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a b s t r a c t

In this paper, we consider a higher-order three-point boundary value problem on time
scales. We study the existence of solutions of a non-eigenvalue problem and of at least one
positive solution of an eigenvalue problem. Later we establish the criteria for the existence
of at least two positive solutions of a non-eigenvalue problem. Examples are also included
to illustrate our results.
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1. Introduction

We are concerned with the dynamic three-point boundary value problem (TPBVP){
(−1)ny∆

2n
(t) = f (t, yσ (t)), t ∈ [a, b],

αi+1y∆
2i
(η)+ βi+1y∆

2i+1
(a) = y∆

2i
(a), γi+1y∆

2i
(η) = y∆

2i
(σ (b)), 0 ≤ i ≤ n − 1,

(1.1)

and the eigenvalue problem (−1)ny∆
2n
(t) = λf (t, yσ (t)) with the same boundary conditions where λ is a positive

parameter, n ≥ 1, a < η < σ(b), and f : [a, σ (b)] × R → R is continuous. We assume that σ(b) is right dense so
that σ j(b) = σ(b) for j ≥ 1 and that for each 1 ≤ i ≤ n, αi, βi, γi coefficients satisfy the following condition;

(H) 0 ≤ αi <
σ(b)− γiη + (γi − 1)(a − βi)

σ (b)− η
, βi ≥ 0, 0 < γi <

σ(b)− a + βi

η − a + βi
.

Throughout this paper we let T be any time scale (non-empty closed subset of R) and [a, b] be a subset of T such that
[a, b] = {t ∈ T, a ≤ t ≤ b}.

Some preliminary definitions and theorems on time scales can be found in books [1,2] which are excellent references for
calculus of time scales.

Second-order, three-point boundary value problems for dynamic equations on time scales have been studied in recent
years [3–12]. Anderson and Avery [13] have been interested in an even-order three-point boundary value problem on time
scales with a delta-nabla differential operator. Their problem is an extension of the works [3,7,14] on positive solutions of a
linear three-point boundary value problem.

2nth-order two-point boundary value problems have attracted considerable attention in recent years [14–16]. Cetin and
Topal [17] were interested in the following TPBVP,
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(−1)ny∆

2n
(t) = f (t, yσ (t)), t ∈ [0, 1] ⊂ T,

y∆
2i
(0) = y∆

2i
(σ (1)) = 0, 0 ≤ i ≤ n − 1.

(1.2)

They have studied the existence of solutions and of at least one positive solution to TPBVP (1.2). For this purpose, they
used the Schauder fixed-point theorem, the monotone method and the Krasnosel’skii fixed-point theorem.

In this paper, existence results of bounded solutions of a non-eigenvalue problem are first established as a result of the
Schauder fixed-point theorem. Second, the monotone method is discussed to ensure the existence of solutions of TPBVP
(1.1). Third, we establish criteria for the existence of at least one positive solution of the eigenvalue problem by using the
Krasnosel’skii fixed-point theorem. Later, we investigate the existence of at least two positive solutions of TPBVP (1.1) by
using the Avery–Henderson fixed-point theorem. Finally, as an application, we also give some examples to demonstrate our
results. Our results extend the problem (1.2). Moreover, our problem is more general than some in the existing literature on
three-point boundary value problems [5,18,19].

2. The preliminary lemmas

To state and prove the main results of this paper, we need the following lemmas.
For 1 ≤ i ≤ n, let Gi(t, s) be Green’s function for the boundary value problems{

−y∆
2
(t) = 0, t ∈ [a, b],

αiy(η)+ βiy∆(a) = y(a), γiy(η) = y(σ (b)).
(2.1)

First, we need a few results on the related second-order homogeneous problem (2.1).

Lemma 2.1. For 1 ≤ i ≤ n, let

di = (γi − 1)(a − βi)+ (1 − αi)σ (b)+ η(αi − γi).

The homogeneous boundary value problem (2.1) has only the trivial solution if and only if di 6= 0.

Proof. A general solution of−y∆
2
(t) = 0 is y(t) = At+B. The boundary conditions at a, η, and σ(b) lead to two equations

A(αiη + βi − a)+ B(αi − 1) = 0,
A(γiη − σ(b))+ B(γi − 1) = 0,

for 1 ≤ i ≤ n. The determinant of the coefficients for this system is di. It follows that A = B = C = 0 if and only if di 6= 0.
This implies the given boundary value problem (2.1) has only a trivial solution if and only if di 6= 0. �

Lemma 2.2. Let Gi(t, s) be Green’s function for the boundary value problem (2.1).Then, for 1 ≤ i ≤ n,

Gi(t, s) =

{
Gi1(t, s), a ≤ s ≤ η,
Gi2(t, s), η < s ≤ b, (2.2)

where

Gi1(t, s) =
1
di

{
[γi(t − η)+ σ(b)− t](σ (s)+ βi − a), σ (s) ≤ t,
[γi(σ (s)− η)+ σ(b)− σ(s)](t + βi − a)+ αi(η − σ(b))(t − σ(s)), t ≤ s,

and

Gi2(t, s) =
1
di

{
[σ(s)(1 − αi)+ αiη + βi − a](σ (b)− t)+ γi(η − a + βi)(t − σ(s)), σ (s) ≤ t,
[t(1 − αi)+ αiη + βi − a](σ (b)− σ(s)), t ≤ s.

Proof. It is easy to see that Gi(t, s) satisfies the boundary conditions

αiy(η)+ βiy∆(a) = y(a), γiy(η) = y(σ (b)),

for all (t, s) ∈ [a, σ (b)] × [a, b]. For t ∈ [a, η],

y∆(t) =
1
di

∫ t

a
(γi − 1)(σ (s)+ βi − a)f (s, yσ (s))∆s +

1
di

∫ η

t
[(1 − αi)(σ (b)− η)+ (1 − γi)(η − σ(s))]

× f (s, yσ (s))∆s +
1
di

∫ σ(b)

η

(1 − αi)(σ (b)− σ(s))f (s, yσ (s))∆s

so that −y∆
2
(t) = f (t, yσ (t)). Likewise for t ∈ [η, σ (b)], we get −y∆

2
(t) = f (t, yσ (t)). Therefore Gi as given in (2.2) is

Green’s function for (2.1). �
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Lemma 2.3. Assume that condition (H) is satisfied. Then, Green’s function satisfies the following inequality.

