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such that a # b and ab = ba. Denote by T (X) the semigroup of full
transformations on a finite set X. Let ] be any ideal of T (X) such that
J is different from the ideal of constant transformations on X. We
prove that if |X| > 4, then, with a few exceptions, the diameter of
4(J) is 5. On the other hand, we prove that for every positive integer
n, there exists a semigroup S such that the diameter of 4(S) is n.
We also study the left paths in (S), that is, paths a; — a; —
.-+ —ap such that a; # ap, and aa; = apa; foralli € {1, ..., m}.
We prove that for every positive integer n > 2, except n = 3,
there exists a semigroup whose shortest left path has length n. As
a corollary, we use the previous results to solve a purely algebraic
old problem posed by B.M. Schein.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The commuting graph of a finite non-abelian group G is a simple graph whose vertices are all non-
central elements of G and two distinct vertices x, y are adjacent if xy = yx. Commuting graphs of
various groups have been studied in terms of their properties (such as connectivity or diameter), for
example in [4,6,8,15]. They have also been used as a tool to prove group theoretic results, for example
in [5,12,13].
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The concept of the commuting graph carries over to semigroups. Let S be a finite non-commutative
semigroup with center Z(S) = {a € S : ab = baforallb € S}. The commuting graph of S, denoted
g(S), is the simple graph (that is, an undirected graph with no multiple edges or loops) whose vertices
are the elements of S — Z(S) and whose edges are the sets {a, b} such that a and b are distinct vertices
with ab = ba.

This paper initiates the study of commuting graphs of semigroups. Our main goal is to study the
lengths of minimal paths. We shall consider two types of paths: ordinary paths and so called left paths.

We first investigate the semigroup T (X) of full transformations on a finite set X, and determine
the diameter of the commuting graph of every ideal of T(X) (Section 2). We find that, with a few
exceptions, the diameter of §(J), where ] is anideal of T (X), is 5. This small diameter does not extend to
semigroups in general. We prove that for every n > 2, there is a finite semigroup S whose commuting
graph has diameter n (Theorem 4.1). To prove the existence of such a semigroup, we use our work on
the left paths in the commuting graph of a semigroup.

Let S be a semigroup. A patha; — ay — - -+ — ap in §(S) is called a left path (or I-path) if a; # ap,
and a,a; = apa; foreveryi € {1, ..., m}.If there is any [-path in §(S), we define the knit degree of S,
denoted kd(S), to be the length of a shortest I-path in §(S).

For every n > 2 with n # 3, we construct a band (semigroup of idempotents) of knit degree n
(Section 3).1tis an open problem if there is a semigroup of knit degree 3. In Section 4, the constructions
presented in Section 3 also give a band S whose commuting graph has diameter n (for every n > 4).
As another application of our work on the left paths, we settle a conjecture on bands formulated by
B.M. Schein in 1978 (Section 5). Finally, we present some problems regarding the commuting graphs
of semigroups (Section 6).

2. Commuting graphs of ideals of T (X)

Let T(X) be the semigroup of full transformations on a finite set X, that is, the set of all functions
from X to X with composition as the operation. We will write functions on the right and compose
from left to right, that is, for a, b € T(X) and x € X, we will write xa (not a(x)) and x(ab) = (xa)b (not
(ba)(x) = b(a(x))). In this section, we determine the diameter of the commuting graph of every ideal
of T(X). Throughout this section, we assume that X = {1, ..., n}.

Let I be a simple graph, thatis, ' = (V, E), where V is a finite non-empty set of vertices and
E C {{u,v} : u,v € V,u # v} is a set of edges. We will write u — v to mean that {u, v} € E. Let

u,w € V.Apathin I" from u to w is a sequence of pairwise distinct vertices u = vy, vy, ..., vy =
w (m > 1) such that v; — vj;¢ foreveryi e {1,...,m— 1}.If L isa path vy, vy, .. ., vy, we will write
A =v; — vy — -+ — vy and say that A has length m — 1. We say that a path A from u to w is a minimal

path if there is no path from u to w that is shorter than A.

We say that the distance between vertices u and w is k, and write d(u, w) = k, if a minimal path
from u to w has length k. If there is no path from u to w, we say that the distance between u and w is
infinity, and write d(u, w) = oo. The maximum distance max{d(u, w) : u, w € V} between vertices
of I' is called the diameter of I". Note that the diameter of I' is finite if and only if I" is connected.

If S is a finite non-commutative semigroup, then the commuting graph 4.(S) is a simple graph with
V=S—-Z(S)and, fora,b € V,a—bifand onlyifa ## b and ab = ba.

For a € T(X), we denote by im(a) the image of a, by ker(a) = {(x,y) € X x X : xa = ya} the
kernel of a, and by rank(a) = |im(a)| the rank of a. It is well known (see [7, Section 2.2]) that in T (X)
the only element of Z(T (X)) is the identity transformation on X, and that T(X) has exactly n ideals:
Ji.J2s ..., Jn, where, for1 <r <n,

Jr ={a e T(X) : rank(a) <r}.

Each ideal J, is principal and any a € T(X) of rank r generates J.. The ideal J; consists of the
transformations of rank 1 (that is, constant transformations), and it is clear that ¢(J;) is the graph
with n isolated vertices.

Let S be a semigroup. We denote by ¢£(S) the subgraph of ¢(S) induced by the non-central
idempotents of S. The graph §g(S) is said to be the idempotent commuting graph of S. We first
determine the diameter of G (J;). This approach is justified by the following lemma.
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Lemma 2.1. Let 2 < r < nandlet a, b € J, be such that ab # ba. Supposea—a; —a;—---—ay—b (k >
1) is a minimal path in §(J;) from a to b. Then there are idempotents ey, e;, ..., ex € J. such that
a—ey —ey—---— e, — bisaminimal pathin §(J;) fromato b.

Proof. Since J; is finite, there is an integer p > 1 such thate; = a’l7 is an idempotent in J;. Note that
e1 € Z(J,), since for any x € X — im(eq), e; does not commute with ¢, € J., where ¢, is the constant
transformation with im(cy) = {x}. Since a; commutes with a and a,, the idempotent e; = a’l’ also

commutes with a and a,, and so a — e; — a; — - - - — ax — b. Repeating the foregoing argument for
a, ..., ag, we obtain idempotents e,, . .., e, inJ. such thata — e; — e; — - - - — e — b. Since the path
a—a; —a, —---— a, — bis minimal, it follows that a, eq, e,, . .., ey, b are pairwise distinct and the
patha—e; —e; —--- — e, — bisminimal. O

It follows from Lemma 2.1 that if d is the diameter of G (J;), then the diameter of ¢ (J;) is at most
d+ 2.

2.1. Idempotent commuting graphs

In this subsection, we assume thatn > 3and 2 < r < n. We will show that, with some exceptions,
the diameter of §¢(J;) is 3 (Theorem 2.8).

Let e € T(X) be an idempotent. Then there is a unique partition {Aq, A,, ..., Ay} of X and unique
elements x; € A1, X2 € Ay, ..., X, € A, such that for every i, Aie = {x;}. The partition {Aq, ..., A} is
induced by the kernel of e, and {x1, . .., x;} is the image of e. We will use the following notation for e:

e = (A1, x1)(Az, X2) - - - (A, Xk). (2.1)
Note that (X, x) is the constant idempotent with image {x}. The following result has been obtained
in[1,9] (see also [2]).

Lemma 2.2. Let e = (A1, X1) (A2, X2) - - - (Ak, Xx) be an idempotent in T(X) and let b € T(X). Then b
commutes with e if and only if for every i € {1,...,k}, thereisj € {1, ..., k} such that x;b = x; and
Aib C A

We will use Lemma 2.2 frequently, not always mentioning it explicitly. The following lemma is an
immediate consequence of Lemma 2.2.

Lemma 2.3. Let e, f € J; be idempotents and suppose there is x € X such that x € im(e) N im(f). Then
e—X,x)—f.

Lemma 2.4. Let e,f € ], be idempotents such that im(e) N im(f) = (. Suppose there is (x,y) €
im(e) x im(f) such that (x,y) € ker(e) Nker(f). Then there is an idempotent g € J, such thate —g —f.

Proof. lete = (A, Xx1)--- (A, X¢) and f = (By,y1) - - - (Bm, Ym). We may assume that x = x; and
y = y1.Since (x,y) € ker(e) Nker(f), we havey € A; and x € B;. Let g = (im(e), x)(X — im(e), y).
Then g isin]J; since rank(g) = 2 and r > 2. By Lemma 2.2, we have eg = ge (sincey € A;)and fg = gf
(sinceim(f) € X —im(e) and x € By).Hencee — g —f. O

Lemma 2.5. Let e, f € ], be idempotents such that im(e) N im(f) = (. Then there are idempotents
g,he].suchthate—g—h—f.

Proof. Lete = (A1, x1)--- (A, %) and f = (By, y1) - - - (Bm, ¥m). Since {Aq, ..., A} is a partition of
X, there is i such that y; € A;. We may assume that y; € Aj.Letg = (X — {y1}, x1)({y1}, y1) and
h = (X,y1).Theng and h are in J, (since r > 2). By Lemma 2.2, eg = ge, gh = hg, and hf = fh. Thus
e—g—h—f. O

Lemma 2.6. Let m be a positive integer such that 2m < n, o be an m-cycleon {1, ..., m}, and
e = (A1, x1)(Az2, X2) - - - (Am, Xm) and [ = (B1,¥1)(B2,¥2) - - (Bm, Ym)
be idempotents in T (X) such that x4, ..., Xm, Y1, - . . , ¥m are pairwise distinct, y; € A;, and x;, € B; (1 <

i < m). Suppose that g is an idempotent in T(X) such that e — g — f. Then:

(1) xg = Xj qndng =yjforeveryje{1,...,m}
(2) If 1 <1,j < mare such that A; = {x;, yi, z}, B = {¥}, Xjo, 2} and A; N\ B; = {z}, then zg = z.
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Proof. Since eg = ge, x;g = x; for some i. Then x;g = x; (since g is an idempotent). Thus,e — g — f
and Lemma 2.2 imply that y;g = y;. Since x; = X(,-1y, € Bj,—1 and g commutes with f, we have
YVis-1& = Yi,-1. But now, since y;,-1 € A;,-1 and g commutes with e, we have x;,-1g = X;;-1.
Continuing this way, we obtain x;,-kg = X;,—« and y;,-«g = y;,—« forevery k € {1, ..., m — 1}. Since
o is an m-cycle, it follows that x;g = x; and y;g = y; for everyj € {1, ..., m}. We have proved (1).

