Commuting graphs of ideals of T (X)

Let T (X) be the semigroup of full transformations on a finite set X , that is, the set of all functions
from X to X with composition as the operation. We will write functions on the right and compose
from left to right, that is, for a, b ∈ T (X) and x ∈ X , we will write xa (not a(x)) and x(ab) = (xa)b (not
(ba)(x) = b(a(x))). In this section, we determine the diameter of the commuting graph of every ideal
of T (X). Throughout this section, we assume that X = {1, . . . , n}.

Let Γ be a simple graph, that is, Γ = (V , E), where V is a finite non-empty set of vertices and
E ⊆ {{u, v} : u, v ∈ V , u ≠ v} is a set of edges. We will write u − v to mean that {u, v} ∈ E. Let
u, w ∈ V . A path in Γ from u to w is a sequence of pairwise distinct vertices u = v1, v2, . . . , vm =

w (m ≥ 1) such that vi − vi+1 for every i ∈ {1, . . . ,m− 1}. If λ is a path v1, v2, . . . , vm, we will write
λ = v1 − v2 − · · · − vm and say that λ has length m− 1. We say that a path λ from u to w is aminimal
path if there is no path from u to w that is shorter than λ.

We say that the distance between vertices u and w is k, and write d(u, w) = k, if a minimal path
from u to w has length k. If there is no path from u to w, we say that the distance between u and w is
infinity, and write d(u, w) = ∞. The maximum distance max{d(u, w) : u, w ∈ V } between vertices
of Γ is called the diameter of Γ . Note that the diameter of Γ is finite if and only if Γ is connected.

If S is a finite non-commutative semigroup, then the commuting graph G(S) is a simple graphwith
V = S − Z(S) and, for a, b ∈ V , a − b if and only if a ≠ b and ab = ba.

For a ∈ T (X), we denote by im(a) the image of a, by ker(a) = {(x, y) ∈ X × X : xa = ya} the
kernel of a, and by rank(a) = |im(a)| the rank of a. It is well known (see [7, Section 2.2]) that in T (X)
the only element of Z(T (X)) is the identity transformation on X , and that T (X) has exactly n ideals:
J1, J2, . . . , Jn, where, for 1 ≤ r ≤ n,

Jr = {a ∈ T (X) : rank(a) ≤ r}.

Each ideal Jr is principal and any a ∈ T (X) of rank r generates Jr . The ideal J1 consists of the
transformations of rank 1 (that is, constant transformations), and it is clear that G(J1) is the graph
with n isolated vertices.

Let S be a semigroup. We denote by GE(S) the subgraph of G(S) induced by the non-central
idempotents of S. The graph GE(S) is said to be the idempotent commuting graph of S. We first
determine the diameter of GE(Jr). This approach is justified by the following lemma.
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Lemma 2.1. Let 2 ≤ r < n and let a, b ∈ Jr be such that ab ≠ ba. Suppose a−a1−a2−· · ·−ak−b (k ≥

1) is a minimal path in G(Jr) from a to b. Then there are idempotents e1, e2, . . . , ek ∈ Jr such that
a − e1 − e2 − · · · − ek − b is a minimal path in G(Jr) from a to b.
Proof. Since Jr is finite, there is an integer p ≥ 1 such that e1 = ap1 is an idempotent in Jr . Note that
e1 ∉ Z(Jr), since for any x ∈ X − im(e1), e1 does not commute with cx ∈ Jr , where cx is the constant
transformation with im(cx) = {x}. Since a1 commutes with a and a2, the idempotent e1 = ap1 also
commutes with a and a2, and so a − e1 − a2 − · · · − ak − b. Repeating the foregoing argument for
a2, . . . , ak, we obtain idempotents e2, . . . , ek in Jr such that a− e1 − e2 − · · · − ek − b. Since the path
a − a1 − a2 − · · · − ak − b is minimal, it follows that a, e1, e2, . . . , ek, b are pairwise distinct and the
path a − e1 − e2 − · · · − ek − b is minimal. �

It follows from Lemma 2.1 that if d is the diameter of GE(Jr), then the diameter of G(Jr) is at most
d + 2.

2.1. Idempotent commuting graphs

In this subsection, we assume that n ≥ 3 and 2 ≤ r < n. Wewill show that, with some exceptions,
the diameter of GE(Jr) is 3 (Theorem 2.8).

Let e ∈ T (X) be an idempotent. Then there is a unique partition {A1, A2, . . . , Ak} of X and unique
elements x1 ∈ A1, x2 ∈ A2, . . . , xk ∈ Ak such that for every i, Aie = {xi}. The partition {A1, . . . , Ak} is
induced by the kernel of e, and {x1, . . . , xk} is the image of e. We will use the following notation for e:

e = (A1, x1⟩(A2, x2⟩ · · · (Ak, xk⟩. (2.1)
Note that (X, x⟩ is the constant idempotent with image {x}. The following result has been obtained
in [1,9] (see also [2]).

Lemma 2.2. Let e = (A1, x1⟩(A2, x2⟩ · · · (Ak, xk⟩ be an idempotent in T (X) and let b ∈ T (X). Then b
commutes with e if and only if for every i ∈ {1, . . . , k}, there is j ∈ {1, . . . , k} such that xib = xj and
Aib ⊆ Aj.

Wewill use Lemma 2.2 frequently, not always mentioning it explicitly. The following lemma is an
immediate consequence of Lemma 2.2.

Lemma 2.3. Let e, f ∈ Jr be idempotents and suppose there is x ∈ X such that x ∈ im(e) ∩ im(f ). Then
e − (X, x⟩ − f .

Lemma 2.4. Let e, f ∈ Jr be idempotents such that im(e) ∩ im(f ) = ∅. Suppose there is (x, y) ∈

im(e)× im(f ) such that (x, y) ∈ ker(e)∩ ker(f ). Then there is an idempotent g ∈ Jr such that e− g − f .
Proof. Let e = (A1, x1⟩ · · · (Ak, xk⟩ and f = (B1, y1⟩ · · · (Bm, ym⟩. We may assume that x = x1 and
y = y1. Since (x, y) ∈ ker(e) ∩ ker(f ), we have y ∈ A1 and x ∈ B1. Let g = (im(e), x⟩(X − im(e), y⟩.
Then g is in Jr since rank(g) = 2 and r ≥ 2. By Lemma 2.2, we have eg = ge (since y ∈ A1) and fg = gf
(since im(f ) ⊆ X − im(e) and x ∈ B1). Hence e − g − f . �

Lemma 2.5. Let e, f ∈ Jr be idempotents such that im(e) ∩ im(f ) = ∅. Then there are idempotents
g, h ∈ Jr such that e − g − h − f .
Proof. Let e = (A1, x1⟩ · · · (Ak, xk⟩ and f = (B1, y1⟩ · · · (Bm, ym⟩. Since {A1, . . . , Ak} is a partition of
X , there is i such that y1 ∈ Ai. We may assume that y1 ∈ A1. Let g = (X − {y1}, x1⟩({y1}, y1⟩ and
h = (X, y1⟩. Then g and h are in Jr (since r ≥ 2). By Lemma 2.2, eg = ge, gh = hg , and hf = fh. Thus
e − g − h − f . �

Lemma 2.6. Let m be a positive integer such that 2m ≤ n, σ be an m-cycle on {1, . . . ,m}, and

e = (A1, x1⟩(A2, x2⟩ · · · (Am, xm⟩ and f = (B1, y1⟩(B2, y2⟩ · · · (Bm, ym⟩

be idempotents in T (X) such that x1, . . . , xm, y1, . . . , ym are pairwise distinct, yi ∈ Ai, and xiσ ∈ Bi (1 ≤

i ≤ m). Suppose that g is an idempotent in T (X) such that e − g − f . Then:
(1) xjg = xj and yjg = yj for every j ∈ {1, . . . ,m}.
(2) If 1 ≤ i, j ≤ m are such that Ai = {xi, yi, z}, Bj = {yj, xjσ , z} and Ai ∩ Bj = {z}, then zg = z.
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Proof. Since eg = ge, x1g = xi for some i. Then xig = xi (since g is an idempotent). Thus, e − g − f
and Lemma 2.2 imply that yig = yi. Since xi = x(iσ−1)σ ∈ Biσ−1 and g commutes with f , we have
yiσ−1g = yiσ−1 . But now, since yiσ−1 ∈ Aiσ−1 and g commutes with e, we have xiσ−1g = xiσ−1 .
Continuing this way, we obtain xiσ−kg = xiσ−k and yiσ−kg = yiσ−k for every k ∈ {1, . . . ,m − 1}. Since
σ is an m-cycle, it follows that xjg = xj and yjg = yj for every j ∈ {1, . . . ,m}. We have proved (1).

Suppose Ai = {xi, yi, z}, Bj = {yj, xjσ , z}, and Ai ∩ Bj = {z}. Then zg ∈ {xi, yi, z} (since xig = xi and
eg = ge) and zg ∈ {yj, xjσ , z} (since yjg = yj and fg = gf ). Since Ai ∩ Bj = {z}, we have zg = z, which
proves (2). �

Lemma 2.7. Let n ≥ 4. If n ≠ 5 or r ≠ 4, then for some idempotents e, f ∈ Jr , there is no idempotent
g ∈ Jr such that e − g − f .
Proof. Let n ≠ 5 or r ≠ 4. Suppose that r < n − 1 or n is even. Then there is an integer m such that
m ≤ r and r < 2m ≤ n. Let e and f be idempotents from Lemma 2.6. Then e, f ∈ Jr since m ≤ r . But
every idempotent g ∈ T (X) such that e− g − f fixes at least 2m elements, and so g ∉ Jr since r < 2m.

Suppose that r = n − 1 and n = 2m + 1 is odd. Then n ≥ 7 since we are working under the
assumption that n ≠ 5 or r ≠ 4. We again consider idempotents e and f from Lemma 2.6, which
belong to Jr since m < n − 1 = r . Note that X = {x1, . . . , xm, y1, . . . , ym, z}. We may assume that
z ∈ Am and z ∈ B1. Since n ≥ 7, we have m ≥ 3. Thus, the intersection of Am = {xm, ym, z} and
B1 = {y1, x2, z} is {z}, and so zg = z by Lemma 2.6. Hence g = idX ∉ Jr , which concludes the
proof. �

Theorem 2.8. Let n ≥ 3 and let Jr be an ideal in T (X) such that 2 ≤ r < n. Then:
(1) If n = 3 or n = 5 and r = 4, then the diameter of GE(Jr) is 2.
(2) In all other cases, the diameter of GE(Jr) is 3.
Proof. Suppose n = 3 or n = 5 and r = 4. In these special cases, we obtained the desired result using
GRAPE [16], which is a package for GAP [17].