Gi(t, s) ≥

(
t − a

σ(b)− a

)
Gi(σ (b), s), (t, s) ∈ (a, σ (b))× (a, b).

Proof. We proceed sequentially on the branches of Green’s function.
(i) Fix s ∈ [a, η] and σ(s) ≤ t . Then

Gi(t, s) =
1
di

[γi(t − η)+ σ(b)− t](σ (s)+ βi − s).

For 0 < γi <
σ(b)−a
η−a , we have the inequality

γi[(t − a)(σ (b)− η)− (σ (b)− a)(t − η)] < (σ(b)− a)(σ (b)− t).

Hence we get

Gi(t, s)
Gi(σ (b), s)

=
γi(t − η)+ σ(b)− t

γi(σ (b)− η)
>

t − a
σ(b)− a

for 0 < γi <
σ(b)−a
η−a . Since the inequality σ(b)−a+βi

η−a+βi
< σ(b)−a

η−a holds, we have

Gi(t, s) >
t − a

σ(b)− a
Gi(σ (b), s)

for 0 < γi <
σ(b)−a+βi
η−a+βi

.
(ii) Fix s ∈ [a, η] and t ≤ s. Then

Gi(t, s) =
1
di

[γi(σ (s)− η)+ σ(b)− σ(s)](t + βi − a)+ αi(η − σ(b))(t − σ(s)).

Using the inequalities 0 < γi <
σ(b)−a+βi
η−a+βi

and αi(σ (s)− t)(η − a + βi)(σ (b)− a)+ βi(σ (b)− t)(σ (s)− a + βi) > 0,
we obtain

Gi(t, s)
Gi(σ (b), s)

=
[γi(σ (s)− η)+ σ(b)− σ(s)](t + βi − a)+ αi(η − σ(b))(t − σ(s))

γi(σ (b)− η)(σ (s)+ βi − a)

>
(σ(s)− a + βi)(t − a + βi)+ αi(σ (s)− t)(η − a + βi)

(σ (b)− a + βi)(σ (s)− a + βi)

>
t − a

σ(b)− a
.

(iii) Take s ∈ [η, b] and σ(s) ≤ t . Then

Gi(t, s) = [σ(s)(1 − αi)+ αiη + βi − a](σ (b)− t)+ γi(η − a + βi)(t − σ(s))

= Gi(σ (b), s)+
1
di

[(γi − 1)(a − βi)+ (1 − αi)σ (s)+ η(αi − γi)](σ (b)− t).

Since (γi − 1)(a − βi)+ (1 − αi)σ (s)+ η(αi − γi) > 0, we get

t − a
σ(b)− a

Gi(σ (b), s) < Gi(t, s).

(iv) Take s ∈ [η, b] and t ≤ s. Then

Gi(t, s) = [t(1 − αi)+ αiη + βi − a](σ (b)− σ(s)).

Since the inequality (t − a)di + (σ (b)− t)(αi(η − a)+ βi) > 0 holds, we have

Gi(t, s)
Gi(σ (b), s)

=
t(1 − αi)+ αiη + βi − a

γi(η − a + βi)
>

t − a
σ(b)− a

. �

Lemma 2.4. Under condition (H), for 1 ≤ i ≤ n, Green’s function Gi(t, s) in (2.2) possesses the following property;

Gi(t, s) > 0, (t, s) ∈ (a, σ (b))× (a, b).



2432 D.R. Anderson, I.Y. Karaca / Computers and Mathematics with Applications 56 (2008) 2429–2443

Proof. By Lemma 2.3, it suffices to show that Gi(σ (b), s) > 0 for s ∈ (a, b). For s ∈ (a, η],

Gi(σ (b), s) =
1
di
γi(σ (b)− η)(σ (s)+ βi − a) > 0,

and for s ∈ [η, b),

Gi(σ (b), s) =
1
di
γi(η − a + βi)(σ (b)− σ(s)) > 0. �

Lemma 2.5. Assume (H) holds. Then, for 1 ≤ i ≤ n, Green’s function Gi(t, s) in (2.2) satisfies

Gi(t, s) ≤ max
{
Gi(a, s),Gi(σ (s), s),

1
di
(η − a + βi)(σ (b)− σ(s))

}
, (t, s) ∈ [a, σ (b)] × [a, b], 0 < γi ≤ 1,

and

Gi(t, s) ≤ max{Gi(σ (b), s),Gi(σ (s), s)}, (t, s) ∈ [a, σ (b)] × [a, b], 1 < γi <
σ(b)− a + βi

η − a + βi
.

Proof. We again deal with the branches of Green’s function.
(i) Let s ∈ [a, η] and take σ(s) ≤ t ≤ σ(b).Here Gi(t, s) is non-increasing in t if 0 < γi ≤ 1, so that Gi(t, s) ≤ Gi(σ (s), s).

If 1 < γi <
σ(b)−a+βi
η−a+βi

, however, the function is non-decreasing in t and Gi(t, s) ≤ Gi(σ (b), s).
(ii) Fix s ∈ [a, η] and consider any t with a ≤ t ≤ s. Then Gi(t, s) is increasing in t for all t ∈ [a, s], for any

γi ∈ (0, σ(b)−a+βi
η−a+βi

). Therefore Gi(t, s) ≤ Gi(σ (s), s).
(iii) Take s ∈ [η, b], σ (s) ≤ t ≤ σ(b). Here Gi(t, s) is non-increasing in t if 0 < γi ≤ 1, so that Gi(t, s) ≤ Gi(σ (s), s).