Suppose A; = {x;, yi, 2}, Bj = {¥}, Xjo, z}, and A; N B; = {z}. Then zg € {x;, yi, z} (since x;g = x; and
eg = ge)and zg € {y;, Xj», z} (since y;g = y; and fg = gf ). Since A; N B; = {z}, we have zg = z, which
proves (2). O

Lemma 2.7. Let n > 4.If n % 5 or r # 4, then for some idempotents e, f € ], there is no idempotent
g €]y suchthate —g —f.

Proof. Letn # 5 orr # 4. Suppose thatr < n — 1 or n is even. Then there is an integer m such that
m <randr < 2m < n.Let e and f be idempotents from Lemma 2.6. Thene, f € J. sincem < r.But
every idempotent g € T(X) such thate — g — f fixes at least 2m elements, and so g ¢ J, sincer < 2m.

Suppose thatr = n— 1andn = 2m + 1is odd. Then n > 7 since we are working under the
assumption that n # 5 orr # 4. We again consider idempotents e and f from Lemma 2.6, which
belong to J, sincem < n— 1 = r.Note that X = {xq,...,Xm,¥Y1,---,¥Ym, Z}. We may assume that
z € Apand z € Bj.Sincen > 7, we have m > 3. Thus, the intersection of A, = {xm, ym, z} and
Bi = {y¥1,x2,2}is {z}, and so zg = z by Lemma 2.6. Hence g = idx ¢ J;, which concludes the
proof. O

Theorem 2.8. Let n > 3 and let ], be an ideal in T (X) such that 2 < r < n. Then:

(1) If n=3o0r n=>5andr = 4, then the diameter of Gg(J;) is 2.
(2) In all other cases, the diameter of Gg(J;) is 3.

Proof. Supposen = 3orn = 5andr = 4.In these special cases, we obtained the desired result using
GRAPE [16], which is a package for GAP [17].

Letn > 4 and suppose thatn # 5 orr # 4.By Lemmas 2.3 and 2.5, the diameter of §¢(J;) is at most
3. By Lemma 2.7, the diameter of ¢ (J;) is at least 3. Thus the diameter of ¢ (J;) is 3, which concludes
the proofof (2). O

2.2. Commuting graphs of proper ideals of T (X)

In this subsection, we determine the diameter of every proper ideal of T(X). The ideal J; consists
of the constant transformations, so (J;) is the graph with n isolated vertices. Thus J; is not connected
and its diameter is co. Therefore, for the remainder of this subsection, we assume that n > 3 and
2<r<n

It follows from Lemma 2.1 and Theorem 2.8 that the diameter of ¢(J;) is at most 5. We will prove
that this diameter is in fact 5 except whenn = 3 orn € {5,6,7} and r = 4. It also follows from
Lemma 2.1 that ife and f are idempotents in J, then the distance between e and f in §(J;) is the same
as the distance between e and f in G (J;;). So no ambiguity will arise when we talk about the distance
between idempotents in J;.

Fora € T(X) and x, y € X, we will write x 5 ywhenxa =y.
Lemma 2.9. Let a, b € T(X). Then ab = baifand only if forallx,y € X, x 5 y implies xb 5 yb.
Proof. Suppose ab = ba. Let x,y € X with x S y, that is, y = xa. Then, since ab = ba, we have
yb = (xa)b = x(ab) = x(ba) = (xb)a, and so xb S yb.

Conversely, suppose x 5 y implies xb 5 ybforallx,y € X.Letx € X. Since x 5 xa, we have
xb > (xa)b. But this means that (xb)a = (xa)b, which implies ab = ba. O

Leta € T(X).Suppose X1, .. ., X, are pairwise distinct elements of X such that x;a = x;11 (1 <i <
m) and x,,a = x;. We will then say that a contains a cycle (x1 x5 . . . X;).

Lemma 2.10. Let a € J; be a transformation containing a unique cycle (x1x, . ..Xn). Let e € J. be an
idempotent such that ae = ea. Then x;e = x; foreveryi € {1,..., m}.
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Proof. Since a contains (XX ...Xxp), we have x; — x, — -+ — X;; — X1. Thus, by Lemma 2.9,

a a a a
X1€ —> X2€ —> - -+ —> Xpe —> X1e.

Thus (x1ex;e...xpe) is a cycle in a, and is therefore equal to (x; x5 ...X;). Hence, for every i €
{1,..., m}, thereexistsj € {1, ..., m} such thatx; = x;e, and so xje = (xje)e = xj(ee) = xje =x;. O

To construct transformations a, b € J, such that the distance between a and b is 5, it will be
convenient to introduce the following notation.

Notation 2.11. Let Xy, ..., Xy, Z1, .. ., Z, be pairwise distinct elements of X, and let s be fixed such
that 1 < s < p. We will denote by

a=(%z)(2Zpzp—1...-21X1)(X1 X2 . . . Xm) (2.2)

the transformation a € T(X) such that

Zpd =2p1, Zp—10d=2Zp_,...,2200 =21, zZ10=Xq,
X10 = Xy, X0 =X3,...,Xpn—-10 = X, Xnmad = X1,
and ya = z for all other y € X. Suppose w € X suchthatw & {x1,...,Xn,21,...,2}and 1 <t <p

with t # s. We will denote by
b= (*zs)(w Zt)(Zp Zp—1..-21 X])(X1 X2 ... Xm) (23)

the transformation b € T(X) that is defined as a in (2.2) except that wb = z.

Lemma 2.12. Let a € ], be the transformation defined in (2.2) such that m 4+ p > r. Let e € J. be an
idempotent such that ae = ea. Then:

(1) xie = x; foreveryi e {1,...,m}.

(2) zie = xp—_j1 foreveryje {1,...,p}.

(3) ye =xp_s foreveryy e X — {x1, ..., Xm, Z1, ..., Zp}.

(We assume that for every integer u, x,, = x,, wherev € {1, ..., m} and u = v(mod m).)

Proof. Statement (1) follows from Lemma 2.10. By the definition of a, we have
a a a a
Zp —> Zp—1—> - —> 21 —> Xq.
Thus, by Lemma 2.9,

a a a a
Zp€ — Zp_1€ —> -+ —> Z1€ —> X1€ = X1.

Since z;e 5 X1, either zie = X, or z1e & {X1,...,Xn}. We claim that the latter is impossible.
Indeed, suppose zie & {xi,...,Xn}. Thenzie & {xi,...,x,)} foreveryj € {1,...,p}. Thus the set
{x1,...,Xm, z1€, ..., Zpe} is a subset of im(e) with m + p elements. But this implies that e & J; (since

m + p > r), which is a contradiction. We proved the claim. Thus z;e = x;,. Now, z,e 5 z18 = Xpm,
which implies z,e = x,,_1. Continuing this way, we obtain zse = X;;,_», Z46 = Xp_3, . ... (A special
argument is required when j = gm + 1 for some q > 1. Suppose ¢ = 1, thatis,j = m + 1. Then
zje Y Zj_1e = Zpe = X1, and so either zie = X, or zie = z;. But the latter is impossible since we
would have x,, = z;e = zj(ee) = zje = z;, which is a contradiction. Hence, for j = m 4+ 1, we have
zje = Xp. Assuming, inductively, that zie = x,, for j = qm + 1, we prove by a similar argument that
zje = X, for j = (q + 1)m + 1.) This concludes the proof of (2).

Lety e X — {X1,...,%m,21,...,2}. Theny 5 Zs, and so ye 5 Z;e = Xm—s+1. SUPpPOSe s is not a
multiple of m. Then x,,_s,1 # X1, and so ye Y Xm—s+1 implies ye = x,,_s. Suppose s is a multiple of

m. Then ye S Xm—s+1 = X1, and so either ye = xp,, or ye = z;. But the latter is impossible since we
would have x,, = z;e = y(ee) = ye = z;, which is a contradiction. Hence, for s that is a multiple of
m, we have ye = x,,, which concludes the proof of (3). O
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The proof of the following lemma is almost identical to the proof of Lemma 2.12.

Lemma 2.13. Let b € J; be the transformation defined in (2.3) such that m 4+ p > r. Let e € ], be an
idempotent such that be = eb. Then:

(1) x;e = x; foreveryi e {1,...,m}.

(2) zie = xp—_jt1 foreveryje {1,...,p}.

(3) we = xp_;.

(4) ye = xpm—s foreveryy € X — (X1, ..., Xm, Z1, ..., Zp, W}

Lemma 2.14. Let n € {5,6,7} and r = 4. Then there are a, b € ], such that the distance between a and
bin §(Jy) is at least 4.