Let n ≥ 4 and suppose that n ≠ 5 or r ≠ 4. By Lemmas 2.3 and 2.5, the diameter ofGE(Jr) is atmost
3. By Lemma 2.7, the diameter of GE(Jr) is at least 3. Thus the diameter of GE(Jr) is 3, which concludes
the proof of (2). �

2.2. Commuting graphs of proper ideals of T (X)

In this subsection, we determine the diameter of every proper ideal of T (X). The ideal J1 consists
of the constant transformations, so G(J1) is the graph with n isolated vertices. Thus J1 is not connected
and its diameter is ∞. Therefore, for the remainder of this subsection, we assume that n ≥ 3 and
2 ≤ r < n.

It follows from Lemma 2.1 and Theorem 2.8 that the diameter of G(Jr) is at most 5. We will prove
that this diameter is in fact 5 except when n = 3 or n ∈ {5, 6, 7} and r = 4. It also follows from
Lemma 2.1 that if e and f are idempotents in Jr , then the distance between e and f in G(Jr) is the same
as the distance between e and f in GE(Jr). So no ambiguity will arise when we talk about the distance
between idempotents in Jr .

For a ∈ T (X) and x, y ∈ X , we will write x
a

→ y when xa = y.

Lemma 2.9. Let a, b ∈ T (X). Then ab = ba if and only if for all x, y ∈ X, x
a

→ y implies xb
a

→ yb.

Proof. Suppose ab = ba. Let x, y ∈ X with x
a

→ y, that is, y = xa. Then, since ab = ba, we have
yb = (xa)b = x(ab) = x(ba) = (xb)a, and so xb

a
→ yb.

Conversely, suppose x
a

→ y implies xb
a

→ yb for all x, y ∈ X . Let x ∈ X . Since x
a

→ xa, we have
xb

a
→ (xa)b. But this means that (xb)a = (xa)b, which implies ab = ba. �

Let a ∈ T (X). Suppose x1, . . . , xm are pairwise distinct elements of X such that xia = xi+1 (1 ≤ i <
m) and xma = x1. We will then say that a contains a cycle (x1 x2 . . . xm).

Lemma 2.10. Let a ∈ Jr be a transformation containing a unique cycle (x1 x2 . . . xm). Let e ∈ Jr be an
idempotent such that ae = ea. Then xie = xi for every i ∈ {1, . . . ,m}.
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Proof. Since a contains (x1 x2 . . . xm), we have x1
a

→ x2
a

→ · · ·
a

→ xm
a

→ x1. Thus, by Lemma 2.9,

x1e
a

→ x2e
a

→ · · ·
a

→ xme
a

→ x1e.

Thus (x1e x2e . . . xme) is a cycle in a, and is therefore equal to (x1 x2 . . . xm). Hence, for every i ∈

{1, . . . ,m}, there exists j ∈ {1, . . . ,m} such that xi = xje, and so xie = (xje)e = xj(ee) = xje = xi. �

To construct transformations a, b ∈ Jr such that the distance between a and b is 5, it will be
convenient to introduce the following notation.

Notation 2.11. Let x1, . . . , xm, z1, . . . , zp be pairwise distinct elements of X , and let s be fixed such
that 1 ≤ s < p. We will denote by

a = (∗ zs⟩(zp zp−1 . . . z1 x1⟩(x1 x2 . . . xm) (2.2)

the transformation a ∈ T (X) such that

zpa = zp−1, zp−1a = zp−2, . . . , z2a = z1, z1a = x1,
x1a = x2, x2a = x3, . . . , xm−1a = xm, xma = x1,

and ya = zs for all other y ∈ X . Suppose w ∈ X such that w ∉ {x1, . . . , xm, z1, . . . , zp} and 1 ≤ t < p
with t ≠ s. We will denote by

b = (∗ zs⟩(w zt⟩(zp zp−1 . . . z1 x1⟩(x1 x2 . . . xm) (2.3)

the transformation b ∈ T (X) that is defined as a in (2.2) except that wb = zt .

Lemma 2.12. Let a ∈ Jr be the transformation defined in (2.2) such that m + p > r. Let e ∈ Jr be an
idempotent such that ae = ea. Then:

(1) xie = xi for every i ∈ {1, . . . ,m}.
(2) zje = xm−j+1 for every j ∈ {1, . . . , p}.
(3) ye = xm−s for every y ∈ X − {x1, . . . , xm, z1, . . . , zp}.

(We assume that for every integer u, xu = xv , where v ∈ {1, . . . ,m} and u ≡ v(mod m).)

Proof. Statement (1) follows from Lemma 2.10. By the definition of a, we have

zp
a

→ zp−1
a

→ · · ·
a

→ z1
a

→ x1.

Thus, by Lemma 2.9,

zpe
a

→ zp−1e
a

→ · · ·
a

→ z1e
a

→ x1e = x1.

Since z1e
a

→ x1, either z1e = xm or z1e ∉ {x1, . . . , xm}. We claim that the latter is impossible.
Indeed, suppose z1e ∉ {x1, . . . , xm}. Then zje ∉ {x1, . . . , xm} for every j ∈ {1, . . . , p}. Thus the set
{x1, . . . , xm, z1e, . . . , zpe} is a subset of im(e) with m + p elements. But this implies that e ∉ Jr (since
m + p > r), which is a contradiction. We proved the claim. Thus z1e = xm. Now, z2e

a
→ z1e = xm,

which implies z2e = xm−1. Continuing this way, we obtain z3e = xm−2, z4e = xm−3, . . . . (A special
argument is required when j = qm + 1 for some q ≥ 1. Suppose q = 1, that is, j = m + 1. Then
zje

a
→ zj−1e = zme = x1, and so either zje = xm or zje = z1. But the latter is impossible since we

would have xm = z1e = zj(ee) = zje = z1, which is a contradiction. Hence, for j = m + 1, we have
zje = xm. Assuming, inductively, that zje = xm for j = qm + 1, we prove by a similar argument that
zje = xm for j = (q + 1)m + 1.) This concludes the proof of (2).

Let y ∈ X − {x1, . . . , xm, z1, . . . , zp}. Then y
a

→ zs, and so ye
a

→ zse = xm−s+1. Suppose s is not a
multiple of m. Then xm−s+1 ≠ x1, and so ye

a
→ xm−s+1 implies ye = xm−s. Suppose s is a multiple of

m. Then ye
a

→ xm−s+1 = x1, and so either ye = xm or ye = z1. But the latter is impossible since we
would have xm = z1e = y(ee) = ye = z1, which is a contradiction. Hence, for s that is a multiple of
m, we have ye = xm, which concludes the proof of (3). �
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The proof of the following lemma is almost identical to the proof of Lemma 2.12.

Lemma 2.13. Let b ∈ Jr be the transformation defined in (2.3) such that m + p > r. Let e ∈ Jr be an
idempotent such that be = eb. Then:

(1) xie = xi for every i ∈ {1, . . . ,m}.
(2) zje = xm−j+1 for every j ∈ {1, . . . , p}.
(3) we = xm−t .
(4) ye = xm−s for every y ∈ X − {x1, . . . , xm, z1, . . . , zp, w}.

Lemma 2.14. Let n ∈ {5, 6, 7} and r = 4. Then there are a, b ∈ J4 such that the distance between a and
b in G(J4) is at least 4.

Proof. Let a = (∗ 4⟩(3 4 1⟩(1 2) and b = (∗ 1⟩(2 1 3⟩(3 4) (see Notation 2.11). Suppose e and f are
idempotents in J4 such that a − e and f − b. Then, by Lemma 2.12, e = ({. . . , 3, 1}, 1⟩({4, 2}, 2⟩ and
f = ({. . . , 2, 3}, 3⟩({1, 4}, 4⟩, where ‘‘. . .’’ denotes ‘‘5’’ (if n = 5), ‘‘5, 6’’ (if n = 6), and ‘‘5, 6, 7’’ (if
n = 7). Then e and f do not commute, and so d(e, f ) ≥ 2. Thus d(a, b) ≥ 4 by Lemma 2.1. �

Lemma 2.15. Let n ∈ {6, 7} and r = 4. Let a ∈ J4 be a transformation that is not an idempotent. Then
there is an idempotent e ∈ J4 commuting with a such that rank(e) ≠ 3 or rank(e) = 3 and ye−1

= {y}
for some y ∈ im(e).

Proof. If a fixes some x ∈ X , then a commutes with e = (X, x⟩ of rank 1. Suppose a has no fixed
points. Let p be a positive integer such that ap is an idempotent. If a contains a unique cycle (x1 x2),
then e = ap has rank 2. If a contains a unique cycle (x1 x2 x3 x4) or two cycles (x1 x2) and (y1 y2) with
{x1, x2} ∩ {y1, y2} = ∅, then e = ap has rank 4.

Suppose a contains a unique cycle (x1 x2 x3). Define e ∈ T (X) as follows. Set xie = xi, 1 ≤ i ≤ 3.
Suppose there are y, z ∈ X − {x1, x2, x3} such that ya = z and za = xi for some i. We may assume

that za = x1. Define ze = x3 and ye = x2. Let u and w be the two remaining elements in X (only u
remains when n = 6). Since rank(a) ≤ 4, we have {u, w}a ⊆ {z, x1, x2, x3}. Suppose ua = wa = z.
Define ue = x2 and we = x2. Then e is an idempotent of rank 3 such that ae = ea and x1e−1

= {x1}.
Suppose ua or wa is in {x1, x2, x3}, say ua ∈ {x1, x2, x3}. Define ue = u, and we = xi−1 (if wa = xi),
where xi−1 = x3 if i = 1, or we = x2 (if wa = z). Then e is an idempotent of rank 4 such that ae = ea.

Suppose that for every y ∈ X − {x1, x2, x3}, ya ∈ {x1, x2, x3}. Select z ∈ X − {x1, x2, x3} and define
ze = z. For every y ∈ X − {z, x1, x2, x3}, define ye = xi−1 if ya = xi. Then e is an idempotent of rank 4
such that ae = ea.

Since a ∈ J4, we have exhausted all possibilities, and the result follows. �

Lemma 2.16. Let n ∈ {6, 7} and r = 4. Then for all a, b ∈ J4, the distance between a and b in G(J4) is at
most 4.