Let γi ∈ (1, σ(b)−a+βi
η−a+βi

). So αi < 1. Our analysis depends on the placement of s. If s ∈ [η,
γi(η−a+βi)−αiη−βi+a

1−αi
), then Gi(t, s) is

non-decreasing in t and Gi(t, s) ≤ Gi(σ (b), s). Otherwise, for s ∈ (
γi(η−a+βi)−αiη−βi+a

1−αi
, σ (b)], Gi(t, s) is non-increasing in t

and Gi(t, s) ≤ Gi(σ (s), s).
(iv) Take s ∈ [η, b], a ≤ t ≤ s ≤ b. Let γi ∈ (0, 1]. If αi ∈ (0, 1), then Gi(t, s) is non-decreasing in t and

Gi(t, s) ≤ Gi(σ (s), s). For αi > 1, Gi(t, s) is non-increasing in t and Gi(t, s) ≤ Gi(a, s). If αi = 1, then Gi(t, s) is constant in t
and Gi(t, s) =

1
d (η− a + βi)(σ (b)− σ(s)). If 1 < γi <

σ(b)−a+βi
η−a+βi

, we get αi < 1. Thus Gi(t, s) is non-decreasing in t , so that
Gi(t, s) ≤ Gi(σ (s), s). �

Lemma 2.6. Assume (H) holds. For 1 ≤ i ≤ n and fixed s ∈ [a, b] Green’s function Gi(t, s) in (2.2) satisfies

min
t∈[η,σ (b)]

Gi(t, s) ≥ mi‖Gi(., s)‖ (2.3)

where

mi := min
{

γi(σ (b)− η)

σ (b)− a + γi(a − η)
,

γi(η − a + βi)

σ (b)(1 − αi)+ αiη + βi − a
,
γi(η − a + βi)

αi(η − a)+ βi
,

γi

η − a + βi
,
η − a + βi

σ(b)− a + βi

}
(2.4)

and ‖.‖ is defined by ‖x‖ = max{|x(t)| : t ∈ [a, σ (b)]}.

Proof. First consider the case where 0 < γi ≤ 1. From Lemma 2.5,

‖Gi(., s)‖ = max
{
Gi(a, s),Gi(σ (s), s),

1
di
(η − a + βi)(σ (b)− σ(s))

}
.

By the second boundary condition we know that G(η, s) ≥ Gi(σ (b), s), so that

min
t∈[η,σ (b)]

Gi(t, s) = Gi(σ (b), s).

For s ∈ [a, η] we have from the branches in (2.2) that

Gi(σ (b), s) ≥
γi(σ (b)− η)

σ (b)− a + γi(a − η)
Gi(σ (s), s).

Let s ∈ [η, b]. If αi < 1, then the inequality

Gi(σ (b), s) ≥
γi(η − a + βi)

σ (b)− a + βi + αi(η − σ(b))
Gi(σ (s), s)



D.R. Anderson, I.Y. Karaca / Computers and Mathematics with Applications 56 (2008) 2429–2443 2433

holds. If αi > 1, we have

Gi(σ (b), s) =
γi(η − a + βi)

αi(η − a)+ βi
Gi(a, s).

If αi = 1, we get

Gi(σ (b), s) ≥
γi

η − a + βi
.
1
di
(η − a + βi)(σ (b)− σ(s)).

Next consider the case 1 < γi <
σ(b)−a+βi
η−a+βi

. The second boundary condition this time implies

min
t∈[η,σ (b)]

Gi(t, s) = Gi(η, s);

using Lemma 2.5, we have

‖Gi(., s)‖ = max{Gi(σ (b), s),Gi(σ (s), s)}.

By using (2.2) and the cases in the proof of Lemma 2.5, we see that

Gi(η, s) ≥
η − a + βi

σ(b)− a + βi
Gi(σ (b), s)

for s ∈ [a, γi(η−a+βi)−αiη−βi+a
1−αi

), and

Gi(η, s) ≥
η − a + βi

σ(b)− a + βi + αi(η − σ(b))
Gi(σ (s), s)

for s ∈ [
γi(η−a+βi)−αiη−βi+a

1−αi
, b]. �

Lemma 2.7. Assume that condition (H) is satisfied. For G as in (2.2), take H1(t, s) := G1(t, s), and recursively define

Hj(t, s) =

∫ σ(b)

a
Hj−1(t, r)Gj(r, s)∆r

for 2 ≤ j ≤ n. Then Hn(t, s) is Green’s function for the homogeneous problem{
(−1)ny∆

2n
(t) = 0, t ∈ [a, b],

αi+1y∆
2i
(η)+ βi+1y∆

2i+1
(a) = y∆

2i
(a), γi+1y∆

2i
(η) = y∆

2i
(σ (b)), 0 ≤ i ≤ n − 1.

Lemma 2.8. Assume (H) holds. If we define

K = Πn−1
j=1 Kj, L = Πn−1

j=1 mjLj

then Green’s function Hn(t, s) in Lemma 2.7 satisfies

0 ≤ Hn(t, s) ≤ K‖Gn(., s)‖, (t, s) ∈ [a, σ (b)] × [a, b]

and

Hn(t, s) ≥ mnL‖Gn(., s)‖, (t, s) ∈ [η, σ (b)] × [a, b],

where mn is given in (2.4),

Kj :=

∫ σ(b)

a
‖Gj(., s)‖∆s > 0, 1 ≤ j ≤ n (2.5)

and

Lj :=

∫ σ(b)

η

‖Gj(., s)‖∆s > 0, 1 ≤ j ≤ n. (2.6)

Proof. Use induction on n and Lemma 2.6. �
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3. Existence of solutions

In this section, first we obtain the existence of bounded solutions to the TPBVP (1.1). The proof of this result is based on
an application of the Schauder fixed-point theorem. Later we prove the existence theorem for solutions of the TPBVP (1.1)
which lie between the lower and upper solutions when they are given in the well order i.e.; the lower solution is under the
upper solution.

Let B denote the Banach space C[a, σ (b)] with the norm ‖y‖ = maxt∈[a,σ (b)] |y(t)|.