Proof. leta = (x4)(341)(12) and b = (x 1)(213)(34) (see Notation 2.11). Suppose e and f are
idempotents in J4 such that a — e and f — b. Then, by Lemma 2.12,e = ({..., 3, 1}, 1)({4, 2}, 2) and
f=...,2,3},3)({1, 4}, 4), where “...” denotes “5” (if n = 5), “5,6" (if n = 6), and “5, 6, 7” (if
n = 7). Then e and f do not commute, and so d(e, f) > 2. Thusd(a, b) > 4by Lemma2.1. O

Lemma 2.15. Let n € {6, 7} andr = 4. Let a € ], be a transformation that is not an idempotent. Then
there is an idempotent e € J, commuting with a such that rank(e) # 3 or rank(e) = 3 and ye~! = {y}
forsomey € im(e).

Proof. If a fixes some x € X, then a commutes with e = (X, x) of rank 1. Suppose a has no fixed
points. Let p be a positive integer such that a” is an idempotent. If a contains a unique cycle (x; x3),
then e = a” has rank 2. If a contains a unique cycle (x; X X3 X4) or two cycles (x; x,) and (y; y,) with
{x1, %2} N {y1,y2} = @, then e = a” has rank 4.

Suppose a contains a unique cycle (x; x3 x3). Define e € T(X) as follows. Setxie = x;, 1 <i < 3.

Suppose there are y, z € X — {x1, X2, x3} such that ya = z and za = x; for some i. We may assume
that za = x;. Define ze = x3 and ye = x,. Let u and w be the two remaining elements in X (only u
remains when n = 6). Since rank(a) < 4, we have {u, w}a C {z, x1, X2, x3}. Suppose ua = wa = z.
Define ue = x, and we = x,. Then e is an idempotent of rank 3 such that ae = ea and x;e~! = {x;}.
Suppose ua or wa is in {x1, X2, X3}, say ua € {x1, X2, x3}. Define ue = u, and we = x;_; (if wa = x;),
where x;_; = x3 ifi = 1, or we = x, (if wa = z). Then e is an idempotent of rank 4 such that ae = ea.

Suppose that for every y € X — {x1, X2, x3}, ya € {x1, x2, x3}. Selectz € X — {x1, x5, x3} and define
ze = z.Foreveryy € X — {z, X1, X2, X3}, define ye = x;_; if ya = x;. Then e is an idempotent of rank 4
such that ae = ea.

Since a € J4, we have exhausted all possibilities, and the result follows. O

Lemma 2.16. Let n € {6, 7} and r = 4. Then for all a, b € J4, the distance between a and b in §(J4) is at
most 4.

Proof. let a,b € J,.1f a or b is an idempotent, then d(a, b) < 4 by Lemma 2.1 and Theorem 2.8.
Suppose a and b are not idempotents. By Lemma 2.15, there are idempotents e, f € J; such that
ae = ea, bf = fb, if rank(e) = 3, then ye~! = {y} for some y € im(e), and if rank(f) = 3, then
yf~! = {y} for some y € im(f). We claim that there is an idempotent g € J; such thate — g — f.
Ifim(e) Nim(f) # @, then such an idempotent g exists by Lemma 2.3. Suppose im(e) N im(f) = .
Then, since n € {6, 7}, both rank(e) + rank(f) < 7. We may assume that rank(e) < rank(f). There
are six possible cases.

Case 1. rank(e) = 1.

Thene = (X, x) forsomex € X.Lety = xf.Then (x,y) € im(e) xim(f) and (x, y) € ker(e) Nker(f).
Thus, by Lemma 2.4, there is an idempotent g € J, such thate — g — f.
Case 2. rank(e) = 2 and rank(f) = 2.

We may assume that e = (A, 1)(Az, 2) and f = (By, 3)(By, 4). If {1,2} C B; or {3,4} C A; for
some i, then we can find (x, y) € im(e) x im(f) such that (x, y) € ker(e) N ker(f), and so a desired
idempotent g exists by Lemma 2.4. Otherwise, we may assume that 3 € A;and 4 € A,.1f 1 € By or
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2 € B,, then Lemma 2.4 can be applied again. So suppose 1 € B, and 2 € B;. Now we have
e=(...,3, 1, 1){...,4,2},2) and f=({...,2,3},3){..., 1,4},4).

We define g € T(X) as follows. Set xg = x for every x € {1,2,3,4}.Letx € {5,6,7} (x € {5, 6}if
n = 6).If x € A; N By, define xg = 3; if x € A; N B,, define xg = 1; if x € A, N By, define xg = 2;
finally, if x € A, N B,, define xg = 4. Then g is an idempotent of rank4ande — g — f.

Case 3. rank(e) = 2 and rank(f) = 3.

We may assume that e = (A, 1)(A3,2) and f = (By, 3)(By, 4)(Bs, 5). If {3,4,5} C A; or
{3,4,5} C A, then Lemma 2.4 applies. Otherwise, we may assume that 3,4 € A;and 5 € A,. If
1 € By UB; or 2 € Bs, then Lemma 2.4 applies again. So suppose 1 € B; and 2 € By U B,. We may
assume that 2 € B;. Note that if z € {6, 7}, then z cannot be in B, since z € B, would imply that there
isnoy e im(f) such that yf~! = {y}. So now

e=({...,3,4 1}, 1){...,52}2) and f=({...,2,3},3)({4},4({....1,5},5).

We define g € T(X) as follows. Set xg = x foreveryx € {1,2,3,5}and4g = 3.Letz € {6,7}.If
z € A1 N By, define zg = 3; if z € A; N B3, define zg = 1;ifz € A, N By, define zg = 2; finally, if
z € Ay N B3, define zg = 5. Then g is an idempotent of rank 4 and e — g — f.

Case 4. rank(e) = 2 and rank(f) = 4.

We may assume that e = (Aq, 1)(A, 2) and f = (Bq, 3) (B3, 4)(Bs, 5)(B4, 6).1f {3, 4,5, 6} C A or
{3,4,5,6} C Ay, then Lemma 2.4 applies. Otherwise, we may assume that 3, 4,5 € A; and 6 € A, or
3,4€ A;and5,6 € A,.

Suppose 3,4,5 € A;and 6 € A,.1f 1 € B UB, UB3 or 2 € By, then Lemma 2.4 applies. So suppose
1 € B4, and we may assume that 2 € B;. Now we have

e=(...,3,45 1}, 1){...,6,2},2),

f=...,2,34,3){.... 4, 4{.... 5% 5. .., 1,6}, 6).
We define g € T(X) as follows. Set xg = x for every x € {1, 2, 3,6},4g = 3, and 5g = 3. Define
7g = 3if7 € Ayand7 € BiUB, UB3;7g = 1if7 € Ajand7 € By;7g = 2if7 € A, and
7 € BiUB, UBs;and7g = 6if 7 € Ay and 7 € By. Then g is an idempotent of rank 4 ande — g — f.
The argument in the case when 3,4 € A; and 5, 6 € A, is similar.

Case 5. rank(e) = 3 and rank(f) = 3.

Since both e and f have an element in their range whose preimage is the singleton, we may assume
thate = (A1, 1)(Az, 2)({3}, 3) and f = (By, 4)(B2, 5)({6}, 6).If {1, 2} C B; or {4, 5} C A; for some i,
then Lemma 2.4 applies. Otherwise, we may assume that4 € A; and 5 € A,.1f 1 € B; or 2 € B,, then
Lemma 2.4 applies again. So suppose 1 € B, and 2 € B;. So now

e=({....4 1, 1({...,52},2)({3},3) and f=({...,2,4},4(...,1,5},5)({6},6).
We define g € T(X) as follows. Set xg = x for every x € {1, 2,4,5},3g = 1, and 6g = 4. Define
7g =4if7 € Ayand7 € B;;7g = 1if7 € Ajand7 € By;7g =2if7 € A;and7 € By; and 7g = 5 if
7 € A; and 7 € B,. Then g is an idempotent of rank4and e — g — f.

Case 6. rank(e) = 3 and rank(f) = 4.

We may assume that e = (A1, 1)(A2, 2)({3}, 3) and f = (B1, 4)(B;, 5)(B3, 6)({7}, 7).1f {4, 5,6} C
Ajor{4,5, 6} C A,,thenLemma 2.4 applies. So we may assume that4, 5 € A;and 6 € A,.1f1 € B1{UB,
or 2 € B;, then Lemma 2.4 applies again. So we may assume that 1 € B3 and 2 € B;. So now

e=({...,4,5 1}, 1){...,6,2},2)({3}, 3),
f=...2,4,4{...,5,5{...,1,6},6)({7}, 7).

We define g € T(X) as follows. Set xg = x for every x € {1, 2,4, 6} and 5¢ = 4. Define 7g = 4 if
7€A;7g =6if7 € Ay; 3g = 3if3 € By UA;; and 3g = 1if 3 € B3. Then g is an idempotent of rank
4ande—g—f. O

Theorem 2.17. Let n > 3 and let J; be an ideal in T (X) such that 2 < r < n. Then:

(1) f n=3o0rn € {5,6,7}and r = 4, then the diameter of 4(J;) is 4.
(2) In all other cases, the diameter of §(J,) is 5.
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Proof. Letn = 3.Then the diameter of §(J>) is at most 4 by Lemma 2.1 and Theorem 2.8. On the other
hand, considera = (31)(12) and b = (2 1)(1 3) inJ,. Suppose e and f are idempotents in J, such that
a—eandf —b.ByLemma2.12,e = ({1}, 1)({3, 2}, 2) and f = ({1}, 1)({2, 3}, 3). Then e and f do not
commute, and sod(e, f) > 2.Thusd(a, b) > 4 by Lemma 2.1, and so the diameter of ¢ (J,) is at least 4.

Letn € {5,6,7}and r = 4.1f n = 5, then the diameter of §(J4) is at least 4 (by Lemma 2.14) and
at most 4 (by Lemma 2.1 and Theorem 2.8). If n € {6, 7}, then the diameter of .(J,) is at least 4 (by
Lemma 2.14) and at most 4 (by Lemma 2.16). We have proved (1).