Proof. Let a, b ∈ J4. If a or b is an idempotent, then d(a, b) ≤ 4 by Lemma 2.1 and Theorem 2.8.
Suppose a and b are not idempotents. By Lemma 2.15, there are idempotents e, f ∈ J4 such that
ae = ea, bf = fb, if rank(e) = 3, then ye−1

= {y} for some y ∈ im(e), and if rank(f ) = 3, then
yf −1

= {y} for some y ∈ im(f ). We claim that there is an idempotent g ∈ J4 such that e − g − f .
If im(e) ∩ im(f ) ≠ ∅, then such an idempotent g exists by Lemma 2.3. Suppose im(e) ∩ im(f ) = ∅.
Then, since n ∈ {6, 7}, both rank(e) + rank(f ) ≤ 7. We may assume that rank(e) ≤ rank(f ). There
are six possible cases.
Case 1. rank(e) = 1.

Then e = (X, x⟩ for some x ∈ X . Let y = xf . Then (x, y) ∈ im(e)×im(f ) and (x, y) ∈ ker(e)∩ker(f ).
Thus, by Lemma 2.4, there is an idempotent g ∈ J4 such that e − g − f .
Case 2. rank(e) = 2 and rank(f ) = 2.

We may assume that e = (A1, 1⟩(A2, 2⟩ and f = (B1, 3⟩(B2, 4⟩. If {1, 2} ⊆ Bi or {3, 4} ⊆ Ai for
some i, then we can find (x, y) ∈ im(e) × im(f ) such that (x, y) ∈ ker(e) ∩ ker(f ), and so a desired
idempotent g exists by Lemma 2.4. Otherwise, we may assume that 3 ∈ A1 and 4 ∈ A2. If 1 ∈ B1 or
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2 ∈ B2, then Lemma 2.4 can be applied again. So suppose 1 ∈ B2 and 2 ∈ B1. Now we have

e = ({. . . , 3, 1}, 1⟩({. . . , 4, 2}, 2⟩ and f = ({. . . , 2, 3}, 3⟩({. . . , 1, 4}, 4⟩.

We define g ∈ T (X) as follows. Set xg = x for every x ∈ {1, 2, 3, 4}. Let x ∈ {5, 6, 7} (x ∈ {5, 6} if
n = 6). If x ∈ A1 ∩ B1, define xg = 3; if x ∈ A1 ∩ B2, define xg = 1; if x ∈ A2 ∩ B1, define xg = 2;
finally, if x ∈ A2 ∩ B2, define xg = 4. Then g is an idempotent of rank 4 and e − g − f .
Case 3. rank(e) = 2 and rank(f ) = 3.

We may assume that e = (A1, 1⟩(A2, 2⟩ and f = (B1, 3⟩(B2, 4⟩(B3, 5⟩. If {3, 4, 5} ⊆ A1 or
{3, 4, 5} ⊆ A2, then Lemma 2.4 applies. Otherwise, we may assume that 3, 4 ∈ A1 and 5 ∈ A2. If
1 ∈ B1 ∪ B2 or 2 ∈ B3, then Lemma 2.4 applies again. So suppose 1 ∈ B3 and 2 ∈ B1 ∪ B2. We may
assume that 2 ∈ B1. Note that if z ∈ {6, 7}, then z cannot be in B2 since z ∈ B2 would imply that there
is no y ∈ im(f ) such that yf −1

= {y}. So now

e = ({. . . , 3, 4, 1}, 1⟩({. . . , 5, 2}, 2⟩ and f = ({. . . , 2, 3}, 3⟩({4}, 4⟩({. . . , 1, 5}, 5⟩.

We define g ∈ T (X) as follows. Set xg = x for every x ∈ {1, 2, 3, 5} and 4g = 3. Let z ∈ {6, 7}. If
z ∈ A1 ∩ B1, define zg = 3; if z ∈ A1 ∩ B3, define zg = 1; if z ∈ A2 ∩ B1, define zg = 2; finally, if
z ∈ A2 ∩ B3, define zg = 5. Then g is an idempotent of rank 4 and e − g − f .
Case 4. rank(e) = 2 and rank(f ) = 4.

We may assume that e = (A1, 1⟩(A2, 2⟩ and f = (B1, 3⟩(B2, 4⟩(B3, 5⟩(B4, 6⟩. If {3, 4, 5, 6} ⊆ A1 or
{3, 4, 5, 6} ⊆ A2, then Lemma 2.4 applies. Otherwise, we may assume that 3, 4, 5 ∈ A1 and 6 ∈ A2 or
3, 4 ∈ A1 and 5, 6 ∈ A2.

Suppose 3, 4, 5 ∈ A1 and 6 ∈ A2. If 1 ∈ B1 ∪ B2 ∪ B3 or 2 ∈ B4, then Lemma 2.4 applies. So suppose
1 ∈ B4, and we may assume that 2 ∈ B1. Now we have

e = ({. . . , 3, 4, 5, 1}, 1⟩({. . . , 6, 2}, 2⟩,
f = ({. . . , 2, 3}, 3⟩({. . . , 4}, 4⟩({. . . , 5}, 5⟩({. . . , 1, 6}, 6⟩.

We define g ∈ T (X) as follows. Set xg = x for every x ∈ {1, 2, 3, 6}, 4g = 3, and 5g = 3. Define
7g = 3 if 7 ∈ A1 and 7 ∈ B1 ∪ B2 ∪ B3; 7g = 1 if 7 ∈ A1 and 7 ∈ B4; 7g = 2 if 7 ∈ A2 and
7 ∈ B1 ∪ B2 ∪ B3; and 7g = 6 if 7 ∈ A2 and 7 ∈ B4. Then g is an idempotent of rank 4 and e − g − f .
The argument in the case when 3, 4 ∈ A1 and 5, 6 ∈ A2 is similar.
Case 5. rank(e) = 3 and rank(f ) = 3.

Since both e and f have an element in their rangewhose preimage is the singleton, wemay assume
that e = (A1, 1⟩(A2, 2⟩({3}, 3⟩ and f = (B1, 4⟩(B2, 5⟩({6}, 6⟩. If {1, 2} ⊆ Bi or {4, 5} ⊆ Ai for some i,
then Lemma 2.4 applies. Otherwise, we may assume that 4 ∈ A1 and 5 ∈ A2. If 1 ∈ B1 or 2 ∈ B2, then
Lemma 2.4 applies again. So suppose 1 ∈ B2 and 2 ∈ B1. So now

e = ({. . . , 4, 1}, 1⟩({. . . , 5, 2}, 2⟩({3}, 3⟩ and f = ({. . . , 2, 4}, 4⟩({. . . , 1, 5}, 5⟩({6}, 6⟩.

We define g ∈ T (X) as follows. Set xg = x for every x ∈ {1, 2, 4, 5}, 3g = 1, and 6g = 4. Define
7g = 4 if 7 ∈ A1 and 7 ∈ B1; 7g = 1 if 7 ∈ A1 and 7 ∈ B2; 7g = 2 if 7 ∈ A2 and 7 ∈ B1; and 7g = 5 if
7 ∈ A2 and 7 ∈ B2. Then g is an idempotent of rank 4 and e − g − f .
Case 6. rank(e) = 3 and rank(f ) = 4.

We may assume that e = (A1, 1⟩(A2, 2⟩({3}, 3⟩ and f = (B1, 4⟩(B2, 5⟩(B3, 6⟩({7}, 7⟩. If {4, 5, 6} ⊆

A1 or {4, 5, 6} ⊆ A2, then Lemma2.4 applies. Sowemay assume that 4, 5 ∈ A1 and6 ∈ A2. If 1 ∈ B1∪B2
or 2 ∈ B3, then Lemma 2.4 applies again. So we may assume that 1 ∈ B3 and 2 ∈ B1. So now

e = ({. . . , 4, 5, 1}, 1⟩({. . . , 6, 2}, 2⟩({3}, 3⟩,
f = ({. . . , 2, 4}, 4⟩({. . . , 5}, 5⟩({. . . , 1, 6}, 6⟩({7}, 7⟩.

We define g ∈ T (X) as follows. Set xg = x for every x ∈ {1, 2, 4, 6} and 5g = 4. Define 7g = 4 if
7 ∈ A1; 7g = 6 if 7 ∈ A2; 3g = 3 if 3 ∈ B1 ∪ A2; and 3g = 1 if 3 ∈ B3. Then g is an idempotent of rank
4 and e − g − f . �

Theorem 2.17. Let n ≥ 3 and let Jr be an ideal in T (X) such that 2 ≤ r < n. Then:
(1) If n = 3 or n ∈ {5, 6, 7} and r = 4, then the diameter of G(Jr) is 4.
(2) In all other cases, the diameter of G(Jr) is 5.
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Proof. Let n = 3. Then the diameter of G(J2) is at most 4 by Lemma 2.1 and Theorem 2.8. On the other
hand, consider a = (3 1⟩(1 2) and b = (2 1⟩(1 3) in J2. Suppose e and f are idempotents in J2 such that
a− e and f − b. By Lemma 2.12, e = ({1}, 1⟩({3, 2}, 2⟩ and f = ({1}, 1⟩({2, 3}, 3⟩. Then e and f do not
commute, and so d(e, f ) ≥ 2. Thus d(a, b) ≥ 4 by Lemma 2.1, and so the diameter of G(J2) is at least 4.

Let n ∈ {5, 6, 7} and r = 4. If n = 5, then the diameter of G(J4) is at least 4 (by Lemma 2.14) and
at most 4 (by Lemma 2.1 and Theorem 2.8). If n ∈ {6, 7}, then the diameter of G(J4) is at least 4 (by
Lemma 2.14) and at most 4 (by Lemma 2.16). We have proved (1).

Let n ≥ 4 and suppose that n ∉ {5, 6, 7} or r ≠ 4. Then the diameter of G(Jr) is at most 5 by
Lemma 2.1 and Theorem 2.8. It remains to find a, b ∈ Jr such that the distance between a and b in
G(Jr) is at least 5. We consider four possible cases.
Case 1. r = 2m − 1 for somem ≥ 2.