Theorem 3.1. Suppose that condition (H) holds and that the function f (t, ξ) is continuous with respect to ξ ∈ R. If R > 0
satisfies Q

∏n
j=1 Kj ≤ R, where Q > 0 satisfies

Q ≥ max
‖y‖≤R

|f (t, yσ )|,

for t ∈ [a, σ (b)] and Kj is as in (2.5), then TPBVP (1.1) has a solution y(t).

Proof. Let P := {y ∈ B : ‖y‖ ≤ R}. Note that P is a closed, bounded and convex subset of B to which the Schauder
fixed-point theorem is applicable. Define A : P → B

Ay(t) =

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s,

for t ∈ [a, σ (b)]. Obviously the solutions of problem (1.1) are the fixed points of operator A. It can be shown that A : P → B
is continuous.

Claim that A : P → P . Let y ∈ P . By using Lemma 2.8, we get

|Ay(t)| =

∣∣∣∣∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s

∣∣∣∣
≤

∫ σ(b)

a
|Hn(t, s)||f (s, yσ (s))|∆s

≤ QK
∫ σ(b)

a
‖Gn(., s)‖∆s

≤ Q
n∏

j=1

Kj ≤ R

for every t ∈ [a, σ (b)]. This implies that ‖Ay‖ ≤ R.
It can be shown that A : P → P is a compact operator by the Arzela–Ascoli theorem. Hence A has a fixed point in P by

the Schauder fixed-point theorem. �

Corollary 3.1. Assume that condition (H) is satisfied. If f is continuous and bounded on [a, b] × R, then the TPBVP (1.1) has a
solution.

Proof. Since the function f (t, yσ ) is bounded, it has a supremum for t ∈ [a, σ (b)] and y ∈ R. Let us choose P >
sup{|f (t, yσ )| : (t, yσ ) ∈ [a, σ (b)] × R}. Pick R large enough such that P < R. Then there is a number Q > 0 such
that

P > Q , where Q ≥ max{|f (t, yσ )| : t ∈ [a, σ (b)], |y| ≤ R}.

Hence

1 <
R
P

≤
R
Q
,

and thus the TPBVP (1.1) has a solution by Theorem 3.1. �

Now, we give the existence of solutions by the monotone method, and we define the set

D := {y : y∆
2n

is continuous on [a, σ (b)]}.

For any u, v ∈ D, we define the sector [u, v] by

[u, v] := {ω ∈ D : u ≤ ω ≤ v}.
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Definition 3.1. A real valued function u(t) ∈ D on [a, σ (b)] is a lower solution for TPBVP (1.1) if

(−1)nu∆
2n
(t) ≤ f (t, uσ (t)), t ∈ [a, b]

(−1)i[u∆
2i
(a)− αi+1u∆

2i
(η)− βi+1u∆

2i+1
(a)] ≤ 0, (−1)i[y∆

2i
(σ (b))− γi+1y∆

2i
(η)] ≤ 0, 0 ≤ i ≤ n − 1.

Similarly, real valued function v(t) ∈ D on [a, σ (b)] is an upper solution for TPBVP (1.1) if

(−1)nv∆
2n
(t) ≥ f (t, vσ (t)), t ∈ [a, b]

(−1)i[v∆
2i
(a)− αi+1v

∆2i
(η)− βi+1v

∆
2i+1
(a)] ≥ 0, (−1)i[v∆

2i
(σ (b))− γi+1v

∆2i
(η)] ≥ 0, 0 ≤ i ≤ n − 1.

Lemma 3.1. Let condition (H) hold. Assume that u(t) ∈ C2
[a, b] and that u satisfies

−u∆∆(t) ≥ 0, t ∈ [a, b]
u(a)− αiu(η)− βiu∆(a) ≥ 0, u(σ (b))− γiu(η) ≥ 0, 1 ≤ i ≤ n.

Then u(t) ≥ 0 on [a, σ (b)].

Proof. For 1 ≤ i ≤ n, let{
−u∆∆(t) = h(t), t ∈ [a, b],
u(a)− αiu(η)− βiu∆(a) = t1, u(σ (b))− γiu(η) = t2,

where t1 ≥ 0, t2 ≥ 0, h ≥ 0.
It is easy to check that u can be given by the expression

u(t) = Ri(t)+

∫ σ(b)

a
Gi(t, s)h(s)∆s

where

Ri(t) =
1
di

{[(γi − 1)t − γiη + σ(b)]t1 + [(1 − αi)t + αiη + βi − a]t2}

and Gi(t, s) is as in (2.2). Since 0 ≤
σ(b)−t

σ(b)−a+βi
αi(η − a + βi) < (1 − αi)t + αiη + βi − a, 0 ≤

t−a
σ(b)−aγi(σ (b) − η) <

t(γi − 1)+ σ(b)− γiη, we get Ri(t) ≥ 0, for t ∈ [a, σ (b)]. From (2.2), Gi(t, s) ≥ 0 for (t, s) ∈ [a, σ (b)] × [a, b]. Therefore
we get u(t) ≥ 0 for t ∈ [a, σ (b)]. The proof is completed. �

Lemma 3.2. Let condition (H) hold. Assume that u ∈ C2n
[a, σ (b)] and u satisfies

(−1)nu∆
2n
(t) ≥ 0, t ∈ [a, b],

(−1)i[u∆
2i
(a)− αi+1u∆

2i
(η)− βi+1u∆

2i+1
(a)] ≥ 0,

(−1)i[u∆
2i
(σ (b))− γi+1u∆

2i
(η)] ≥ 0, 0 ≤ i ≤ n − 1.

(3.1)

Then u(t) ≥ 0 on [a, σ (b)].