Let n > 4 and suppose thatn & {5,6,7} or r # 4. Then the diameter of 4(J;) is at most 5 by
Lemma 2.1 and Theorem 2.8. It remains to find a, b € J, such that the distance between a and b in
g(J,) is at least 5. We consider four possible cases.

Case 1.1 = 2m — 1 for some m > 2.
Then2 <m<r <2m <n.letxy,...,Xn,Y1,...,¥Ym be pairwise distinct elements of X. Let

a=(y2)V1Y2.. . YmX 1)K X2 ... Xp) and b= (xx3)(X2X3... Xp_1X1Y1)V1Y2--.Ym)

(see Notation 2.11) and note that a, b € J; and ab # ba. Then, by Lemma 2.1, there are idempotents
ey, ...,ex € Jr (k > 1) such thata — e; — --- — ex — b is a minimal path in §(J;) from a to b. By
Lemma 2.12,

e1 = (A1, x1)(Az2, x2) - - - (Am, Xm) and e = (B, ¥1)(B2,¥2) - - - (B, Ym)»

wherey; € A; (1 <i <m),xip1 € Bi(1 <i < m),andx; € By.Lletg € T(X) be an idempo-
tent such that e; — g — e,. By Lemma 2.6, x;g = x; and yjg = y, for everyj € {1,..., m}. Hence
rank(g) > 2m > r,and so g ¢ J;. It follows that the distance between e; and ey is at least 3, and so
the distance between a and b is at least 5.

Case 2.r = 2m for some m > 3.
Then3 <m <r =2m < n.Lletxq,...,Xm, Y1, ..., Ym, Z be pairwise distinct elements of X. Let

a=(xy2)@Zy1y2.. . YmX1)(X1 X2 ... Xm),
b= (Gex1)(Zx3) (X2 X3 ... X X1 Y1) V1Y2 - - . Ym)

(see Notation 2.11) and note that a, b € J, and ab # ba. Then, by Lemma 2.1, there are idempotents
ey,...,ex € Jr (k > 1) such thata — e; — --- — e; — b is a minimal path in §(J;) from a to b. By
Lemma 2.12,

e1 = (A1, x1)(A2, X2) - - - (A, Xiy) and  ex = (B1, y1)(B2, ¥2) - - - (B, Ym),

wherey; € Ai (1 <i<m),xy1 € Bi (1 <i<m),x; €Bn,An = {Xm,¥Ym, 2}, and B; = {y1, x2, z}.
Let g € T(X) be an idempotent such that e; — g — e;. By Lemma 2.6, x;g = x; and y;g = y; for every
je{l,...,m} and zg = z. Hence rank(g) > 2m+ 1 > r,and so g ¢ J,. It follows that the distance
between e and e is at least 3, and so the distance between a and b is at least 5.

Case3.r = 4.
Since we are working under the assumption that n ¢ {5,6,7} orr # 4, we haven ¢ {5,6, 7}.
Thusn > 8 (sincer <n — 1).Let

(1 2 3 45 6 7 8 9 --- n d

=23 4123411 ..1)

b= 1 2 3 45 6 7 8 9 --- n

~\5 6 7 8 6 7 8 5 5 --- 5]
Note that a, b € J4, ab # ba, (1234) is a unique cycle in @, and (567 8) is a unique cycle in b. By
Lemma 2.1, there are idempotents ey, ..., ex € J4 (k > 1) suchthata—e; — - - - — ex — b is a minimal

path in 4.(J4) from a to b. By Lemma 2.10, ie; = iand (4 + i)e, = 4 + iforeveryi € {1, 2, 3, 4}.
By Lemma 2.9, 5e; = 1 or 5e; = 5. But the latter is impossible since with 5e; = 5 we would have
rank(e;) > 5. Similarly, we obtain 6e; = 2, 7e; = 3, 8e; = 4,2¢, = 5, 3ey = 6,4e, = 7,and 1le, = 8.
Let g € T(X) be an idempotent such that e; — g — e,. By Lemma 2.6, jg = jforeveryj € {1, ..., 8}.
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Hence rank(g) > 8 > r,and so g ¢ J,. It follows that the distance between e; and ey is at least 3, and
so the distance between a and b is at least 5.

Case4.r = 2.
In this case we let
(1 2 3 4 5 --- n clb_12345~--n
=212 11 ... 1) ™MP=13 443 3 ... 3)
Note thata, b € J,, ab # ba, (12) is a unique cycle in @, and (3 4) is a unique cycle in b. By Lemma 2.1,
there are idempotents ey, ..., e, € J (k > 1) such thata — e; — --- — e — b is a minimal path in

6(J») from a to b. By Lemma 2.10, 1e; = 1, 2e; = 2, 3ex = 3, and 4e; = 4. By Lemma 2.9, 3e; = 1
or 3e; = 3. But the latter is impossible since with 3e; = 3 we would have rank(e;) > 3. Again, by
Lemma 2.9,4e; = 2or4e; = yforsomey € {4, 5, ..., n}. But the latter is impossible since we would
have ye; = y and again rank(e;) would be at least 3. Similarly, we obtain 2e, = 3, and 1le;, = 4. Let
g € T(X) be anidempotent such that e; — g — e,. By Lemma 2.6, jg = jforeveryj € {1, ..., 4}. Hence
rank(g) > 4 > r,and so g ¢ J,. It follows that the distance between e; and ey is at least 3, and so the
distance between a and b is at least 5.
Thus the diameter of §(J,) is at least 5, which concludes the proof of (2). O

2.3. The commuting graph of T (X)

Let X be a finite set with |X| = n. It has been proved in [8, Theorem 3.1] that if n and n — 1 are not
prime, then the diameter of the commuting graph of Sym(X) is at most 5, and that the bound is sharp
since the diameter of §(Sym(X)) is 5 when n = 9. In this subsection, we determine the exact value of
the diameter of the commuting graph of T (X) for every n > 2.

Throughout this subsection, we assume that X is a finite set with n > 2 elements.

Lemma 2.18. Let n > 4 be composite. Let a, f € T(X) such that a, f # idx, a € Sym(X), and f is an
idempotent. Then d(a, f) < 4.

Proof. Fix x € im(f) and a cycle (x; . ..xp) of asuch thatx € {xq, ..., x,}. Consider three cases.

Case 1. a has a cycle (y; . .. yi) such that k does not divide m.
Then a™ is different from idy and it fixes x. Thusa — a™ — (X, x) — f,and so d(a, f) < 3.

Case 2. a has at least two cycles and for every cycle (y; ... yy) of a, k divides m.
Suppose there is z € im(f) such thatz € {y4, ..., yx} for some cycle (y; ... y) of a different from
(X1...Xp). Since k divides m, there is a positive integer t such that m = tk. Define e € T(X) by:

X1€=Y1, ..., Xk€ =Yk, Xkt 1€ = Y1, .oy X2k€ = Vs - o5 Xe— k1€ = V1, - - -, Xek€ = Vi, (2.4)

and ye = y for all other y € X. Then e is an idempotent such that ae = ea and z € im(e). Thus, by
Lemma2.3,a —e— (X,z) — f,and so d(a, f) < 3.

Suppose that im(f) C {xq, ..., xy}. Consider any cycle (y; ...yy) of a different from (x;...x;).
Since im(f) C {x1, ..., Xm}, y1if = x; for some i. We may assume that y,f = x;. Define an idempotent
e exactly as in (2.4). Then im(e) Nim(f) = @, (y1, x1) € im(e) x im(f), and (y1, x;) € ker(e) N ker(f).
Thus, by Lemma 2.4, there is an idempotent g € T(X) — {idx} such thate —g — f. Hencea—e — g —f,
and sod(a, f) < 3.

Case 3. a is an n-cycle.
Since n is composite, there is a divisor k of n such that 1 < k < n. Then a* # idy is a permutation
with k > 2 cycles, each of length m = n/k. By Case 2,d(a, f) < 3,andsod(a,f) < 4. O

Lemma 2.19. Let n > 4 be composite. Let a, b € T(X) such that a, b # idx and a € Sym(X). Then
d(a,b) <5.

Proof. Suppose b ¢ Sym(X). Then b* is an idempotent different from idy for some k > 1. By
Lemma 2.18, d(a, b¥) < 4, and so d(a, b) < 5.
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Suppose b € Sym(X). Suppose n — 1 is not prime. Then, by [8, Theorem 3.1], there is a path from
a to b in 4(Sym(X)) of length at most 5. Such a path is also a path in (T (X)), and so d(a, b) < 5.
Suppose p = n — 1is prime. Then the proof of [8, Theorem 3.1] still works for a and b unless @’ = idy
or b? = idy. (See also [8, Lemma 3.3] and its proof.) Thus, if @’ # idyx and bP # idy, then there is a path
from a to b in §(Sym(X)) of length at most 5, and so d(a, b) < 5. Suppose @’ = idx or b’ = idx. We
may assume that b? = idx. Then b is a cycle of length p, thatis, b = (x1...xp)(x). Thus b commutes
with the constant idempotent f = (X, x). By Lemma 2.18,d(a, f) < 4,andsod(a,b) <5. O

Lemma 2.20. Let X = {x{,...,Xm,Y1,...,Yk},@ € SymX), and b = (y1...yeX1)(X1...xn). If
ab = ba then a = idy.

Proof. Suppose ab = ba. By Lemma 2.9,

b b b b b b b b
X104 = X4 — - -+ — Xpa —> X1a and  yqa — y,a — - — Y@ —> Xq4. (2.5)
Since (x1 X ...Xp) is a unique cycle in b, (2.5) implies that

X10 = Xq, Xo0 =2Xq41, ..., Xmd = Xg4m—1, (2.6)

where g € {1,...,m} (Xq4i = Xg4i—m if ¢ + 1 > m). Thus x;a = x; for some j. Since y; —b> x; and

b b b .