Then 2 ≤ m < r < 2m ≤ n. Let x1, . . . , xm, y1, . . . , ym be pairwise distinct elements of X . Let

a = (∗ y2⟩(y1 y2 . . . ym x1⟩(x1 x2 . . . xm) and b = (∗ x3⟩(x2 x3 . . . xm−1 x1 y1⟩(y1 y2 . . . ym)

(see Notation 2.11) and note that a, b ∈ Jr and ab ≠ ba. Then, by Lemma 2.1, there are idempotents
e1, . . . , ek ∈ Jr (k ≥ 1) such that a − e1 − · · · − ek − b is a minimal path in G(Jr) from a to b. By
Lemma 2.12,

e1 = (A1, x1⟩(A2, x2⟩ · · · (Am, xm⟩ and ek = (B1, y1⟩(B2, y2⟩ · · · (Bm, ym⟩,

where yi ∈ Ai (1 ≤ i ≤ m), xi+1 ∈ Bi (1 ≤ i < m), and x1 ∈ Bm. Let g ∈ T (X) be an idempo-
tent such that e1 − g − ek. By Lemma 2.6, xjg = xj and yjg = yj for every j ∈ {1, . . . ,m}. Hence
rank(g) ≥ 2m > r , and so g ∉ Jr . It follows that the distance between e1 and ek is at least 3, and so
the distance between a and b is at least 5.
Case 2. r = 2m for somem ≥ 3.

Then 3 ≤ m < r = 2m < n. Let x1, . . . , xm, y1, . . . , ym, z be pairwise distinct elements of X . Let

a = (∗ y2⟩(z y1 y2 . . . ym x1⟩(x1 x2 . . . xm),

b = (∗ x1⟩(z x3⟩(x2 x3 . . . xm x1 y1⟩(y1 y2 . . . ym)

(see Notation 2.11) and note that a, b ∈ Jr and ab ≠ ba. Then, by Lemma 2.1, there are idempotents
e1, . . . , ek ∈ Jr (k ≥ 1) such that a − e1 − · · · − ek − b is a minimal path in G(Jr) from a to b. By
Lemma 2.12,

e1 = (A1, x1⟩(A2, x2⟩ · · · (Am, xm⟩ and ek = (B1, y1⟩(B2, y2⟩ · · · (Bm, ym⟩,

where yi ∈ Ai (1 ≤ i ≤ m), xi+1 ∈ Bi (1 ≤ i < m), x1 ∈ Bm, Am = {xm, ym, z}, and B1 = {y1, x2, z}.
Let g ∈ T (X) be an idempotent such that e1 − g − ek. By Lemma 2.6, xjg = xj and yjg = yj for every
j ∈ {1, . . . ,m}, and zg = z. Hence rank(g) ≥ 2m + 1 > r , and so g ∉ Jr . It follows that the distance
between e1 and ek is at least 3, and so the distance between a and b is at least 5.
Case 3. r = 4.

Since we are working under the assumption that n ∉ {5, 6, 7} or r ≠ 4, we have n ∉ {5, 6, 7}.
Thus n ≥ 8 (since r ≤ n − 1). Let

a =


1 2 3 4 5 6 7 8 9 · · · n
2 3 4 1 2 3 4 1 1 · · · 1


and

b =


1 2 3 4 5 6 7 8 9 · · · n
5 6 7 8 6 7 8 5 5 · · · 5


.

Note that a, b ∈ J4, ab ≠ ba, (1 2 3 4) is a unique cycle in a, and (5 6 7 8) is a unique cycle in b. By
Lemma 2.1, there are idempotents e1, . . . , ek ∈ J4 (k ≥ 1) such that a− e1 − · · ·− ek − b is a minimal
path in G(J4) from a to b. By Lemma 2.10, ie1 = i and (4 + i)ek = 4 + i for every i ∈ {1, 2, 3, 4}.
By Lemma 2.9, 5e1 = 1 or 5e1 = 5. But the latter is impossible since with 5e1 = 5 we would have
rank(e1) ≥ 5. Similarly, we obtain 6e1 = 2, 7e1 = 3, 8e1 = 4, 2ek = 5, 3ek = 6, 4ek = 7, and 1ek = 8.
Let g ∈ T (X) be an idempotent such that e1 − g − ek. By Lemma 2.6, jg = j for every j ∈ {1, . . . , 8}.
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Hence rank(g) ≥ 8 > r , and so g ∉ J4. It follows that the distance between e1 and ek is at least 3, and
so the distance between a and b is at least 5.
Case 4. r = 2.

In this case we let

a =


1 2 3 4 5 · · · n
2 1 2 1 1 · · · 1


and b =


1 2 3 4 5 · · · n
3 4 4 3 3 · · · 3


.

Note that a, b ∈ J2, ab ≠ ba, (1 2) is a unique cycle in a, and (3 4) is a unique cycle in b. By Lemma 2.1,
there are idempotents e1, . . . , ek ∈ J2 (k ≥ 1) such that a − e1 − · · · − ek − b is a minimal path in
G(J2) from a to b. By Lemma 2.10, 1e1 = 1, 2e1 = 2, 3ek = 3, and 4ek = 4. By Lemma 2.9, 3e1 = 1
or 3e1 = 3. But the latter is impossible since with 3e1 = 3 we would have rank(e1) ≥ 3. Again, by
Lemma 2.9, 4e1 = 2 or 4e1 = y for some y ∈ {4, 5, . . . , n}. But the latter is impossible since wewould
have ye1 = y and again rank(e1) would be at least 3. Similarly, we obtain 2ek = 3, and 1ek = 4. Let
g ∈ T (X) be an idempotent such that e1 −g − ek. By Lemma 2.6, jg = j for every j ∈ {1, . . . , 4}. Hence
rank(g) ≥ 4 > r , and so g ∉ J2. It follows that the distance between e1 and ek is at least 3, and so the
distance between a and b is at least 5.

Thus the diameter of G(Jr) is at least 5, which concludes the proof of (2). �

2.3. The commuting graph of T (X)

Let X be a finite set with |X | = n. It has been proved in [8, Theorem 3.1] that if n and n − 1 are not
prime, then the diameter of the commuting graph of Sym(X) is at most 5, and that the bound is sharp
since the diameter of G(Sym(X)) is 5 when n = 9. In this subsection, we determine the exact value of
the diameter of the commuting graph of T (X) for every n ≥ 2.

Throughout this subsection, we assume that X is a finite set with n ≥ 2 elements.

Lemma 2.18. Let n ≥ 4 be composite. Let a, f ∈ T (X) such that a, f ≠ idX , a ∈ Sym(X), and f is an
idempotent. Then d(a, f ) ≤ 4.

Proof. Fix x ∈ im(f ) and a cycle (x1 . . . xm) of a such that x ∈ {x1, . . . , xm}. Consider three cases.
Case 1. a has a cycle (y1 . . . yk) such that k does not dividem.

Then am is different from idX and it fixes x. Thus a − am − (X, x⟩ − f , and so d(a, f ) ≤ 3.
Case 2. a has at least two cycles and for every cycle (y1 . . . yk) of a, k divides m.

Suppose there is z ∈ im(f ) such that z ∈ {y1, . . . , yk} for some cycle (y1 . . . yk) of a different from
(x1 . . . xm). Since k divides m, there is a positive integer t such that m = tk. Define e ∈ T (X) by:

x1e = y1, . . . , xke = yk, xk+1e = y1, . . . , x2ke = yk, . . . , x(t−1)k+1e = y1, . . . , xtke = yk, (2.4)

and ye = y for all other y ∈ X . Then e is an idempotent such that ae = ea and z ∈ im(e). Thus, by
Lemma 2.3, a − e − (X, z⟩ − f , and so d(a, f ) ≤ 3.

Suppose that im(f ) ⊆ {x1, . . . , xm}. Consider any cycle (y1 . . . yk) of a different from (x1 . . . xm).
Since im(f ) ⊆ {x1, . . . , xm}, y1f = xi for some i. Wemay assume that y1f = x1. Define an idempotent
e exactly as in (2.4). Then im(e) ∩ im(f ) = ∅, (y1, x1) ∈ im(e) × im(f ), and (y1, x1) ∈ ker(e) ∩ ker(f ).
Thus, by Lemma 2.4, there is an idempotent g ∈ T (X)−{idX } such that e− g − f . Hence a− e− g − f ,
and so d(a, f ) ≤ 3.
Case 3. a is an n-cycle.

Since n is composite, there is a divisor k of n such that 1 < k < n. Then ak ≠ idX is a permutation
with k ≥ 2 cycles, each of lengthm = n/k. By Case 2, d(ak, f ) ≤ 3, and so d(a, f ) ≤ 4. �

Lemma 2.19. Let n ≥ 4 be composite. Let a, b ∈ T (X) such that a, b ≠ idX and a ∈ Sym(X). Then
d(a, b) ≤ 5.

Proof. Suppose b ∉ Sym(X). Then bk is an idempotent different from idX for some k ≥ 1. By
Lemma 2.18, d(a, bk) ≤ 4, and so d(a, b) ≤ 5.
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Suppose b ∈ Sym(X). Suppose n − 1 is not prime. Then, by [8, Theorem 3.1], there is a path from
a to b in G(Sym(X)) of length at most 5. Such a path is also a path in G(T (X)), and so d(a, b) ≤ 5.
Suppose p = n− 1 is prime. Then the proof of [8, Theorem 3.1] still works for a and b unless ap = idX
or bp = idX . (See also [8, Lemma 3.3] and its proof.) Thus, if ap ≠ idX and bp ≠ idX , then there is a path
from a to b in G(Sym(X)) of length at most 5, and so d(a, b) ≤ 5. Suppose ap = idX or bp = idX . We
may assume that bp = idX . Then b is a cycle of length p, that is, b = (x1 . . . xp)(x). Thus b commutes
with the constant idempotent f = (X, x⟩. By Lemma 2.18, d(a, f ) ≤ 4, and so d(a, b) ≤ 5. �

Lemma 2.20. Let X = {x1, . . . , xm, y1, . . . , yk}, a ∈ Sym(X), and b = (y1 . . . yk x1⟩(x1 . . . xm). If
ab = ba then a = idX .

Proof. Suppose ab = ba. By Lemma 2.9,

x1a
b

→ x2a
b

→ · · ·
b

→ xma
b

→ x1a and y1a
b

→ y2a
b

→ · · ·
b

→ yka
b

→ x1a. (2.5)

Since (x1 x2 . . . xm) is a unique cycle in b, (2.5) implies that

x1a = xq, x2a = xq+1, . . . , xma = xq+m−1, (2.6)

where q ∈ {1, . . . ,m} (xq+i = xq+i−m if q + i > m). Thus x1a = xj for some j. Since yk
b

→ x1 and

xm
b

→ x1, we have yka
b

→ x1a = xj and xma
b

→ x1a = xj. Suppose j ≥ 2. Then xjb−1
= {xj−1}, and

so yka = xj−1 = xma. But this implies yk = xm (since a is injective), which is a contradiction. Hence
j = 1, and so x1a = x1. But then xia = xi for all i by (2.6).