Proof. Let vn−1(t) := (−1)n−1u∆
2(n−1)

(t). Then −v∆∆n−1(t) ≥ 0 on [a, b] and

vn−1(a)− αnvn−1(η)− βnv
∆
n−1 = (−1)n−1

[u∆
2(n−1)

(a)− αnu∆
2(n−1)

(η)− βnu∆
2n−1

(a)] ≥ 0

vn−1(σ (b))− γnvn−1(η) = (−1)n−1
[u∆

2(n−1)
(σ (b))− γnu∆

2(n−1)
(η)] ≥ 0.

Then it follows from Lemma 3.1 that vn−1(t) ≥ 0 on [a, σ (b)].
Similarly let vn−2(t) := (−1)n−2u∆

2(n−2)
(t). Then −v∆∆n−2(t) ≥ 0 on [a, b] and

vn−2(a)− αn−1vn−2(η)− βn−1v
∆
n−2 = (−1)n−2

[u∆
2(n−2)

(a)− αn−1u∆
2(n−2)

(η)− βn−1u∆
2n−3

(a)] ≥ 0

vn−2(σ (b))− γn−1vn−2(η) = (−1)n−2
[u∆

2(n−2)
(σ (b))− γn−1u∆

2(n−2)
(η)] ≥ 0.

Then it follows from Lemma 3.1 that vn−2(t) ≥ 0 on [a, σ (b)].
The conclusion of the lemma follows by an induction argument. �

Theorem 3.2. Let condition (H) hold and let f be continuous on [a, σ (b)] × R. Assume that there exist a lower solution u and
an upper solution v for TPBVP (1.1) such that u ≤ v on [a, σ (b)]. Then the TPBVP (1.1) has a solution y ∈ [u, v] on [a, σ (b)].
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Proof. Consider the TPBVP{
(−1)ny∆

2n
(t) = F(t, yσ (t)), t ∈ [a, b],

αi+1y∆
2i
(η)+ βi+1y∆

2i+1
(a) = y∆

2i
(a), γi+1y∆

2i
(η) = y∆

2i
(σ (b)), 0 ≤ i ≤ n − 1,

(3.2)

where

F(t, ξ) =


f (t, vσ (t))−

ξ − vσ (t)
1 + |yσ (t)|

, ξ ≥ vσ (t),

f (t, ξ), uσ (t) ≤ ξ ≤ vσ (t),

f (t, uσ (t))−
ξ − uσ (t)
1 + |ξ |

, ξ ≤ vσ (t),

for t ∈ [a, b]. Clearly, the function F is bounded for t ∈ [a, b] and ξ ∈ R, and is continuous in ξ . Thus, by Corollary 3.1 there
exists a solution y(t) of the TPBVP (3.2). We claim that y(t) ≤ v(t) for t ∈ [a, σ (b)]. If not, we know that yσ (t)− vσ (t) ≥ 0
for t ∈ [a, b] and

(−1)ny∆
2n
(t) = F(t, yσ (t))

= f (t, vσ (t))−
yσ (t)− vσ (t)

1 + |ξ |

≤ f (t, vσ (t))

≤ (−1)nv∆
2n
(t).

Hence, we have

(−1)n(v − y)∆
2n
(t) ≥ 0

and from the boundary conditions we get

(−1)i[(v − y)∆
2i
(a)− αi+1(v − y)∆

2i
(η)− βi+1(v − y)∆

2i
(a)] ≥ 0

and

(−1)i[(v − y)∆
2i
(σ (b))− γi+1(v − y)∆

2i
(η)] ≥ 0, 0 ≤ i ≤ n − 1.

Using Lemma 3.2 we obtain that

v − y ≥ 0 on [a, σ (b)]

which is a contradiction. It follows that y(t) ≤ v(t) on [a, σ (b)].
Similarly, u ≤ y on [a, σ (b)]. Thus y is a solution of TPBVP (1.1) and lies between u and v. �

4. Existence of one positive solution

In this section we consider the following TPBVP with parameter λ,{
(−1)ny∆

2n
(t) = λf (t, yσ (t)), t ∈ [a, b],

αi+1y∆
2i
(η)+ βi+1y∆

2i+1
(a) = y∆

2i
(a), γi+1y∆

2i
(η) = y∆

2i
(σ (b)), 0 ≤ i ≤ n − 1.

(4.1)

We need the following fixed-point theorem to prove the existence at least one positive solution to TPBVP (4.1).

Theorem 4.1 ([20]). Let B be a Banach space, and let P ⊂ B be a cone. Assume Ω1 and Ω2 are open bounded subsets of B
with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let

A : P ∩ (Ω2 \Ω1) → P

be a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2; or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2,

holds. Then A has a fixed point in P ∩ (Ω2 \Ω1).

Let

M = mn

n−1∏
j=1

mjLj
Kj
. (4.2)
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We assume that f ∈ C([a, σ (b)] × R+,R+), and the limits

f0 := lim
y→0+

f (t, y)
y

, f∞ := lim
y→∞

f (t, y)
y

exist uniformly in the extended reals. The case f0 = 0 and f∞ = ∞ is called the superlinear case, and the case f0 = ∞ and
f∞ = 0 is called the sublinear case.

In [7], in the case f is sublinear or superlinear, the existence of at least one positive solution to TPBVP (1.2) has been
studied.

Theorem 4.2. Assume that condition (H) is satisfied. Then for λ satisfying

(a)
1

Mmn

n∏
j=1

Ljf∞
< λ <

1
n∏

j=1
Kjf0

, (4.3)

or

(b)
1

Mmn

n∏
j=1

Ljf0
< λ <

1
n∏

j=1
Kjf∞

, (4.4)

there exists at least one positive solution of the TPBVP (4.1) where mn, Lj, Kj,M are as in (2.4)–(2.6) and (4.2), respectively.
Moreover, in the case f is superlinear (sublinear), then Eq. (4.3) (Eq. (4.4)) becomes 0 < λ < ∞.

Proof. Define B to be Banach space of all continuous functions on [a, σ (b)] equipped with the norm ‖.‖ defined by

‖y‖ = max
t∈[a,σ (b)]

|y(t)|.