Xm — X1, we have yya — x;a = xj and x,,a — X0 = x;. Suppose j > 2. Then ij‘] = {xj—1}, and
SO Yk = Xj_1 = Xpa. But this implies yy = x,, (since a is injective), which is a contradiction. Hence
j = 1,and so x1a = x1. But then x;a = x; for all i by (2.6).

Since yia A X1a = X1, we have yya = y; sincex;p~! = {y;, xn}.Leti € {1, ..., k—1} and suppose
. b _
Yir1a = yip1. Then yia = y; since yia — yip1a = yipr and yi b~ = {yi1}. It follows that y;a = y;
forallie {1,...,k}. O

Lemma 2.21. Let m be a positive integer such that 2m < n, o bean m-cycleon {1, ..., m}, a € Sym(X),
and

e= (A, x1)(A2, x2) - - (Am, Xm) and [ = (B1,y1)(B2,¥2) - - B, Ym)

be idempotents in T (X) such that X1, ..., Xm, Y1, - - . , Ym are pairwise distinct, y; € A;, and x;, € B; (1 <

i < m). Then:

(1) Suppose X = {X1, ..., Xm, Y1, ..., Ym, 2} and z € A; N B; such that A; N\ B; = {z}. If e — a — f, then
a = ldx

(2) Suppose X = {X1, ..., Xm,¥1, ..., ¥Ym, Z, w},Z € A; N Bj such that A; N B; = {z}, and w € A; N B;
such that A; N B; = {w}, wheres #iandt #j.If e — a — f, then a = idy.

Proof. To prove (1), suppose e —a—f and note thatA; = {x;, y;, z} and B; = {y;, X;s, z}. By Lemma 2.2,
thereisp € {1, ..., m} such that x;a = x, and A;a C A,. Suppose p # i. Then A, = {x;, y,}, and so
Aja cannot be a subset of A, since a is injective. It follows that p = i, that is, x;a = x; and Aja C A;.
Similarly, yja = yj and Bja C B;. Thus za € A; N B; = {z}, and so za = z. Hence, since a is injective,
yia =Y.

We have proved that x;a = x;, y;a = y;, and za = z. We have B; = {y;, X, } or B; = {¥i, Xi»-, z}. Since
yia = y;, we have B;a C B; by Lemma 2.2. Since za = z and a is injective, it follows that x;;a = X;,.
By the foregoing argument applied to A, = {Xi,, Yis }, We obtain y;,a = y;,. Continuing this way, we
obtain x;;ka = x;,x and y;,xa = y;,« forevery k € {1, ..., m— 1}. Since o is an m-cycle, it follows that
xja = x; and y;g = y; foreveryj € {1, ..., m}. Hence a = idx. We have proved (1). The proof of (2) is
similar., O

Theorem 2.22. Let X be a finite set with n > 2 elements. Then:

(1) If nis prime, then (T (X)) is not connected.
(2) If n = 4, then the diameter of §(T (X)) is 4.
(3) If n > 6is composite, then the diameter of §(T (X)) is 5.
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Proof. Suppose n = p is prime. Consider a p-cyclea = (x1x,...xp,) and let b € T(X) be such that
b # idx and ab = ba. Let X, = x1b. Then, by Lemma 2.9, x;b = x4y foreveryi € {1, ..., p} (where
Xq+i = Xgti—m if ¢+ i > m). Thus b = af, and so, since p is prime, b is also a p-cycle. It follows that if ¢
isavertex of (T (X)) that is not a p-cycle, then there is no path in §(T (X)) from a to c. Hence 4(T (X))
is not connected. We have proved (1).

We checked the case n = 4 directly using GRAPE [16] through GAP [17]. We found that, when
|X| = 4, the diameter of (T (X)) is 4.

Suppose n > 6 is composite. Let a, b € T(X) such that a, b # idx. Ifa € Sym(X) or b € Sym(X),
then d(a,b) < 5 by Lemma 2.19. If a,b ¢ Sym(X), then a,b € J,_1, and so d(a,b) < 5 by
Theorem 2.17. Hence the diameter of ¢ (T (X)) is at most 5. It remains to find a, b € T(X) — {idx}
such that d(a, b) > 5.

For n € {6, 8}, we employed GAP [17]. When n = 6, we found that the distance between the

6-cyclea = (123456)and b = (; g g ‘11 3 i) in §(T(X)) is at least 5. And when n = 8, the

distancebetweentheS—cyclea:(12345678)andb:(; % 3 ‘11 2 g Z; §>in9(T(X))is

at least 5.
To verify this with GAP, we used the following sequence of arguments and computer calculations:

1. By Lemma 2.1, if there exists a patha — ¢; — ¢; — --- — ¢¢ — b, then there exists a path
a—e; —ey—---— e, — b, where each ¢; is either an idempotent or a permutation;

2. Let E be the set idempotents of T(X) — {idx} and let G = Sym(X) — {idx}. For A € T(X), let
CA) ={f €eEUG: (Jaen)af = fa};

. Calculate C(C({a})) and C({b});

. Verify that for all c € C(C({a})) and all d € C({b}), cd # dc;

. Ifthere were a patha—c; —c; —c3 —b froma to b, then we would have c; € C(C({a})), c3 € C({b}),
and cyc3 = c3C;. But, by 4., there are no such ¢, and c3, and it follows that the distance between a
and b is at least 5.

S IV SNOV)

Let n > 9 be composite. We consider two cases.

Case 1.n =2m+ 1isodd (m > 4).
LetX = {x1,...,Xm, Y1, ..., ¥Ym, Z}. Consider

a=@Zy1y2..-YmX1)X1X2...Xn) and b= xo2X3...XuX12Y2)(Y1Y2.-.Ym)-

Let A be a minimal path in (T (X)) from a to b. By Lemma 2.20, there is no g € Sym(X) such that
g # idx and ag = ga or bg = gb. Thus, by the proof of Lemma 2.1, A = a —e; — - -- — e, — b, where
eq and ey, are idempotents. By Lemma 2.12,

e1 = (A1, x1)(A2, X2) - - - (A, Xiy) and ey = (B1, y1)(Bz2, ¥2) - - - (B, Ym),

wherey; € A; (1 <i<m),xi1q € Bi(1 <i<m),x; €Bp,An = {Xm, Ym, 2}, and B; = {y1, x2, z}.
Since m > 4, A, N By = {z}. Thus, by Lemma 2.21, there is no g € Sym(X) such that g # idyx and
e; — g — ey. Hence, if A contains an element g € Sym(X), then the length of A is at least 5. Suppose A
does not contain any permutations. Then A is a path in J,_; and we may assume that all vertices in A
except a and b are idempotents (by Lemma 2.12). By Lemma 2.6, there is no idempotent f € J,_; such
that e; — f — ey. (Here, the m-cycle that occurs in Lemmas 2.6 and 2.21iso = (12...m).) Hence the
length of A is at least 5.

Case2.n =2m+ 2iseven (m > 4).
LetX = {X1,...,Xm, Y1, .- ., ¥Ym, Z, w}. Consider
a=(2Zy1y2.. . YymwX2)(X1X2...Xm) and b= (WxaX3...Xp—2Xm X1 Xm—1Y2)Y1Y2 .. .Ym)-

Let A be a minimal path in (T (X)) from a to b. By Lemma 2.20, there is no g € Sym(X) such that
g # idy and ag = ga or bg = gb. Thus, by the proof of Lemma 2.1,A =a —e; — --- — e, — b, where
e and ey are idempotents. By Lemma 2.12,

e]:(A],X‘l)(AZ,XZ)"'(Am,Xm> and ek:(Blvy1>(32,y2>"'(Bm,}’m>7
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Table 1

Images of the generators.
im(a;) Yo X1 Y1
im(ay) » X2 V2
im(as) Y2 X3 V3
im(as) V3 X4 Va
im(by) Ya Uy U1
lm(bz) V1 Uz Vo
im(bs) vy us v3
im(by) v3 Uy Vg
im(e) Vg r s

wherey; e Ai(1 <i<m),xi11 €B(1 <i<m-—3),%xy € By_2,X1 € Bp_1,Xm—1 € By, A1 =
{x1, y1, w}, Am = {Xm, Ym, 2}, B1 = {y1, %2, 2}, and By = {Ym, Xm—1, w}. Since m > 4, Ay, N By = {z}
and A; N B, = {w}. Thus, by Lemma 2.21, there isno g € Sym(X) such thatg # idx and e; — g — ;.
Hence, as in Case 1, the length of X is at least 5. (Here, the m-cycle that occurs in Lemmas 2.6 and 2.21
isco=(1,2,....m=—3,m—2,mm-—1).)

Hence, if n > 6 is composite, then the diameter of (T (X)) is 5. This concludes the proof. O

3. Minimal left paths

In this section, we prove that for every integer n > 4, there is a band S with knit degree n. We will
show how to construct such an S as a subsemigroup of T (X) for some finite set X.

Let S be a finite non-commutative semigroup. Recall that a patha; —a; —- - - — a,, in §(S) is called
a left path (or l-path) if a; # a, and a1a; = apa; for every i € {1, ..., m}. If there is any [-path in
6(S), we define the knit degree of S, denoted kd(S), to be the length of a shortest I-path in §(S). We
say that an I-path A from a to b in §(S) is a minimal [-path if there is no I-path from a to b that is shorter
than A.

3.1. The even case

In this subsection, we will construct a band of knit degree n where n > 4 is even. For x € X, we
denote by c, the constant transformation with image {x}. The following lemma is obvious.