Since yka
b

→ x1a = x1, we have yka = yk since x1b−1
= {yk, xm}. Let i ∈ {1, . . . , k−1} and suppose

yi+1a = yi+1. Then yia = yi since yia
b

→ yi+1a = yi+1 and yi+1b−1
= {yi+1}. It follows that yia = yi

for all i ∈ {1, . . . , k}. �

Lemma 2.21. Let m be a positive integer such that 2m ≤ n, σ be anm-cycle on {1, . . . ,m}, a ∈ Sym(X),
and

e = (A1, x1⟩(A2, x2⟩ · · · (Am, xm⟩ and f = (B1, y1⟩(B2, y2⟩ · · · (Bm, ym⟩

be idempotents in T (X) such that x1, . . . , xm, y1, . . . , ym are pairwise distinct, yi ∈ Ai, and xiσ ∈ Bi (1 ≤

i ≤ m). Then:

(1) Suppose X = {x1, . . . , xm, y1, . . . , ym, z} and z ∈ Ai ∩ Bj such that Ai ∩ Bj = {z}. If e − a − f , then
a = idX .

(2) Suppose X = {x1, . . . , xm, y1, . . . , ym, z, w}, z ∈ Ai ∩ Bj such that Ai ∩ Bj = {z}, and w ∈ As ∩ Bt
such that As ∩ Bt = {w}, where s ≠ i and t ≠ j. If e − a − f , then a = idX .

Proof. To prove (1), suppose e−a− f and note that Ai = {xi, yi, z} and Bj = {yj, xjσ , z}. By Lemma 2.2,
there is p ∈ {1, . . . ,m} such that xia = xp and Aia ⊆ Ap. Suppose p ≠ i. Then Ap = {xp, yp}, and so
Aia cannot be a subset of Ap since a is injective. It follows that p = i, that is, xia = xi and Aia ⊆ Ai.
Similarly, yja = yj and Bja ⊆ Bj. Thus za ∈ Ai ∩ Bj = {z}, and so za = z. Hence, since a is injective,
yia = yi.

We have proved that xia = xi, yia = yi, and za = z. We have Bi = {yi, xiσ } or Bi = {yi, xiσ , z}. Since
yia = yi, we have Bia ⊆ Bi by Lemma 2.2. Since za = z and a is injective, it follows that xiσ a = xiσ .
By the foregoing argument applied to Aiσ = {xiσ , yiσ }, we obtain yiσ a = yiσ . Continuing this way, we
obtain xiσ ka = xiσ k and yiσ ka = yiσ k for every k ∈ {1, . . . ,m−1}. Since σ is anm-cycle, it follows that
xja = xj and yjg = yj for every j ∈ {1, . . . ,m}. Hence a = idX . We have proved (1). The proof of (2) is
similar. �

Theorem 2.22. Let X be a finite set with n ≥ 2 elements. Then:

(1) If n is prime, then G(T (X)) is not connected.
(2) If n = 4, then the diameter of G(T (X)) is 4.
(3) If n ≥ 6 is composite, then the diameter of G(T (X)) is 5.
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Proof. Suppose n = p is prime. Consider a p-cycle a = (x1 x2 . . . xp) and let b ∈ T (X) be such that
b ≠ idX and ab = ba. Let xq = x1b. Then, by Lemma 2.9, xib = xq+i for every i ∈ {1, . . . , p} (where
xq+i = xq+i−m if q+ i > m). Thus b = aq, and so, since p is prime, b is also a p-cycle. It follows that if c
is a vertex of G(T (X)) that is not a p-cycle, then there is no path in G(T (X)) from a to c. Hence G(T (X))
is not connected. We have proved (1).

We checked the case n = 4 directly using GRAPE [16] through GAP [17]. We found that, when
|X | = 4, the diameter of G(T (X)) is 4.

Suppose n ≥ 6 is composite. Let a, b ∈ T (X) such that a, b ≠ idX . If a ∈ Sym(X) or b ∈ Sym(X),
then d(a, b) ≤ 5 by Lemma 2.19. If a, b ∉ Sym(X), then a, b ∈ Jn−1, and so d(a, b) ≤ 5 by
Theorem 2.17. Hence the diameter of G(T (X)) is at most 5. It remains to find a, b ∈ T (X) − {idX }

such that d(a, b) ≥ 5.
For n ∈ {6, 8}, we employed GAP [17]. When n = 6, we found that the distance between the

6-cycle a = (1 2 3 4 5 6) and b =


1 2 3 4 5 6
2 3 5 1 2 4


in G(T (X)) is at least 5. And when n = 8, the

distance between the 8-cycle a = (1 2 3 4 5 6 7 8) and b =


1 2 3 4 5 6 7 8
2 3 1 1 4 8 6 5


in G(T (X)) is

at least 5.
To verify this with GAP, we used the following sequence of arguments and computer calculations:

1. By Lemma 2.1, if there exists a path a − c1 − c2 − · · · − ck − b, then there exists a path
a − e1 − e2 − · · · − ek − b, where each ei is either an idempotent or a permutation;

2. Let E be the set idempotents of T (X) − {idX } and let G = Sym(X) − {idX }. For A ⊆ T (X), let
C(A) = {f ∈ E ∪ G : (∃a∈A)af = fa};

3. Calculate C(C({a})) and C({b});
4. Verify that for all c ∈ C(C({a})) and all d ∈ C({b}), cd ≠ dc;
5. If therewere a path a−c1−c2−c3−b from a to b, thenwewould have c2 ∈ C(C({a})), c3 ∈ C({b}),

and c2c3 = c3c2. But, by 4., there are no such c2 and c3, and it follows that the distance between a
and b is at least 5.

Let n ≥ 9 be composite. We consider two cases.
Case 1. n = 2m + 1 is odd (m ≥ 4).

Let X = {x1, . . . , xm, y1, . . . , ym, z}. Consider

a = (z y1 y2 . . . ym x1⟩(x1 x2 . . . xm) and b = (x2 x3 . . . xm x1 z y2⟩(y1 y2 . . . ym).

Let λ be a minimal path in G(T (X)) from a to b. By Lemma 2.20, there is no g ∈ Sym(X) such that
g ≠ idX and ag = ga or bg = gb. Thus, by the proof of Lemma 2.1, λ = a − e1 − · · · − ek − b, where
e1 and ek are idempotents. By Lemma 2.12,

e1 = (A1, x1⟩(A2, x2⟩ · · · (Am, xm⟩ and ek = (B1, y1⟩(B2, y2⟩ · · · (Bm, ym⟩,

where yi ∈ Ai (1 ≤ i ≤ m), xi+1 ∈ Bi (1 ≤ i < m), x1 ∈ Bm, Am = {xm, ym, z}, and B1 = {y1, x2, z}.
Since m ≥ 4, Am ∩ B1 = {z}. Thus, by Lemma 2.21, there is no g ∈ Sym(X) such that g ≠ idX and
e1 − g − ek. Hence, if λ contains an element g ∈ Sym(X), then the length of λ is at least 5. Suppose λ
does not contain any permutations. Then λ is a path in Jn−1 and we may assume that all vertices in λ
except a and b are idempotents (by Lemma 2.12). By Lemma 2.6, there is no idempotent f ∈ Jn−1 such
that e1 − f − ek. (Here, them-cycle that occurs in Lemmas 2.6 and 2.21 is σ = (1 2 . . .m).) Hence the
length of λ is at least 5.
Case 2. n = 2m + 2 is even (m ≥ 4).

Let X = {x1, . . . , xm, y1, . . . , ym, z, w}. Consider

a = (z y1 y2 . . . ym w x2⟩(x1 x2 . . . xm) and b = (w x2 x3 . . . xm−2 xm x1 xm−1 y2⟩(y1 y2 . . . ym).

Let λ be a minimal path in G(T (X)) from a to b. By Lemma 2.20, there is no g ∈ Sym(X) such that
g ≠ idX and ag = ga or bg = gb. Thus, by the proof of Lemma 2.1, λ = a − e1 − · · · − ek − b, where
e1 and ek are idempotents. By Lemma 2.12,

e1 = (A1, x1⟩(A2, x2⟩ · · · (Am, xm⟩ and ek = (B1, y1⟩(B2, y2⟩ · · · (Bm, ym⟩,
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Table 1
Images of the generators.

im(a1) y0 x1 y1
im(a2) y1 x2 y2
im(a3) y2 x3 y3
im(a4) y3 x4 y4
im(b1) y4 u1 v1
im(b2) v1 u2 v2
im(b3) v2 u3 v3
im(b4) v3 u4 v4
im(e1) v4 r s

where yi ∈ Ai (1 ≤ i ≤ m), xi+1 ∈ Bi (1 ≤ i ≤ m − 3), xm ∈ Bm−2, x1 ∈ Bm−1, xm−1 ∈ Bm, A1 =

{x1, y1, w}, Am = {xm, ym, z}, B1 = {y1, x2, z}, and Bm = {ym, xm−1, w}. Since m ≥ 4, Am ∩ B1 = {z}
and A1 ∩ Bm = {w}. Thus, by Lemma 2.21, there is no g ∈ Sym(X) such that g ≠ idX and e1 − g − ek.
Hence, as in Case 1, the length of λ is at least 5. (Here, them-cycle that occurs in Lemmas 2.6 and 2.21
is σ = (1, 2, . . . ,m − 3,m − 2,m,m − 1).)

Hence, if n ≥ 6 is composite, then the diameter of G(T (X)) is 5. This concludes the proof. �

3. Minimal left paths

In this section, we prove that for every integer n ≥ 4, there is a band S with knit degree n. We will
show how to construct such an S as a subsemigroup of T (X) for some finite set X .

Let S be a finite non-commutative semigroup. Recall that a path a1 − a2 −· · ·− am in G(S) is called
a left path (or l-path) if a1 ≠ am and a1ai = amai for every i ∈ {1, . . . ,m}. If there is any l-path in
G(S), we define the knit degree of S, denoted kd(S), to be the length of a shortest l-path in G(S). We
say that an l-path λ from a to b inG(S) is aminimal l-path if there is no l-path from a to b that is shorter
than λ.