Define the cone P ⊂ B by

P = {y ∈ B : y(t) ≥ 0, min
t∈[η,σ (b)]

y(t) ≥ M‖y‖},

whereM is as in (4.2). Define an operator Aλ by

Aλy(t) = λ

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s

for t ∈ [a, σ (b)]. The solutions of the TPBVP (4.1) are the fixed points of the operator Aλ.
Firstly, we show that Aλ : P → P . Note that y ∈ P implies that Aλy(t) ≥ 0 on [a, σ (b)] and

min
t∈[η,σ (b)]

Aλy(t) = λ

∫ σ(b)

a
min

t∈[η,σ (b)]
Hn(t, s)f (s, yσ (s))∆s

≥ Mλ
∫ σ(b)

a
max

t∈[a,σ (b)]
|Hn(t, s)|f (s, yσ (s))∆s

by Lemma 2.8. It follows that

min
t∈[η,σ (b)]

Aλy(t) ≥ M‖Aλy‖.

Hence Aλy ∈ P and so Aλ : P → P which is what we want to prove. Therefore Aλ is completely continuous.
Assume that (a) holds. Since λ < 1∏n

j=1 Kjf0
, there exists ε1 > 0 so that 0 < λ ≤ 1/

∏n
j=1 Kj(f0 + ε1).

Using the definition of f0, there is an r1 > 0, sufficiently small, so that

f (t, y) < (f0 + ε1)y for 0 < y ≤ r1, t ∈ [a, σ (b)].

If y ∈ P , with ‖y‖ = r1, then

Aλy(t) = λ

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s

< λ(f0 + ε1)

∫ σ(b)

a
Hn(t, s)yσ (s)∆s

≤ λ(f0 + ε1)‖y‖K
∫ σ(b)

a
‖Gn(., s)‖∆s
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≤ λ(f0 + ε1)

n∏
j=1

Kj‖y‖

≤ ‖y‖

for t ∈ [a, σ (b)]. So, if we setΩ1 := {y ∈ P : ‖y‖ ≤ r1}, then ‖Aλy‖ ≤ ‖y‖ for y ∈ P ∩ ∂Ω1.
Now, we use assumption 1

Mmn
∏n

j=1 Ljf∞
< λ.

First, we consider the case when f∞ < ∞. In this case pick an ε2 > 0 so that

λMmn

n∏
j=1

Lj(f∞ − ε2) ≥ 1.

Using the definition f∞, there exists r2 > r1, sufficiently large, so that

f (t, y) > (f∞ − ε2)y for y ≥ r2, t ∈ [a, σ (b)].

We now show that there exists r2 ≥ r2 such that if y ∈ ∂Pr2 , then ‖Aλy‖ > ‖y‖. Let r2 = max{2r1, 1
M r2} and set

Ω2 := {y ∈ P : ‖y‖ ≤ r2}. If y ∈ P ∩ ∂Ω2, then

min
t∈[η,σ (b)]

y(t) ≥ M‖y‖ = Mr2 ≥ r̄2,

and so

Aλy(t) = λ

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s

> λ(f∞ − ε2)

∫ σ(b)

a
Hn(t, s)yσ (s)∆s

≥ λ(f∞ − ε2)

∫ σ(b)

η

Hn(t, s)yσ (s)∆s

≥ λ(f∞ − ε2)M‖y‖mnL
∫ σ(b)

η

‖Gn(., s)‖∆s

≥ λ(f∞ − ε2)Mmn

n∏
j=1

Lj‖y‖

≥ ‖y‖ = r2.

Consequently, ‖Aλy(t)‖ ≤ ‖y(t)‖, for t ∈ [a, σ (b)].
Finally, we consider the case f∞ = ∞. In this case the hypothesis becomes λ > 0. Choose N > 0 sufficiently large so

that

λNMmn

n∏
j=1

Lj ≥ 1.

Hence there exists r2 > r1 so that f (t, y) > Ny for y ≥ r2 and for all t ∈ [a, σ (b)]. Now define r2 as before and assume
y ∈ ∂Pr2 . Then

Aλy(t) > λN
∫ σ(b)

a
Hn(t, s)yσ (s)∆s

≥ λNM‖y‖mnL
∫ σ(b)

a
‖Gn(., s)‖∆s

= λNMmn

n∏
j=1

Lj‖y‖

≥ ‖y‖ = r2

for t ∈ [a, σ (b)]. Hence ‖Aλy‖ ≥ ‖y‖ for y ∈ P ∩ ∂Ω1 and ‖Aλy‖ ≤ ‖y‖ for y ∈ P ∩ ∂Ω2 hold. Then Aλ has a fixed point in
P ∩ (Ω2 \Ω1).

Now we show (b). Since 1
MmnΠ

n
j=1Ljf0

< λ, there exists ε3 > 0 so that λMmn
∏n

j=1 Lj(f0 − ε3) ≥ 1.

From the definition of f0, there exists an r3 > 0 such that f (t, y) ≥ (f0 − ε3)y for 0 < y ≤ r3. If y ∈ P with ‖y‖ = r3,
then
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Aλy(t) = λ

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s

≥ λ(f0 − ε3)

∫ σ(b)

η

Hn(t, s)yσ (s)∆s

≥ λM(f0 − ε3)‖y‖mnL
∫ σ(b)

η

‖Gn(., s)‖∆s

≥ λ(f0 − ε3)Mmn

n∏
j=1

Lj‖y‖

≥ ‖y‖ = r3.

Hence ‖Aλy‖ ≥ ‖y‖. So, if we setΩ3 := {y ∈ P : ‖y‖ ≤ r3}, then ‖Ay‖ ≤ ‖y‖ for y ∈ P ∩ ∂Ω3.
Now, we use assumption 1∏n

j=1 Kjf∞
> λ. Pick an ε4 > 0 so that

λ

n∏
j=1

Kj(f∞ + ε4) ≤ 1.