Lemma 3.1. Let ¢, ¢y, e € T(X) such that e is an idempotent. Then:
(1) cxe = ecy if and only if x € im(e).
(2) cxe = cyeifandonly if (x,y) € ker(e).
Now, given an even n > 4, we will construct a band S such that kd(S) = n. We will explain the
construction using n = 8 as an example. The band S will be a subsemigroup of T (X), where
X = {0, ¥1,¥2,¥3, Y4 = Vo, V1, V2, U3, V4, X1, X2, X3, X4, U, Up, U3, Ug, T, S},

and it will be generated by idempotent transformations ay, a,, as, a4, by, by, bs, b4, e;, whose images
are defined by Table 1.

We will define the kernels in such a way that the generators with the same subscript will have the
same kernel. For example, ker(a;) = ker(b;) = ker(e;) and ker(a,) = ker(b,). Leti € {2, 3, 4}. The
kernel of a; will have the following three classes (elements of the partition X /ker(a;)):

Class-1 = im(a;j41) U - - - Uim(ayg) Uim(by) U - - - U im(b;_y),
Class-2 = im(bj11) U - - - Uim(by) Uim(ey) Uim(a;) U - - - Uim(a;_1),
Class-3 = {x;, u;}.
For example, ker(a,) has the following classes:
Class-1 = {yy, X3, ¥3, X4, Ya, U1, 1},
Class-2 = {vy, us, vs, Ug, V4, T, S, Yo, X1, Y1},
Class-3 = {x, uy}.
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We define the kernel of a; as follows:
Class-1 = im(ay) U im(as) U im(aq) U {s} = {y1, X2, ¥2, X3, ¥3, X4, Ya, S},
Class-2 = im(b,) U im(bs) U im(bs) U {yo} = {v1, Uz, v2, U3, V3, Us, V4, Yo},
Class-3 = {xq, uq, r}.
Now the generators are completely defined since ker(b;) = ker(a;), 1 < i < 4, and ker(e;) =
ker(ay). Order the generators as follows:
ai, G, a3, a4, by, by, b3, by, ey. (3.1)

Let S be the semigroup generated by the idempotents listed in (3.1). Since the idempotents with
the same subscript have the same kernel, they form a right-zero subsemigroup of S. For example,
{ay, by, e1} is a right-zero semigroup: a,a; = bya; = e;a; = ay, a;b; = b;by = e1b;y = by, and
aie; = bie; = e1e; = ey. The product of any two generators with different subscripts is a constant
transformation. For example, a,a4 = ¢y, 440, = ¢y,, and a;b3 = c,,. The semigroup S consists of the
nine generators listed in (3.1) and 10 constants:

S ={ay, az, a3, a4, by, by, b, bs, €1, ¢y, €y, G5 Cys, Cyys Coys Cuys Cogs Cuys Cshs

so S is a band. Note that Z(S) = . Each idempotent in (3.1) commutes with the next idempotent, so
a; —ad; —as — ag — by — by — by — by — ey is a path in §(S). Moreover, it is a unique [-path in (S),
so kd(S) = 8.

We will now provide a general construction of a band S such that kd(S) = n, where n is even.

Definition 3.2. Let k > 2 be an integer. Let
X =0, Y15 -+ s Yk = V05 V15 o Uky X1y ooy Xpgy Ut o5 Ug, T, S}
We will define idempotents aq, ..., ai, by, ..., by, €1 as follows. Fori € {1, ..., k}, let
im(a;) = {yi-1, xi, yi},
im(b;) = {vi_1, u;, vi},
im(ey) = {v, 1, s}.
Fori € {2, ..., k}, define the ker(a;)-classes by:
Class-1 = im(aj;1) U - - - Uim(a,) Uim(by) U - - - Uim(b;_q),
Class-2 = im(bj;1) U - - - Uim(by) Uim(e;) Uim(a;) U --- Uim(a;_1),
Class-3 = {x;, u;}.
(Note that fori = k, Class-1 = im(b;)U- - -Uim(by_1) and Class-2 = im(e;)Uim(a;)U- - -Uim(a;_1).)
Define the ker(ay)-classes by:
Class-1 = im(ay) U - - - Uim(ag) U {s},
Class-2 = im(by) U - - - U im(by) U {yo},
Class-3 = {xq, uq, r}.
Let ker(b;) = ker(a;) for everyi € {1, ..., k}, and ker(e;) = ker(a;). Now, define the subsemigroup
SKof T(X) by:
Sg = the semigroup generated by {a, ..., ai, by, ..., by, e1}. (3.2)

We must argue that the idempotents ay, ..., ax, by, ..., bk, e; are well defined, that is, for each of
them, different elements of the image lie in different kernel classes. Consider a;, wherei € {2, ..., k}.
Then im(a;) = {yi_1, Xi, yi}. Thus y; lies in Class-1 (see Definition 3.2) since y; € im(ajy1) (or
y; € im(by) ifi = k), y;_1 lies in Class-2 since y;_; € im(a;_1), and x; lies in Class-3. Arguments
for the remaining idempotents are similar.
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For the remainder of this subsection, Sg will be the semigroup (3.2). Our objective is to prove that
Sg isaband suchthatw =a; —--- —a, — by — --- — by — ey is a shortest [-path in Sg. Since 7 has
length 2k = n, it will follow that Sg is a band with knit degree n.

We first analyze products of the generators of S(’j.

Lemma3.3. Let 1 <i <j <k Then:

(1) aibi = bi, b,'a,‘ = aj, a1e1 = b1€1 = e, 611 = blal = daj, and €1b1 = alb1 = bl.

(2) aa; = cy;_, and gja; = ¢y,

(3) aib; = Cy; and ajb; = ¢,,_,.

(4) big; = Gy, and bja; = ¢y,_,.

(5) bibj = Cy_, and bjb; = c,,.

(6) e1q; = Cyis and aje; = C;.

(7) eab; = Cy; and bjer = cy,.

Proof. Statement (1) is true because the generators of S(’§ are idempotents and the ones with the
same subscript have the same kernel. By Definition 3.2, Class-2 of ker(ag;) contains both im(aj—1) =
{yji—2, xi—1, yj—1} and im(q;) (since i < j). Since y;_1 € im(a;) = {yj—1. X;, y;}, a; maps all elements of
Class-2 to y;—i. Hence a;a; = Cyj - Similarly, since i < j, Class-1 of ker(a;) contains both im(a;;1) =
{¥i, Xit1, Yiy1y and im(a;). Since y; € im(a;) = {yi—1, X;, y;}, a; maps all elements of Class-1 to y;. Hence
a;a; = cy,. We have proved (2). Proofs of (3)-(7) are similar. For example, bje; = c,, because Class-2
of ker(e1) = ker(a;) contains both im(b;) and im(by) = {vk—1, Uk, Ui}, and v € im(eq). O

The following corollaries are immediate consequences of Lemma 3.3.

Corollary 3.4. The semigroup S(’)‘ is a band. It consists of 2k + 1 generators from Definition 3.2 and 2k + 2
constant transformations:

k
So=1{ai,....a, b1, ..., by, €1,Cpy, Cyys ooy Gy Cuys v - - 5 Cyps G-

Corollary 3.5. Let g, h € Sé‘ be generators from the list
a1,...,ak,b1,...,bk,€1. (3.3)
Then gh = hg if and only if g and h are consecutive elements in the list.

Lemma 3.3 gives a partial multiplication table for Sé‘. The following lemma completes the table.

Lemma3.6. et 1 <p <kand1 <i<j <k Then:

(1) ¢pyap = ¢y, by = €y, 608 = ¢y, 000 = ¢y, Gby = ¢y, b = ¢y, Ge1 = G
Cyolp = Cy, y» Cyobp = Cy,, and ¢y, €1 = Cy.

(2) Cyplp = Cy, 4, cvpbp = Cup, Coyj = Cy;s Coy8i = Gy cybj = Cu_1s cvjb,» = Cy, and Cyp€1 = Cyp.

(3) ¢a; = Cyiys chj = Cyjs CsA1 = Cyy, Csb1 = ¢y, and cie1 = ¢

Proof. We have ¢,,a, = ¢, since y, € im(ap). By Definition 3.2, Class-1 of ker(b,) contains both

im(ap11) and im(b,1). Since y, € im(ay41) and vy € im(by4), both y, and v, 4 are in Class-

1. Hence yp,b, = v,_1b, = wvp_y, where the last equality is true because v,_; € im(by). Thus

Cy,bp = Co, 4 BY Definition 3.2, y, and s belong to Class-1 of ker(e;), and s € im(ey). It follows that

Cy,€1 = Cs. Agaip by Definition 3.2, y and y,_; belong to Class-2 of ker(a,), and y,_; € im(a,). Hence

Cyolp = Cy, ;. Similarly, ¢, by = c,, and ¢y = ¢y, By Lemma 3.3,

0 = (Cy @) = ¢y (aigy) = Gilyi1 = Gy
Cy;@i = (€y;,0))a; = €y, (aja;) = Cy;Cy; = Gy,
¢y,bj = (¢y,a)b; = ¢y, (aiby) = CyiCy; = Cyjs
cy].bi = (cy].a]-)bi = ¢y, (ajby) = Cy;Cup_q = Cuy_yq-

We have proved (1). Proofs of (2) and (3) are similar. O
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Table 2
Cayley table for S2.
a; a by b, e Cyp ¢y, Cy, Cy,y Cuy Cs
a; a; Cy, by Cuy e Cyp Gy, ¢y, Cuy Cuy Cs
a n a Cy, b, Cs Cyo T Cy, Coy Cu, Cs
by a; Cy, by Cy, e Cyp ¢y, Cy, Cy,y Cuy Cs
b, o az Coy b, Co, Cyo Oy Cy, Coy Cu, Cs
eq a; Cy, by Cyy e Cyo Cy, cy, Cy,y Cyy Cs
o %o o Coy Cup Cop %o 2 Cya Coy Cop Gs
2 7 22! G2 Coy Cs o 7 Cya Coy Cuy Gs
&2 2 &2 B2 Con Cs %o 2 Cya Coy Cop G
Cor o &2 Cor Coy Cop %o n 2 Coy Cup G
Cuy %o o oy Cop Cup o 7 Cya Coy Cp Gs
Cs Cy1 n %2 oy Cs %o 4 2 Coy Cp G

Table 2 presents the Cayley table for 53.