3.1. The even case

In this subsection, we will construct a band of knit degree n where n ≥ 4 is even. For x ∈ X , we
denote by cx the constant transformation with image {x}. The following lemma is obvious.

Lemma 3.1. Let cx, cy, e ∈ T (X) such that e is an idempotent. Then:
(1) cxe = ecx if and only if x ∈ im(e).
(2) cxe = cye if and only if (x, y) ∈ ker(e).

Now, given an even n ≥ 4, we will construct a band S such that kd(S) = n. We will explain the
construction using n = 8 as an example. The band S will be a subsemigroup of T (X), where

X = {y0, y1, y2, y3, y4 = v0, v1, v2, v3, v4, x1, x2, x3, x4, u1, u2, u3, u4, r, s},
and it will be generated by idempotent transformations a1, a2, a3, a4, b1, b2, b3, b4, e1, whose images
are defined by Table 1.

We will define the kernels in such a way that the generators with the same subscript will have the
same kernel. For example, ker(a1) = ker(b1) = ker(e1) and ker(a2) = ker(b2). Let i ∈ {2, 3, 4}. The
kernel of ai will have the following three classes (elements of the partition X/ker(ai)):

Class-1 = im(ai+1) ∪ · · · ∪ im(a4) ∪ im(b1) ∪ · · · ∪ im(bi−1),

Class-2 = im(bi+1) ∪ · · · ∪ im(b4) ∪ im(e1) ∪ im(a1) ∪ · · · ∪ im(ai−1),

Class-3 = {xi, ui}.

For example, ker(a2) has the following classes:
Class-1 = {y2, x3, y3, x4, y4, u1, v1},

Class-2 = {v2, u3, v3, u4, v4, r, s, y0, x1, y1},
Class-3 = {x2, u2}.
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We define the kernel of a1 as follows:

Class-1 = im(a2) ∪ im(a3) ∪ im(a4) ∪ {s} = {y1, x2, y2, x3, y3, x4, y4, s},
Class-2 = im(b2) ∪ im(b3) ∪ im(b4) ∪ {y0} = {v1, u2, v2, u3, v3, u4, v4, y0},
Class-3 = {x1, u1, r}.

Now the generators are completely defined since ker(bi) = ker(ai), 1 ≤ i ≤ 4, and ker(e1) =

ker(a1). Order the generators as follows:

a1, a2, a3, a4, b1, b2, b3, b4, e1. (3.1)

Let S be the semigroup generated by the idempotents listed in (3.1). Since the idempotents with
the same subscript have the same kernel, they form a right-zero subsemigroup of S. For example,
{a1, b1, e1} is a right-zero semigroup: a1a1 = b1a1 = e1a1 = a1, a1b1 = b1b1 = e1b1 = b1, and
a1e1 = b1e1 = e1e1 = e1. The product of any two generators with different subscripts is a constant
transformation. For example, a2a4 = cy3 , a4a2 = cy2 , and a1b3 = cv3 . The semigroup S consists of the
nine generators listed in (3.1) and 10 constants:

S = {a1, a2, a3, a4, b1, b2, b3, b4, e1, cy0 , cy1 , cy2 , cy3 , cy4 , cv1 , cv2 , cv3 , cv4 , cs},

so S is a band. Note that Z(S) = ∅. Each idempotent in (3.1) commutes with the next idempotent, so
a1 − a2 − a3 − a4 − b1 − b2 − b3 − b4 − e1 is a path in G(S). Moreover, it is a unique l-path in G(S),
so kd(S) = 8.

We will now provide a general construction of a band S such that kd(S) = n, where n is even.

Definition 3.2. Let k ≥ 2 be an integer. Let

X = {y0, y1, . . . , yk = v0, v1, . . . , vk, x1, . . . , xk, u1, . . . , uk, r, s}.

We will define idempotents a1, . . . , ak, b1, . . . , bk, e1 as follows. For i ∈ {1, . . . , k}, let

im(ai) = {yi−1, xi, yi},
im(bi) = {vi−1, ui, vi},

im(e1) = {vk, r, s}.

For i ∈ {2, . . . , k}, define the ker(ai)-classes by:

Class-1 = im(ai+1) ∪ · · · ∪ im(ak) ∪ im(b1) ∪ · · · ∪ im(bi−1),

Class-2 = im(bi+1) ∪ · · · ∪ im(bk) ∪ im(e1) ∪ im(a1) ∪ · · · ∪ im(ai−1),

Class-3 = {xi, ui}.

(Note that for i = k, Class-1 = im(b1)∪· · ·∪im(bk−1) and Class-2 = im(e1)∪im(a1)∪· · ·∪im(ai−1).)
Define the ker(a1)-classes by:

Class-1 = im(a2) ∪ · · · ∪ im(ak) ∪ {s},
Class-2 = im(b2) ∪ · · · ∪ im(bk) ∪ {y0},
Class-3 = {x1, u1, r}.

Let ker(bi) = ker(ai) for every i ∈ {1, . . . , k}, and ker(e1) = ker(a1). Now, define the subsemigroup
Sk0 of T (X) by:

Sk0 = the semigroup generated by {a1, . . . , ak, b1, . . . , bk, e1}. (3.2)

Wemust argue that the idempotents a1, . . . , ak, b1, . . . , bk, e1 are well defined, that is, for each of
them, different elements of the image lie in different kernel classes. Consider ai, where i ∈ {2, . . . , k}.
Then im(ai) = {yi−1, xi, yi}. Thus yi lies in Class-1 (see Definition 3.2) since yi ∈ im(ai+1) (or
yi ∈ im(b1) if i = k), yi−1 lies in Class-2 since yi−1 ∈ im(ai−1), and xi lies in Class-3. Arguments
for the remaining idempotents are similar.
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For the remainder of this subsection, Sk0 will be the semigroup (3.2). Our objective is to prove that
Sk0 is a band such that π = a1 − · · · − ak − b1 − · · · − bk − e1 is a shortest l-path in Sk0 . Since π has
length 2k = n, it will follow that Sk0 is a band with knit degree n.

We first analyze products of the generators of Sk0 .

Lemma 3.3. Let 1 ≤ i < j ≤ k. Then:
(1) aibi = bi, biai = ai, a1e1 = b1e1 = e1, e1a1 = b1a1 = a1, and e1b1 = a1b1 = b1.
(2) aiaj = cyj−1 and ajai = cyi .
(3) aibj = cvj and ajbi = cvi−1 .
(4) biaj = cyj and bjai = cyi−1 .
(5) bibj = cvj−1 and bjbi = cvi .
(6) e1aj = cyj−1 and aje1 = cs.
(7) e1bj = cvj and bje1 = cvk .

Proof. Statement (1) is true because the generators of Sk0 are idempotents and the ones with the
same subscript have the same kernel. By Definition 3.2, Class-2 of ker(aj) contains both im(aj−1) =

{yj−2, xj−1, yj−1} and im(ai) (since i < j). Since yj−1 ∈ im(aj) = {yj−1, xj, yj}, aj maps all elements of
Class-2 to yj−1. Hence aiaj = cyj−1 . Similarly, since i < j, Class-1 of ker(ai) contains both im(ai+1) =

{yi, xi+1, yi+1} and im(aj). Since yi ∈ im(ai) = {yi−1, xi, yi}, ai maps all elements of Class-1 to yi. Hence
ajai = cyi . We have proved (2). Proofs of (3)–(7) are similar. For example, bje1 = cvk because Class-2
of ker(e1) = ker(a1) contains both im(bj) and im(bk) = {vk−1, uk, vk}, and vk ∈ im(e1). �

The following corollaries are immediate consequences of Lemma 3.3.

Corollary 3.4. The semigroup Sk0 is a band. It consists of 2k+1 generators from Definition 3.2 and 2k+2
constant transformations:

Sk0 = {a1, . . . , ak, b1, . . . , bk, e1, cy0 , cy1 , . . . , cyk , cv1 , . . . , cvk , cs}.

Corollary 3.5. Let g, h ∈ Sk0 be generators from the list

a1, . . . , ak, b1, . . . , bk, e1. (3.3)

Then gh = hg if and only if g and h are consecutive elements in the list.

Lemma 3.3 gives a partial multiplication table for Sk0 . The following lemma completes the table.

Lemma 3.6. Let 1 ≤ p ≤ k and 1 ≤ i < j ≤ k. Then:
(1) cypap = cyp , cypbp = cvp−1 , cyiaj = cyj−1 , cyjai = cyi , cyibj = cvj , cyjbi = cvi−1 , cype1 = cs,

cy0ap = cyp−1 , cy0bp = cvp , and cy0e1 = cvk .
(2) cvpap = cyp−1 , cvpbp = cvp , cviaj = cyj , cvjai = cyi−1 , cvibj = cvj−1 , cvjbi = cvi , and cvpe1 = cvk .
(3) csaj = cyj−1 , csbj = cvj , csa1 = cy1 , csb1 = cv0 , and cse1 = cs.

Proof. We have cypap = cyp since yp ∈ im(ap). By Definition 3.2, Class-1 of ker(bp) contains both
im(ap+1) and im(bp−1). Since yp ∈ im(ap+1) and vp−1 ∈ im(bp−1), both yp and vp−1 are in Class-
1. Hence ypbp = vp−1bp = vp−1, where the last equality is true because vp−1 ∈ im(bp). Thus
cypbp = cvp−1 . By Definition 3.2, yp and s belong to Class-1 of ker(e1), and s ∈ im(e1). It follows that
cype1 = cs. Again by Definition 3.2, y0 and yp−1 belong to Class-2 of ker(ap), and yp−1 ∈ im(ap). Hence
cy0ap = cyp−1 . Similarly, cy0bp = cvp and cy0e1 = cvk . By Lemma 3.3,

cyiaj = (cyiai)aj = cyi(aiaj) = cyicyj−1 = cyj−1 ,

cyjai = (cyjaj)ai = cyj(ajai) = cyjcyi = cyi ,
cyibj = (cyiai)bj = cyi(aibj) = cyicvj = cvj ,
cyjbi = (cyjaj)bi = cyj(ajbi) = cyjcvi−1 = cvi−1 .