Using the definition of f∞, there exists an r4 > 0 such that f (t, y) ≤ (f∞ + ε4)y for all y ≥ r4.We consider the two cases.
Case I. Suppose f (t, y) is bounded on [a, σ (b)] × (0,∞). In this case, there is N > 0 such that f (t, y) ≤ N for
t ∈ [a, σ (b)], y ∈ (0,∞). Let r4 = max{2r3, λN

∏n
j=1 Kj}. Then for y ∈ P with ‖y‖ = r4,

Aλy(t) = λ

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s

≤ λNK
∫ σ(b)

a
‖Gn(., s)‖∆s

≤ λN
n∏

j=1

Kj

≤ ‖y‖ = r4,

so that ‖Aλy‖ ≤ ‖y‖.
Case II. Suppose f (t, y) is unbounded on [a, σ (b)] × (0,∞). In this case,

g(r) := max{f (t, y) : t ∈ [a, σ (b)], 0 ≤ y ≤ r}

satisfies

lim
r→∞

g(r) = ∞.

We can therefore choose

r4 = max{2r3, r4}

such that

g(r4) ≥ g(r)

for 0 ≤ r ≤ r4 and hence for y ∈ P and ‖y‖ = r4, we have

Aλy(t) = λ

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s

≤ λ

∫ σ(b)

a
Hn(t, s)g(r4)∆s

≤ λ(f∞ + ε4)r4K
∫ σ(b)

a
‖Gn(., s)‖∆s

= λ(f∞ + ε4)

n∏
j=1

Kjr4

≤ r4 = ‖y‖,
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and again we hence have ‖Aλy‖ ≤ ‖y‖ for y ∈ P ∪ ∂Ω4, where Ω4 = {y ∈ B : ‖y‖ ≤ H4} in both cases. It follows from
part (ii) of Theorem (4.1) that A has a fixed point in P ∩ (Ω4 \ Ω3), such that r3 ≤ ‖y‖ ≤ r4. The proof of part (b) of this
theorem is complete. Therefore, the TPBVP (4.1) has at least one positive solution. �

5. Existence of two positive solutions

In this section, using Theorem 5.1 (Avery-Henderson fixed-point theorem)we prove the existence of at least two positive
solutions of the TPBVP (1.1).

Theorem 5.1 ([21]). Let P be a cone in a real Banach space S. If ϕ and ψ are increasing, non-negative continuous functionals
on P , let θ be a non-negative continuous functional on P with θ(0) = 0 such that, for some positive constants r and M,

ψ(u) ≤ θ(u) ≤ ϕ(u) and ‖u‖ ≤ Mψ(u)

for all u ∈ P (ψ, r). Suppose that there exist positive numbers p < q < r such that

θ(λu) ≤ λθ(u), for all 0 ≤ λ ≤ 1 and u ∈ ∂P(θ, q).

If A : P (ψ, r) → P is a completely continuous operator satisfying

(i) ψ(Au) > r for all u ∈ ∂P (ψ, r),
(ii) θ(Au) < q for all u ∈ ∂P (θ, q),
(iii) P (ϕ, p) 6= {} and ϕ(Au) > p for all u ∈ ∂P (ϕ, p),

then A has at least two fixed points u1 and u2 such that

p < ϕ(u1) with θ(u1) < q and q < θ(u2) with ψ(u2) < r.

Let the Banach space B = C[a, σ (b)] with the norm ‖.‖ defined by ‖y‖ = maxt∈[a,σ (b)] |y(t)|. Again define the cone
P ⊂ B by

P = {y ∈ B : y(t) ≥ 0, min
t∈[η,σ (b)]

y(t) ≥ M‖y‖}

whereM is as in (4.2), and the operator A : P → B by

Ay(t) =

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s.

Let the non-negative, increasing, continuous functionals ψ, θ, and ϕ be defined on the cone P by

ψ(y) := min
t∈[η,σ (b)]

y(t), θ(y) := max
t∈[η,σ (b)]

y(t), ϕ(y) := max
t∈[a,σ (b)]

y(t) (5.1)

and let P (ψ, r) := {y ∈ P : ψ(y) < r}.
In the next theorem, we will assume

(H1) f ∈ C([a, σ (b)] × [0,∞), [0,∞)).

Theorem 5.2. Assume (H) and (H1) hold. Suppose there exist positive numbers 0 < p < q < r such that the function f satisfies
the following conditions:

(D1) f (t, y) > p/(mn
∏n

j=1 Lj) for t ∈ [η, σ (b)] and y ∈ [Mp, p],
(D2) f (t, y) < q/

∏n
j=1 Kj for t ∈ [a, σ (b)] and y ∈ [0, q/M],

(D3) f (t, y) > r/(Mmn
∏n

j=1 Lj) for t ∈ [η, σ (b)] and y ∈ [r, r/M],

where mn, Lj, Kj,M are as defined in (2.4)–(2.6) and (4.2) respectively. Then the TPBVP (1.1) has at least two positive solutions
y1 and y2 such that

p < max
t∈[a,σ (b)]

y1(t) with max
t∈[η,σ (b)]

y1(t) < q,

q < max
t∈[η,σ (b)]

y2(t) with min
t∈[η,σ (b)]

y2(t) < r.

Proof. From (H), Lemma 2.4 and Lemma 2.8, AP ⊂ P .Moreover, A is completely continuous. From (5.1), for each y ∈ P
we have



D.R. Anderson, I.Y. Karaca / Computers and Mathematics with Applications 56 (2008) 2429–2443 2441

ψ(y) ≤ θ(y) ≤ ϕ(y), (5.2)

‖y‖ ≤
1
M

min
t∈[η,σ (b)]

y(t) =
1
M
ψ(y) ≤

1
M
θ(y) ≤

1
M
ϕ(y). (5.3)

For any y ∈ P , (5.2) and (5.3) imply

ψ(y) ≤ θ(y) ≤ ϕ(y), ‖y‖ ≤
1
M
ψ(y).

For all y ∈ P , λ ∈ [0, 1] we have

θ(λy) = max
t∈[η,σ (b)]

(λy)(t) = λ max
t∈[η,σ (b)]

y(t) = λθ(y).