Lemma 3.7. Let g, h, c, € Sg such that c, is a constant and g — ¢, — h is a path in g(sg). Then gh = hg.

Proof. Note that g, h are not constants since different constants do not commute. Thus g and h are
generators from list (3.3). We may assume that g is to the left of h in the list. Since ¢, commutes with
both g and h, z € im(g) N im(h) by Lemma 3.1. Suppose g = a;, where 1 <i < k — 1.Then h = a;;
since a1 is the only generator to the right of a; whose image is not disjoint from im(a;). Similarly, if
g = aythenh = by;ifg =b;(1 <i <k—1)thenh = b;y; and ifg = b, then h = e;. Hence
gh = hg by Corollary 3.5. O

Lemma 3.8. The paths

A)ti=c¢y—a1— - —a—br——be—cy,
(i) p=¢p —ty— — @ —by— - — by — ey —

are the only minimal [-paths in g(sg) with constants as the endpoints.

Proof. We have that t; and 1, are [-paths by Lemmas 3.3 and 3.6. Suppose that A, = ¢, —--- — ¢, isa
minimal I-path in 9(5[;) with constants ¢, and c,, as the endpoints. Recall that z, w € {yo, ¥1, ..., Yk
V1, ..., U, S}. We may assume that z is to the left of w in the list ygo, y1, ..., Yk, V1, ..., Uk, S. Since A

is minimal, Lemma 3.7 implies that A does not contain any constants except ¢, and c,,. There are five
cases to consider.

(@) A =gy, —~--—cyj,where05i<j§k.
(b)A=cyi—~~~—cvj,where05i§k,1Sjsk.
() A=c¢y —---—cs,where0 <i <k
(d)A=cy—---—cy,where1 <i<j<k
(&) A=cy —---—cs,where1 <i <k

Suppose (a) holds, thatis, A = ¢, —--- —h —¢,,0 < i < j < k. Since hc); = cyh, either
h = agjor h = aj;; (where a1 = by) (since g; ancf aj41 are the only generators that have y; in
their image). Suppose h = a;;. Then, by Corollary 3.5, either A = ¢, — -+ — @; — Gj41 — Cy; or
A =c¢y— =042 —Gp1 — ¢y (Whereajp, = by ifj = k—1,and ajy» = b, ifj = k). In the latter case,

A=c¢y— - —a@—e —bg—- —bi—a— - — a2 — Gy — ¢y,

which is a contradiction since a; and e; do not commute. Thus either A = ¢, — -+ — a; — ¢, or
A =cy — -+ —a — 611 — ¢, Ineither case, A contains a;, and so ¢,,a; = cy,q; (since A is an I-path).
But, by Lemma 3.6, ¢,q; = Cyjs and ¢y,a; = ¢y Hence ¢y, | = ¢y, whi'ch is a contradiction.

Suppose (b) holds, thatis, A = ¢, —g —--- — h — €y, 0 =i < kand 1 < j < k.Then g

is either a; or ai1 (g = aj1 if i = 0) and h is either b; or bj;; (where b1 = eq). In any case, A =
¢y, —&—-+-—ag—by—---—h—c,.Supposei > 1.Then, by Lemma 3.6 and the fact that A is an I-path,
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Cyp = Cy;b1 = cvjbl = Cy,, Whichis a contradiction.Ifi = 0andj < k,thenc,, , = ¢),ax = Cy 0k = Cy,,
which is again a contradiction. Ifi = 0 and j = k, then g = a;, and so A = ;.
Suppose (c) holds, thatis,A =c¢,, —g —---—axr—by —--- — by —e; — ¢, 0 <i <k wheregis

either g; or a1 (g = aiq1 ifi = 0).If i > 1,thenc,_, = ¢;,b; = ¢b; = ¢,,, which is a contradiction.
Ifi = 0, thenc, = ¢,,e; = ¢y = ¢, which is a contradiction. If i = 1and g = ay, then A is not
minimal since ¢,, — @, S0 a; can be removed. Finally, ifi = 1and g = a,, then A = 1,.

Suppose (d) holds, thatis,A =c¢,,—g—---—h— Cy, 1 < < j < k, where g is either b; or b;; and
h is either b; or bjy1 (where b1 = e;). In any case, A contains bj, and so Gy = Cyb; = cvjbj = Gy,
which is a contradiction.

Suppose (e) holds, thatis, A =¢,; —--- —e; — ¢, 1 <i < k.Thenc,, = ¢,e; = ¢se; = ¢;, which
is a contradiction.

We have exhausted all possibilities and obtained that A must be equal to 7; or t,. The result
follows. O

Lemma 3.9. Thepathm =a; —--- — ay — by — - - - — by — ey is a unique minimal I-path in g(S(’j) with
at least one endpoint that is not a constant.

Proof. We have that 7 is an I-path by Lemmas 3.3 and 3.6. Suppose that . = e — - - - — f is a minimal
I-path in g(s(’;) such that e or f is not a constant.

We claim that A does not contain any constant c,. By Lemma 3.7, there is no constant ¢, such that
A=e—---—c,— -+ —f (since otherwise A would not be minimal). We may assume that f is not a
constant. But then e is not a constant either since otherwise we would have that ef is a constant and
ff = f is not a constant. But this is impossible since X is an I-path, and so ef = ff. The claim has been
proved.

Thus all elements in A are generators from list (3.3). We may assume that e is to the left of f
(according to the ordering in (3.3)). Since A is an [-path, e = ee = fe. Hence, by Lemma 3.3, e = a, and

f =by(forsomep e {1,...,k})ore=b;andf =e;ore=a;andf = e;.
Suppose thate = a, and f = b, for some p. Then, by Corollary 3.5, = a,—---—ax—b1—---—b,.
(Note that A = a, — ap—qy — --- — a; — ey — by — --- — b, is impossible since aje; # eqay.) If

p > 1 then, by Lemma 3.3, ¢,, = a,by = byb; = ¢,,, which is a contradiction. If p = 1, then
¢y, = @10 = b1by = ¢y, which is again a contradiction.

Suppose thate = by and f = e;.ThenA = by —--- — by — ey, and so¢,,_, = biby = e1by = ¢y,
which is a contradiction.
Hence we must have e = a; and f = e;. But then, by Corollary 3.5, A =a; —---—ay,—by —--- —

by — e; = . The result follows. O

Theorem 3.10. For every even integer n > 2, there is a band S with knit degree n.

Proof. Let n = 2. Consider the band S = {a, b, c, d} defined by the following Cayley table:

la b c d
ala b c d
b|b b b b
cla b c d
d|ld d d d

It is easy to see that the center of S is empty and a — b — c is a shortest [-path in §(S). Thus kd(S) = 2.

Let n = 2k where k > 2. Consider the semigroup Sg defined by (3.2). Then, by Corollary 3.4, 56‘ is
a band. The paths 71, 12, and 7 from Lemmas 3.8 and 3.9 are the only minimal [-paths in 9(56‘). Since
71 has length 2k + 1 = n + 1, 7, has length 2k + 2 = n + 2, and & has length 2k = n, it follows that
kdSH =n O

3.2. The odd case

Suppose n = 2k + 1 > 5 is odd. We will obtain a band S of knit degree n by slightly modifying
the construction of the band S(’§ from Definition 3.2. Recall that Sé‘ has knit degree 2k (see the proof of
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Theorem 3.10). We will obtain a band of knit degree n = 2k + 1 by simply removing transformations
e1 and ¢, from S.

Definition 3.11. Let k > 2 be an integer. Consider the following subset of the semigroup S,? from
Definition 3.2:

1 0
S¢ =S —len, ) ={ar,...,ak, b1, ... b, Gy, Cyps oo Gy Cops oo Oy ) (3.4)

By Lemmas 3.3 and 3.6, S is a subsemigroup of Sy.

Remark 3.12. Note that r and s, which still occur in the domain (but not the image) of each element
of S¥, are now superfluous. We can remove them from the domain of each element of S} and view S}
as a semigroup of transformations on the set

X={0,Y1, s Yk = V0, V1, ooy Uk, X1, + v o5 Xy Uty -0, Ug)

It is clear from the definition of S¥ that the multiplication table for S¥ is the multiplication table for

S(’)< (see Lemmas 3.3 and 3.6) with the rows and columns e; and ¢; removed. This new multiplication
table is given by Lemmas 3.3 and 3.6 if we ignore the multiplications involving e; or cs. Therefore, the
following lemma follows immediately from Corollary 3.4 and Lemmas 3.8 and 3.9.

Lemma 3.13. Let S’f be the semigroups defined by (3.4). Then Slf isabandandt = ¢y, —a; — -+ —a —
by — -+ — by — ¢y, is the only minimal I-path in 9,(54‘).

Theorem 3.14. For every odd integer n > 5, there is a band S of knit degree n.

Proof. Letn = 2k+ 1 where k > 2. Consider the semigroup Si‘ defined by (3.4). Then, by Lemma 3.13,
Skisabandand v = ¢), —a; — -+ — @y — by — - -+ — by — ¢y, is the only minimal [-path in §(S¥).
Since t has length 2k + 1 = n, it follows that kd(Sﬂ‘) =n 0O

The case n = 3 remains unresolved.
Open question. Is there a semigroup of knit degree 3?