We have proved (1). Proofs of (2) and (3) are similar. �



192 J. Araújo et al. / European Journal of Combinatorics 32 (2011) 178–197

Table 2
Cayley table for S20 .

a1 a2 b1 b2 e1 cy0 cy1 cy2 cv1 cv2 cs

a1 a1 cy1 b1 cv2 e1 cy0 cy1 cy2 cv1 cv2 cs
a2 cy1 a2 cy2 b2 cs cy0 cy1 cy2 cv1 cv2 cs
b1 a1 cy2 b1 cv1 e1 cy0 cy1 cy2 cv1 cv2 cs
b2 cy0 a2 cv1 b2 cv2 cy0 cy1 cy2 cv1 cv2 cs
e1 a1 cy1 b1 cv2 e1 cy0 cy1 cy2 cv1 cv2 cs
cy0 cy0 cy1 cv1 cv2 cv2 cy0 cy1 cy2 cv1 cv2 cs
cy1 cy1 cy1 cy2 cv2 cs cy0 cy1 cy2 cv1 cv2 cs
cy2 cy1 cy2 cy2 cv1 cs cy0 cy1 cy2 cv1 cv2 cs
cv1 cy0 cy2 cv1 cv1 cv2 cy0 cy1 cy2 cv1 cv2 cs
cv2 cy0 cy1 cv1 cv2 cv2 cy0 cy1 cy2 cv1 cv2 cs
cs cy1 cy1 cy2 cv2 cs cy0 cy1 cy2 cv1 cv2 cs

Table 2 presents the Cayley table for S20 .

Lemma 3.7. Let g, h, cz ∈ Sk0 such that cz is a constant and g − cz − h is a path in G(Sk0). Then gh = hg.

Proof. Note that g, h are not constants since different constants do not commute. Thus g and h are
generators from list (3.3). We may assume that g is to the left of h in the list. Since cz commutes with
both g and h, z ∈ im(g) ∩ im(h) by Lemma 3.1. Suppose g = ai, where 1 ≤ i ≤ k − 1. Then h = ai+1
since ai+1 is the only generator to the right of ai whose image is not disjoint from im(ai). Similarly, if
g = ak then h = b1; if g = bi (1 ≤ i ≤ k − 1) then h = bi+1; and if g = bk then h = e1. Hence
gh = hg by Corollary 3.5. �

Lemma 3.8. The paths

(i) τ1 = cy0 − a1 − · · · − ak − b1 − · · · − bk − cvk ,
(ii) τ2 = cy1 − a2 − · · · − ak − b1 − · · · − bk − e1 − cs

are the only minimal l-paths in G(Sk0) with constants as the endpoints.

Proof. We have that τ1 and τ2 are l-paths by Lemmas 3.3 and 3.6. Suppose that λ = cz − · · · − cw is a
minimal l-path in G(Sk0) with constants cz and cw as the endpoints. Recall that z, w ∈ {y0, y1, . . . , yk,
v1, . . . , vk, s}. We may assume that z is to the left of w in the list y0, y1, . . . , yk, v1, . . . , vk, s. Since λ
is minimal, Lemma 3.7 implies that λ does not contain any constants except cz and cw . There are five
cases to consider.

(a) λ = cyi − · · · − cyj , where 0 ≤ i < j ≤ k.
(b) λ = cyi − · · · − cvj , where 0 ≤ i ≤ k, 1 ≤ j ≤ k.
(c) λ = cyi − · · · − cs, where 0 ≤ i ≤ k.
(d) λ = cvi − · · · − cvj , where 1 ≤ i < j ≤ k.
(e) λ = cvi − · · · − cs, where 1 ≤ i ≤ k.

Suppose (a) holds, that is, λ = cyi − · · · − h − cyj , 0 ≤ i < j ≤ k. Since hcyj = cyjh, either
h = aj or h = aj+1 (where ak+1 = b1) (since aj and aj+1 are the only generators that have yj in
their image). Suppose h = aj+1. Then, by Corollary 3.5, either λ = cyi − · · · − aj − aj+1 − cyj or
λ = cyi −· · ·−aj+2 −aj+1 − cyj (where aj+2 = b1 if j = k−1, and aj+2 = b2 if j = k). In the latter case,

λ = cyi − · · · − a1 − e1 − bk − · · · − b1 − ak − · · · − aj+2 − aj+1 − cyj ,

which is a contradiction since a1 and e1 do not commute. Thus either λ = cyi − · · · − aj − cyj or
λ = cyi − · · · − aj − aj+1 − cyj . In either case, λ contains aj, and so cyiaj = cyjaj (since λ is an l-path).
But, by Lemma 3.6, cyiaj = cyj−1 and cyjaj = cyj . Hence cyj−1 = cyj , which is a contradiction.

Suppose (b) holds, that is, λ = cyi − g − · · · − h − cvj , 0 ≤ i ≤ k and 1 ≤ j ≤ k. Then g
is either ai or ai+1 (g = ai+1 if i = 0) and h is either bj or bj+1 (where bk+1 = e1). In any case, λ =

cyi −g−· · ·−ak−b1−· · ·−h−cvj . Suppose i ≥ 1. Then, by Lemma 3.6 and the fact that λ is an l-path,
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cv0 = cyib1 = cvjb1 = cv1 , which is a contradiction. If i = 0 and j < k, then cyk−1 = cy0ak = cvjak = cyk ,
which is again a contradiction. If i = 0 and j = k, then g = a1, and so λ = τ1.

Suppose (c) holds, that is, λ = cyi − g − · · · − ak − b1 − · · · − bk − e1 − cs, 0 ≤ i ≤ k, where g is
either ai or ai+1 (g = ai+1 if i = 0). If i > 1, then cvi−1 = cyibi = csbi = cvi , which is a contradiction.
If i = 0, then cvk = cy0e1 = cse1 = cs, which is a contradiction. If i = 1 and g = a1, then λ is not
minimal since cy1 − a2, so a1 can be removed. Finally, if i = 1 and g = a2, then λ = τ2.

Suppose (d) holds, that is, λ = cvi −g −· · ·−h− cvj , 1 ≤ i < j ≤ k, where g is either bi or bi+1 and
h is either bj or bj+1 (where bk+1 = e1). In any case, λ contains bj, and so cvj−1 = cvibj = cvjbj = cvj ,
which is a contradiction.

Suppose (e) holds, that is, λ = cvi − · · · − e1 − cs, 1 ≤ i ≤ k. Then cvk = cvie1 = cse1 = cs, which
is a contradiction.

We have exhausted all possibilities and obtained that λ must be equal to τ1 or τ2. The result
follows. �

Lemma 3.9. The path π = a1 − · · · − ak − b1 − · · · − bk − e1 is a unique minimal l-path in G(Sk0) with
at least one endpoint that is not a constant.

Proof. We have that π is an l-path by Lemmas 3.3 and 3.6. Suppose that λ = e− · · · − f is a minimal
l-path in G(Sk0) such that e or f is not a constant.

We claim that λ does not contain any constant cz . By Lemma 3.7, there is no constant cz such that
λ = e − · · · − cz − · · · − f (since otherwise λ would not be minimal). We may assume that f is not a
constant. But then e is not a constant either since otherwise we would have that ef is a constant and
ff = f is not a constant. But this is impossible since λ is an l-path, and so ef = ff . The claim has been
proved.

Thus all elements in λ are generators from list (3.3). We may assume that e is to the left of f
(according to the ordering in (3.3)). Since λ is an l-path, e = ee = fe. Hence, by Lemma 3.3, e = ap and
f = bp (for some p ∈ {1, . . . , k}) or e = b1 and f = e1 or e = a1 and f = e1.

Suppose that e = ap and f = bp for some p. Then, by Corollary 3.5, λ = ap−· · ·−ak−b1−· · ·−bp.
(Note that λ = ap − ap−1 − · · · − a1 − e1 − bk − · · · − bp is impossible since a1e1 ≠ e1a1.) If
p > 1 then, by Lemma 3.3, cv0 = apb1 = bpb1 = cv1 , which is a contradiction. If p = 1, then
cyk−1 = a1ak = b1bk = cyk , which is again a contradiction.

Suppose that e = b1 and f = e1. Then λ = b1 − · · · − bk − e1, and so cvk−1 = b1bk = e1bk = cvk ,
which is a contradiction.

Hence we must have e = a1 and f = e1. But then, by Corollary 3.5, λ = a1 − · · · − ak − b1 − · · · −

bk − e1 = π . The result follows. �

Theorem 3.10. For every even integer n ≥ 2, there is a band S with knit degree n.

Proof. Let n = 2. Consider the band S = {a, b, c, d} defined by the following Cayley table:

a b c d
a a b c d
b b b b b
c a b c d
d d d d d

It is easy to see that the center of S is empty and a− b− c is a shortest l-path in G(S). Thus kd(S) = 2.
Let n = 2k where k ≥ 2. Consider the semigroup Sk0 defined by (3.2). Then, by Corollary 3.4, Sk0 is

a band. The paths τ1, τ2, and π from Lemmas 3.8 and 3.9 are the only minimal l-paths in G(Sk0). Since
τ1 has length 2k + 1 = n + 1, τ2 has length 2k + 2 = n + 2, and π has length 2k = n, it follows that
kd(Sk0) = n. �

3.2. The odd case

Suppose n = 2k + 1 ≥ 5 is odd. We will obtain a band S of knit degree n by slightly modifying
the construction of the band Sk0 from Definition 3.2. Recall that Sk0 has knit degree 2k (see the proof of
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Theorem 3.10). We will obtain a band of knit degree n = 2k+ 1 by simply removing transformations
e1 and cs from Sk0 .

Definition 3.11. Let k ≥ 2 be an integer. Consider the following subset of the semigroup S0k from
Definition 3.2:

S1k = S0k − {e1, cs} = {a1, . . . , ak, b1, . . . , bk, cy0 , cy1 , . . . , cyk , cv1 , . . . , cvk}. (3.4)

By Lemmas 3.3 and 3.6, S1k is a subsemigroup of S0k .

Remark 3.12. Note that r and s, which still occur in the domain (but not the image) of each element
of Sk1 , are now superfluous. We can remove them from the domain of each element of S1k and view S1k
as a semigroup of transformations on the set

X = {y0, y1, . . . , yk = v0, v1, . . . , vk, x1, . . . , xk, u1, . . . , uk}.

It is clear from the definition of Sk1 that the multiplication table for Sk1 is the multiplication table for
Sk0 (see Lemmas 3.3 and 3.6) with the rows and columns e1 and cs removed. This new multiplication
table is given by Lemmas 3.3 and 3.6 if we ignore the multiplications involving e1 or cs. Therefore, the
following lemma follows immediately from Corollary 3.4 and Lemmas 3.8 and 3.9.