It is clear that θ(0) = 0.
We now show that the remaining conditions of Theorem 5.1 are satisfied.
Firstly, we shall verify that condition (iii) of Theorem 5.1 is satisfied. Since 0 ∈ P and p > 0, P (ϕ, p) 6= {}. Since

y ∈ ∂P (ϕ, p), Mp ≤ y(t) ≤ ‖y‖ = p for t ∈ [η, σ (b)]. Therefore,

ϕ(Ay) = max
t∈[a,σ (b)]

Ay(t)

≥ Ay(t)

=

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s

≥
p

mn

n∏
j=1

Lj
mnL

∫ σ(b)

η

‖Gn(., s)‖∆s

≥ p

using hypothesis (D1).
Now we shall show that condition (ii) of Theorem 5.1 is satisfied. Since y ∈ ∂P (θ, q), from (5.3) we have that

0 ≤ y(t) ≤ ‖y‖ ≤ q/M for t ∈ [a, σ (b)]. Thus

θ(Ay) = max
t∈[η,σ (b)]

Ay(t)

= max
t∈[η,σ (b)]

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s

≤
q

n∏
j=1

Kj

K
∫ σ(b)

a
‖Gn(., s)‖∆s = q

by hypothesis (D2).
Finally using hypothesis (D3), we shall show that condition (i) of Theorem 5.1 is satisfied. Since y ∈ ∂P (ψ, r), from (5.3)

we have that mint∈[η,σ (b)] y(t) = r and r ≤ ‖y‖ ≤ r/M. Then

ψ(Ay(t)) = min
[η,σ (b)]

∫ σ(b)

a
Hn(t, s)f (s, yσ (s))∆s

=

∫ σ(b)

a
min

[η,σ (b)]
Hn(t, s)f (s, yσ (s))∆s

≥ M
∫ σ(b)

η

‖Hn(., s)‖f (s, yσ (s))∆s

≥ M
r

Mmn

n∏
j=1

Lj
mnL

∫ σ(b)

η

‖Gn(., s)‖∆s = r.

This completes the proof. �
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6. Examples

Example 6.1. We illustrate Theorem 4.2 with a specific time scale

T =

{
1 +

1
n

: n ∈ N
}

∪ {1} ∪ [2, 3].

Consider the TPBVP:
(−1)ny∆

2n
(t) = e−y2

= 0, t ∈

[
1,

3
2

]
⊂ T,

y∆
2i

(
4
3

)
+

1
3
y∆

2i+1
(1) = y∆

2i
(1),

1
2
y∆

2i
(
4
3

)
= y∆

2i
(2), 0 ≤ i ≤ n − 1.

(6.1)

Then a = 1, η =
4
3 , b =

3
2 , αi = 1, βi =

1
3 , γi =

1
2 , (0 ≤ i ≤ n − 1) and

f (t, y) = f (y) = e−y2 , y ∈ [0,∞).

Since limy→0+(f (y)/y) = +∞, limy→+∞(f (y)/y) = 0.

We can also see that for 0 ≤ i ≤ n − 1,

0 ≤ αi(σ (b)− η) =
2
3

≤ σ(b)− γiη + (γi − 1)(a − βi) = 1,

0 < γi(η − a + βi) =
2
3
< σ(b)− a + βi =

4
3
.

Thus the TPBVP (6.1) has at least one positive solution by Theorem 4.2.

Example 6.2. Let us introduce an example to illustrate the usage of Theorem5.2. Letn = 2,T = {( 25 )
n

: n ∈ N0}∪{0}∪[1, 2],

f (t, y) = f (y) =
100(y+1)4

16(y2+999)
, a = 8/125, η = 4/25, b = 2/5, α1 = β2 = 1/2, β1 = 1/8, γ1 = 3/2, α2 = 1/10, γ2 = 2.

Then condition (H) is satisfied. Green’s function G1(t, s) in Lemma 2.2 is

G1(t, s) =

{
G11(t, s), 8/125 ≤ s ≤ 4/25,
G12(t, s), 4/25 < s ≤ 2/5,

where

G11(t, s) =
2000
619

{
(19/25 − t/2)(5s/2 + 61/1000), 5/2s ≤ t ,
(19/25 + 5s/4)(t + 61/1000)− 21/50(t − 5s/2), t ≤ s,

and

G12(t, s) =
2000
619

{
(5s/4 + 141/1000)(1 − t)+ 663/2000(t − 5s/2), 5s/2 ≤ t ,
(t/2 + 141/1000)(1 − 5s/2), t ≤ s.

Green’s function G2(t, s) in Lemma 2.2 is

G2(t, s) =

{
G21(t, s), 8/125 ≤ s ≤ 4/25,
G22(t, s), 4/25 < s ≤ 2/5,

where

G21(t, s) =
25
4

{
(17/25 + t)(5s/2 + 109/250), 5/2s ≤ t ,
(17/25 + 5s/2)(t + 109/250)− 21/250(t − 5s/2), t ≤ s,

and

G22(t, s) =
25
4

{
(9s/4 + 113/250)(1 − t)+ 149/125(t − 5s/2), 5s/2 ≤ t ,
(9t/10 + 113/250)(1 − 5s/2), t ≤ s.

From Lemma 2.5 and (2.4)–(2.6), we get

m1 = 221/1061, K1 = 465 426/1934 375, L1 = 12 276/77 375
m2 = 149/359, K1 = 52 299/31 250, L2 = 1341/1250.

Clearly f is continuous and increasing on [0,∞). If we take p = 0.001, q = 0.06 and r = 19 then

0 < p < q < r.
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It is clear that (D1), (D2) and (D3) of Theorem 5.2, are satisfied. Thus the TPBVP (1.1) has at least two positive solutions y1
and y2 satisfying

0.001 < max
t∈[8/125,2/5]

y1(t) with max
t∈[4/25,1]

y1(t) < 0.06

0.06 < max
t∈[4/25,1]

y2(t) with max
t∈[4/25,1]

y2(t) < 19.
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