4. Commuting graphs with arbitrary diameters

In Section 2, we showed that, except for some special cases, the commuting graph of any ideal
of the semigroup T(X) has diameter 5. In this section, we use the constructions of Section 3 to
show that there are semigroups whose commuting graphs have any prescribed diameter. We note
that the situation is (might be) quite different in group theory: it has been conjectured that there
is an upper bound for the diameters of the connected commuting graphs of finite non-abelian
groups [8, Conjecture 2.2].

Theorem 4.1. For every n > 2, there is a semigroup S such that the diameter of 4.(S) is n.

Proof. Let n € {2, 3, 4}. The commuting graph of the band S defined by the Cayley table in the proof
of Theorem 3.10 is the cycle a — b — ¢ — d — a. Thus the diameter of (S) is 2. Consider the semigroup
S defined by the following table:

la b c d
ala a a a
bla b ¢ ¢
clc ¢ ¢ ¢
dic d ¢ c

Note that Z(S) = ¢ and 4(S) is the chain a — b — ¢ — d. Thus the diameter of §.(S) is 3. The diameter
of §(J4) is 4 (where ], is an ideal of T (X) with |X| = 5).

Let n > 5. Suppose n is even. Then n = 2k + 2 for some k > 2. Consider the band 5’3 from
Definition 3.2. Since ¢y, and a; are the only elements of Sg whose image contains yg, they are the
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only elements of 56‘ commuting with ¢y, (see Lemma 3.1). Similarly, e; and ¢, are the only elements
commuting with ¢;. Therefore, it follows from Corollary 3.5 that ¢,, —a; —- - - —ag—by—- - - —by—e; —¢;
is a shortest path in 9(56‘) from ¢y, to c;, that is, the distance between ¢, and ¢ is 2k + 2 = n. Since
a —---—a—by—---— by —eqpisapathin g(s(’;), ¢y,a; = aicy, and ¢y, b; = bicy, (1 < i < k), it
follows that the distance between any two vertices of 9(56‘) is at most 2k + 2. Hence the diameter of
G.(Skyis n.

Suppose nis odd. Thenn = 2k+ 1 for some k > 2. Consider the band S’f from Definition 3.11. Then
Cyp — a1 — -+ —a — by — - -+ — b — ¢y, is a shortest path in §(S¥) from ¢y, to ¢,,, that is, the distance
between cy, and c,, is 2k + 1 = n. As for Sk we have Cy,0; = aicy, and ¢,.b; = bic,, (1 < i < k). Thus
the distance between any two vertices of Sf is at most 2k + 1, and so the diameter of g,(sf) isn. O

5. Schein’s conjecture

The results obtained in Section 3 enable us to settle a conjecture formulated by Schein in 1978
[14, p. 12]. Schein stated his conjecture in the context of the attempts to characterize the r-semisimple
bands.

A right congruence 7 on a semigroup S is said to be modular if there exists an element e € S such
that (ex)tx for all x € S. The radical R, on a band S is the intersection of all maximal modular right
congruences on S [11]. Aband S is called r-semisimple if its radical R, is the identity relation on S.

In 1969, Arendt announced a characterization of r-semisimple bands |3, Theorem 18]. In 1978,
Schein pointed out that Arendt’s characterization is incorrect and proved [14, p. 2] that a band S is
r-semisimple if and only if it satisfies infinitely many quasi-identities: (1) and (A,) for all integers
n > 1, where

(1) zx=2zy = xy = yx,
(An)  X1X2 = XoX1 A XoX3 = X3Xo A -+ A Xn_1Xn = XnXn_1
ANX1X1 = XpX1 N X1X2 = XpXo A -+ - AN X1Xp = XpXn = X1 = Xp-
Schein observed that (A;) and (A,) are true in every band, that (As) easily follows from (1), and that
Arendt’s characterization of r-semisimple bands is equivalent to (1). He used the last observation to
show that Arendt’s characterization is incorrect by providing an example of a band T for which (1)
holds but (A4) does not. We note that Schein’s example is incorrect since the Cayley table in [ 14, p. 10],
which is supposed to define T, does not define a semigroup because the operation is not associative:
(4x1)x1 = 10 # 8 = 4 % (1 % 1). However, Schein was right that it is not true that condition
(1) implies (A,) for all n. The semigroup Sg (see Table 2) satisfies (1) but it does not satisfy (As) since
a; — a; — by — by — ey is an I-path (so the premise of (As) holds) but a; # e;.
At the end of the paper, Schein formulates his conjecture [14, p. 12]:

Schein’s conjecture. For every n > 1, (A,) does not imply (A;+1).
The reason that Section 3 enables us to settle Schein’s conjecture is the following lemma.

Lemma 5.1. Let n > 1 and let S be a band with no central elements. Then S satisfies (A,) if and only if
g.(S) has no I-path of length <n.

Proof. First note that (A;) can be expressed as follows: for all x{, ..., x, € S,
Xp—--—2X;, and x5, =xx (1<i<n)= x4 =x. (5.1)
(Here, we allow x — x and do not require that xq, . . ., X, be distinct.)

Assume S satisfies (A;). Suppose to the contrary that §.(S) has an I-path A = x; — - - - — X of length
<n, thatis,k < n.Thenx; — --- — Xy — Xgr1 — - -+ — Xn, Where x; = x; foreveryi € {k+1,...,n},
and so x; = x, = X, by (5.1). This is a contradiction since A is a path.

Conversely, suppose that 4(S) has no I-path of length <n. Let x; — - - - — x; and x1%; = Xpx; (1 <
i < n). Suppose to the contrary that x; # x,. If there areiandjsuchthat1 <i <j < nandx; = xj,
we canreplacex; — -+ —Xj — -+ —Xj — -+ — X, Withx; — -+ - — X; — Xj;1 — - - — X,.. Therefore,
we can assume that x4, . . ., X, are pairwise distinct. Recall that S has no central elements, so all x; are

vertices in §(S). Thus x; — - - - — x, is an I-path in §(S) of length n — 1, which is a contradiction. O
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First, Schein’s conjecture is false forn = 3.

Proposition 5.2. (A3) = (Ay).
Proof. Suppose a band S satisfies (A3), that is,

X1Xy = X2X1 A XoX3 = X3X2 A X1X1 = X3X1 A X1X2 = X3X2 A X1X3 = X3X3 = X1 = X3. (5.2)
To prove that S satisfies (A4), suppose that

Y1Y2 = Ya¥V1 N Y2Y3 = Y3Y2 AN Y3Y4 = Yay3 A Y1Y1 = Ya¥1 N Y1)2
= Y4Y2 NY1Y3 = YaY3 N Y1Y4 = Y4Ya.
Take x; = y1, X2 = ¥2y3, and x3 = y4. Then X1, x;, X3 satisfy the premise of (5.2):

X1X2 = Y1Y2Y3 = Y1Y3Y2 = Y4Y3Y2 = Y3Y4Y2 = Y3Y1Y2 = Y3¥2Y1 = Y2Y3Y1 = X2X1,
X2X3 = Y2Y3Y4 = Y2Yay3 = Y2Y1Y3 = Y123 = Y4Y2Y3 = X3X3,
X1X1 = V1)1 = Yay1 = X3Xq, X1X2 = Y1Y2Y3 = Yay2y3 = X3X2,
X1X3 = Y1Y4 = YaY4 = X3X3.
Thus, by (5.2), y1 = X1 = X3 = y4,and so (A4) holds. O

Second, Schein’s conjecture is true for n # 3.

Proposition 5.3. If n > 1and n # 3, then (A,) does not imply (Ap+1).

Proof. Consider the band S = {e, f, 0}, where O is the zero, ef = f,and fe = e. Thene — 0 — f, ee =
fe,e0 = f0, ef = ff,and e # f. Thus S does not satisfy (As). But S satisfies (A;) since (A;) is true in
every band. Hence (A;) does not imply (A3).

Let n > 4. Then, by Theorems 3.10 and 3.14 and their proofs, the band S constructed in
Definition 3.2 (if n is even) or Definition 3.11 (if n is odd) has knit degree n. By Lemmas 3.3 and 3.6, S
has no central elements. Since kd(S) = n, there is an I-path in 4(S) of length n and there is no I-path
in §(S) of length <n. Hence, by Lemma 5.1, S satisfies (A,) and S does not satisfy (A;41). Thus (A,)
does not imply (Ap41). O

6. Problems

We finish this paper with a list of some problems concerning commuting graphs of semigroups.

(1) Is there a semigroup with knit degree 3? Our guess is that such a semigroup does not exist.

(2) Classify the semigroups whose commuting graph is Eulerian (proposed by M. Volkov). The same
problem for Hamiltonian and planar graphs.

(3) Classify the commuting graphs of semigroups.

(4) Is it true that for all natural numbers n > 3, there is a semigroup S such that the clique number
(girth, chromatic number) of §.(S) is n?

(5) Classify the semigroups S such that the clique and chromatic numbers of ¢(S) coincide.

(6) Calculate the clique and chromatic numbers of the commuting graphs of T (X) and End(V), where
X is a finite set and V is a finite-dimensional vector space over a finite field.

(7) Let 4(S) be the commuting graph of a finite non-commutative semigroup S. An rl-path is a path
a; — - -+ — Gy in §(S) such that a; # a,, and a1a;a; = apa;a, foralli = 1, ..., m. For rl-paths,
prove the results analogous to the results for [-paths contained in this paper.

(8) Find classes of finite non-commutative semigroups such that if S and T are two semigroups in that
class and §(S) = ¢(T), thenS = T.
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