Lemma 3.13. Let Sk1 be the semigroups defined by (3.4). Then Sk1 is a band and τ = cy0 − a1 − · · ·− ak −

b1 − · · · − bk − cvk is the only minimal l-path in G(Sk1).

Theorem 3.14. For every odd integer n ≥ 5, there is a band S of knit degree n.

Proof. Let n = 2k+1where k ≥ 2. Consider the semigroup Sk1 defined by (3.4). Then, by Lemma 3.13,
Sk1 is a band and τ = cy0 − a1 − · · · − ak − b1 − · · · − bk − cvk is the only minimal l-path in G(Sk1).
Since τ has length 2k + 1 = n, it follows that kd(Sk1) = n. �

The case n = 3 remains unresolved.
Open question. Is there a semigroup of knit degree 3?

4. Commuting graphs with arbitrary diameters

In Section 2, we showed that, except for some special cases, the commuting graph of any ideal
of the semigroup T (X) has diameter 5. In this section, we use the constructions of Section 3 to
show that there are semigroups whose commuting graphs have any prescribed diameter. We note
that the situation is (might be) quite different in group theory: it has been conjectured that there
is an upper bound for the diameters of the connected commuting graphs of finite non-abelian
groups [8, Conjecture 2.2].

Theorem 4.1. For every n ≥ 2, there is a semigroup S such that the diameter of G(S) is n.

Proof. Let n ∈ {2, 3, 4}. The commuting graph of the band S defined by the Cayley table in the proof
of Theorem 3.10 is the cycle a− b− c − d− a. Thus the diameter of G(S) is 2. Consider the semigroup
S defined by the following table:

a b c d
a a a a a
b a b c c
c c c c c
d c d c c

Note that Z(S) = ∅ and G(S) is the chain a − b − c − d. Thus the diameter of G(S) is 3. The diameter
of G(J4) is 4 (where J4 is an ideal of T (X) with |X | = 5).

Let n ≥ 5. Suppose n is even. Then n = 2k + 2 for some k ≥ 2. Consider the band Sk0 from
Definition 3.2. Since cy0 and a1 are the only elements of Sk0 whose image contains y0, they are the
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only elements of Sk0 commuting with cy0 (see Lemma 3.1). Similarly, e1 and cs are the only elements
commutingwith cs. Therefore, it follows fromCorollary 3.5 that cy0−a1−· · ·−ak−b1−· · ·−bk−e1−cs
is a shortest path in G(Sk0) from cy0 to cs, that is, the distance between cy0 and cs is 2k + 2 = n. Since
a1 − · · · − ak − b1 − · · · − bk − e1 is a path in G(Sk0), cyiai = aicyi and cvibi = bicvi (1 ≤ i ≤ k), it
follows that the distance between any two vertices of G(Sk0) is at most 2k + 2. Hence the diameter of
G(Sk0) is n.

Suppose n is odd. Then n = 2k+1 for some k ≥ 2. Consider the band Sk1 from Definition 3.11. Then
cy0 − a1 − · · · − ak − b1 − · · · − bk − cvk is a shortest path in G(Sk1) from cy0 to cvk , that is, the distance
between cy0 and cvk is 2k + 1 = n. As for Sk0 , we have cyiai = aicyi and cvibi = bicvi (1 ≤ i ≤ k). Thus
the distance between any two vertices of Sk1 is at most 2k + 1, and so the diameter of G(Sk1) is n. �

5. Schein’s conjecture

The results obtained in Section 3 enable us to settle a conjecture formulated by Schein in 1978
[14, p. 12]. Schein stated his conjecture in the context of the attempts to characterize the r-semisimple
bands.

A right congruence τ on a semigroup S is said to be modular if there exists an element e ∈ S such
that (ex)τx for all x ∈ S. The radical Rr on a band S is the intersection of all maximal modular right
congruences on S [11]. A band S is called r-semisimple if its radical Rr is the identity relation on S.

In 1969, Arendt announced a characterization of r-semisimple bands [3, Theorem 18]. In 1978,
Schein pointed out that Arendt’s characterization is incorrect and proved [14, p. 2] that a band S is
r-semisimple if and only if it satisfies infinitely many quasi-identities: (1) and (An) for all integers
n ≥ 1, where

(1) zx = zy ⇒ xy = yx,
(An) x1x2 = x2x1 ∧ x2x3 = x3x2 ∧ · · · ∧ xn−1xn = xnxn−1

∧ x1x1 = xnx1 ∧ x1x2 = xnx2 ∧ · · · ∧ x1xn = xnxn ⇒ x1 = xn.
Schein observed that (A1) and (A2) are true in every band, that (A3) easily follows from (1), and that
Arendt’s characterization of r-semisimple bands is equivalent to (1). He used the last observation to
show that Arendt’s characterization is incorrect by providing an example of a band T for which (1)
holds but (A4) does not.We note that Schein’s example is incorrect since the Cayley table in [14, p. 10],
which is supposed to define T , does not define a semigroup because the operation is not associative:
(4 ∗ 1) ∗ 1 = 10 ≠ 8 = 4 ∗ (1 ∗ 1). However, Schein was right that it is not true that condition
(1) implies (An) for all n. The semigroup S20 (see Table 2) satisfies (1) but it does not satisfy (A5) since
a1 − a2 − b1 − b2 − e1 is an l-path (so the premise of (A5) holds) but a1 ≠ e1.

At the end of the paper, Schein formulates his conjecture [14, p. 12]:
Schein’s conjecture. For every n > 1, (An) does not imply (An+1).

The reason that Section 3 enables us to settle Schein’s conjecture is the following lemma.

Lemma 5.1. Let n ≥ 1 and let S be a band with no central elements. Then S satisfies (An) if and only if
G(S) has no l-path of length <n.
Proof. First note that (An) can be expressed as follows: for all x1, . . . , xn ∈ S,

x1 − · · · − xn and x1xi = xnxi (1 ≤ i ≤ n) ⇒ x1 = xn. (5.1)

(Here, we allow x − x and do not require that x1, . . . , xn be distinct.)
Assume S satisfies (An). Suppose to the contrary that G(S) has an l-path λ = x1 −· · ·− xk of length

<n, that is, k ≤ n. Then x1 − · · · − xk − xk+1 − · · · − xn, where xi = xk for every i ∈ {k + 1, . . . , n},
and so x1 = xn = xk by (5.1). This is a contradiction since λ is a path.

Conversely, suppose that G(S) has no l-path of length <n. Let x1 − · · · − xn and x1xi = xnxi (1 ≤

i ≤ n). Suppose to the contrary that x1 ≠ xn. If there are i and j such that 1 ≤ i < j ≤ n and xi = xj,
we can replace x1 − · · · − xi − · · · − xj − · · · − xn with x1 − · · · − xi − xj+1 − · · · − xn. Therefore,
we can assume that x1, . . . , xn are pairwise distinct. Recall that S has no central elements, so all xi are
vertices in G(S). Thus x1 − · · · − xn is an l-path in G(S) of length n − 1, which is a contradiction. �
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First, Schein’s conjecture is false for n = 3.

Proposition 5.2. (A3) ⇒ (A4).

Proof. Suppose a band S satisfies (A3), that is,

x1x2 = x2x1 ∧ x2x3 = x3x2 ∧ x1x1 = x3x1 ∧ x1x2 = x3x2 ∧ x1x3 = x3x3 ⇒ x1 = x3. (5.2)

To prove that S satisfies (A4), suppose that

y1y2 = y2y1 ∧ y2y3 = y3y2 ∧ y3y4 = y4y3 ∧ y1y1 = y4y1 ∧ y1y2
= y4y2 ∧ y1y3 = y4y3 ∧ y1y4 = y4y4.

Take x1 = y1, x2 = y2y3, and x3 = y4. Then x1, x2, x3 satisfy the premise of (5.2):

x1x2 = y1y2y3 = y1y3y2 = y4y3y2 = y3y4y2 = y3y1y2 = y3y2y1 = y2y3y1 = x2x1,
x2x3 = y2y3y4 = y2y4y3 = y2y1y3 = y1y2y3 = y4y2y3 = x3x2,
x1x1 = y1y1 = y4y1 = x3x1, x1x2 = y1y2y3 = y4y2y3 = x3x2,
x1x3 = y1y4 = y4y4 = x3x3.

Thus, by (5.2), y1 = x1 = x3 = y4, and so (A4) holds. �

Second, Schein’s conjecture is true for n ≠ 3.

Proposition 5.3. If n > 1 and n ≠ 3, then (An) does not imply (An+1).

Proof. Consider the band S = {e, f , 0}, where 0 is the zero, ef = f , and fe = e. Then e − 0 − f , ee =

fe, e0 = f 0, ef = ff , and e ≠ f . Thus S does not satisfy (A3). But S satisfies (A2) since (A2) is true in
every band. Hence (A2) does not imply (A3).

Let n ≥ 4. Then, by Theorems 3.10 and 3.14 and their proofs, the band S constructed in
Definition 3.2 (if n is even) or Definition 3.11 (if n is odd) has knit degree n. By Lemmas 3.3 and 3.6, S
has no central elements. Since kd(S) = n, there is an l-path in G(S) of length n and there is no l-path
in G(S) of length <n. Hence, by Lemma 5.1, S satisfies (An) and S does not satisfy (An+1). Thus (An)
does not imply (An+1). �

6. Problems

We finish this paper with a list of some problems concerning commuting graphs of semigroups.

(1) Is there a semigroup with knit degree 3? Our guess is that such a semigroup does not exist.
(2) Classify the semigroups whose commuting graph is Eulerian (proposed by M. Volkov). The same

problem for Hamiltonian and planar graphs.
(3) Classify the commuting graphs of semigroups.
(4) Is it true that for all natural numbers n ≥ 3, there is a semigroup S such that the clique number

(girth, chromatic number) of G(S) is n?
(5) Classify the semigroups S such that the clique and chromatic numbers of G(S) coincide.
(6) Calculate the clique and chromatic numbers of the commuting graphs of T (X) and End(V ), where

X is a finite set and V is a finite-dimensional vector space over a finite field.
(7) Let G(S) be the commuting graph of a finite non-commutative semigroup S. An rl-path is a path

a1 − · · · − am in G(S) such that a1 ≠ am and a1aia1 = amaiam for all i = 1, . . . ,m. For rl-paths,
prove the results analogous to the results for l-paths contained in this paper.

(8) Find classes of finite non-commutative semigroups such that if S and T are two semigroups in that
class and G(S) ∼= G(T ), then S ∼= T .
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