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Abstract This paper presents fuzzy logic based controller for five-phase induction motor drives.

The controller is based on indirect rotor field oriented control technique. The complete control

scheme including the fuzzy logic is experimentally implemented using a digital signal processing

board for a laboratory five-phase induction motor, Simulation is carried out by using the Mat-

lab/Simulink package. The performance of the proposed system is investigated at different operat-

ing conditions. The proposed controller is a suitable to high performance five-phase induction

motor drives. Simulation and experimental results validate the proposed approaches.
ª 2012 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.

All rights reserved.
1. Introduction

In the last few decades, induction motor (IM) has been recog-
nized as a workhorse in the industry because its reliable effi-

ciency and easy build and high robustness. Multi-phase
machines have wide of applications in aerospace, transporta-
tion and textile industry. Three-phase drives are widely used

in electrical drive applications. However, multi-phase drives
have many advantages over conventional three-phase drives
such as: reducing the current per phase without increasing

the voltage per phase, reducing the rotor harmonic currents,
reducing the amplitude and increasing the frequency of torque
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pulsations, and lowering the dc-link current harmonics and
higher reliability.

Many researches [1–5] stated that increasing the number of

phases leads to an increase the torque per rms ampere for the
same machine volume.

Multi-phase system is required for high power applications
to reduce stress on the switching devices. There are two ap-

proaches for supplying high power systems; the first one is
the use of multilevel inverters supplying three-phase machines
and the second one is multi leg inverters supplying multiphase

machines.
It is worthy to mention that there is a similarity in switching

schemes between the two approaches: The additional switching

devices increase the number of voltage levels in multilevel in-
verter while in multi-leg inverter, the additional number of
switching devices increases the number of phases [6].

The recent research works on multiphase machines can be
categorized into multi-phase pulse width modulation (PWM)
techniques for multiphase machines, harmonic injection to
ion and hosting by Elsevier B.V. All rights reserved.
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produce more torque and to achieve better stability, fault tol-
erant issues of multi-phase motor drives, series/parallel con-
nected multi-phase machines [6]. In Refs. [7,8], described an

n-phase space vector pulse width modulation (SVPWM) in
terms of applied times available switching vectors on the basis
of the space vector concept. Many studies have been made on

control met hoods and running performance of five phase
drive with two level inverter. However other researches [9]
have studies the multi-phase two level nonsinusoidal SVPWM.

The power rating of the converter should meet the required
level for the machine and driven load. However, the converter
ratings cannot be increased over a certain range due to the lim-
itation of the power rating of semiconductor devices. One solu-

tion to this problem is using multi-level inverter, where switches
of reduced rating are employed to develop high power level con-
verters. The advent of inverter fed-motor drives also removed

the limits of the number of motor phases. This fact allows
designing machines with more than three phases and emphasizes
investigation and applications of multi-phase motor drives [10].

The five-phase induction motor drives have more space
voltage vectors than the three-phase induction motor drives.
The increased number of vectors allows the generation of more

elaborate switching vector table, in which the selection of the
voltage vectors is made based on the real-time values of the
stator flux and torque variations.

The aim of this paper is to design and implement a speed

control scheme of 5-phase induction motor drive system using
fuzzy logic controller (FLC). In which, the system control
parameters are adjusted by a fuzzy rule based system, which

is a logical model of the human behavior for process control.
The main advantages of FLC over the conventional controllers
are that the design of FLC does not need the exact mathemat-

ical model of the system, and it can handle nonlinear functions
of arbitrary complexity.

The speed control algorithm is based on the indirect vector

control. A specific FLC for 5-phase induction motor drive has
been designed and successfully implemented in real time. The
performance of the proposed fuzzy speed controller is investi-
gated theoretically and experimentally at different dynamic

operating conditions.
2. Mathematical model of five-phase induction motor

Squirrel-cage five-phase induction motor is represented in its
d–q synchronous reference frame. The winding axes of five-sta-
tor winding are displaced by 72�. By increasing the number of
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Figure 1 Block diagram of the p
phases, it is also possible to increase the torque per ampere for
the same machine volume. In this analysis the iron saturation
is neglected. The general equations of the five-phase induction

motor can be introduced as follows:
The stator quadrature-axis voltage is given by:

Vqs ¼ Rsiqs þ
dkqs

dt
þ xkds ð1Þ

The stator direct-axis voltage is given by:

Vds ¼ Rsids þ
dkds

dt
þ xkqs ð2Þ

For the stationary reference frame x = 0, substitute into

Eqs. (1) and (2) yields:

Vqs ¼ Rsiqs þ
dkqs

dt
ð3Þ

Vds ¼ Rsids þ
dkds

dt
ð4Þ

The stator q-axis flux linkage is given by:

kqs ¼ Lsiqs þ Lmiqr ¼ ðLls þ LmÞiqs þ Lmiqr ð5Þ

kqs ¼ Llsiqs þ Lmðiqr þ iqsÞ ð6Þ

The stator d-axis flux linkage is given by:

kds ¼ Lsids þ Lmidr ¼ ðLls þ LmÞids þ Lmidr ð7Þ

kds ¼ Llsids þ Lmðidr þ idsÞ ð8Þ

The electromagnetic torque is given by:

Te ¼
5

2

p

2
ðkdsiqs � kqsidsÞ ð9Þ

Te � Tl ¼ j
dx
dt
þ Bx ð10Þ

where Iqs is the stator q-axis current, Ids the stator d-axis cur-

rent, Iqr the rotor q-axis current, Idr the rotor d-axis current,
Ls the stator equivalent inductance, Lls the stator leakage
inductance, Lm the magnetizing inductance, Tl the load torque,

J the inertia of motor and B the friction coefficient.

3. Control scheme and design of FLC for five-phase IM

3.1. Control scheme

The schematic diagram of the FLC-based indirect field
oriented control is shown in Fig. 1. The basic configuration
PW
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Figure 3 Fuzzy logic PI controller.

Table 1 Fuzzy rule.

Error

ERROR RATE OF CHANGE NM NB ZE PB PM

NM NM NM NM NP ZE

NB NM NM NB ZE PB

ZE NM NB ZE PB PM

PB NB ZE PB PM PM

PM ZE PB PM PM PM

Figure 4 Error memberships.

Figure 5 Rate of change of error.

Figure 6 Output membership.
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of the drive consists of an IM fed by a current controlled 5-
phase voltage source inverter. The block diagram of the fuzzy
logic controller in this work is marked in Fig. 1. In this FLC,

the present sample of the speed error, and the present sample
of the change of speed error, are the inputs while the present q-
axis command current i�qðnÞ is the output. The currents i�qðnÞ
and i�dðnÞ are then transformed to a, b, c, d and e current com-
mands using inverse park transform, the phase current com-
mands i�a; i

�
b; i
�
c ; i
�
e and i

�
d are then compared with the actual

currents ia; ib; ic; ie and id to generate the PWM signals, which

will fire the power semiconductor devices to produce the actual
voltages for the motor.

3.2. Fuzzy logic PI controller

Traditional control systems are usually based on a definite
mathematical model often represented by a set of differential

equations which describe the relation between input and out-
put variables as well as the system parameters. In contrast, fuz-
zy logic controller does not require such precise mathematical

model [11]. A fuzzy logic controller consists typically of three
stages or blocks namely, input block, processing block, and
output block as illustrated by Fig. 2. The input block converts
input signals into appropriate way to pertinence functions. The

processing block invokes appropriate rules, generates a result
for each rule, and combines the results of those rules. Finally,
the output block transforms the combined result into a control

signal.
The proposed fuzzy logic PI controller is illustrated in

Fig. 3, in which KP = Ku R(Kde) and KI = Ku R(Ke) are

the controller proportional and integral gains. The functions
R(Kde) and R(Ke) are defined by the controller rule base
which is summarized in Table 1. Initially the fuzzy input vector
should be defined. It consists of two variables; the speed error

eðtÞ ¼ x�r � xr and its derivative d
dt
eðtÞ ¼ d

dt
ðx�r � xrÞ.

A fuzzy set for input and output variables is designed.
Figs. 5 and 6 show the five linguistic variables used for each

fuzzy input variable, while the output variable fuzzy set is
shown in Fig. 6. The linguistic variables (LV’s) used for inputs
shown in Figs. 4 and 5 are PM (Positive Medium); PB (Positive

Big); ZE (Zero); NB (Negative Big); and NM (Negative Med-
ium). The same LV’s are used for the output fuzzy set shown in
Fig. 6. A look-up table is required to develop the set of rules, in

which the relation between the input variables, e(t) and deðtÞ
dt

are
defined and the output variable of fuzzy logic controller can be
obtained. The look-up table used in the simulation program is
given in Table 1. The output depends on the fuzzy rule ex-

pressed as follows;

IfðInput1 AND Input2Þ THEN Output

The torque producing current component is calculated
from:

I�qs ¼
1

kt

x�r � xr

� �
k�dr

Kps½1þ scsS�
scsS

ð11Þ

Ie
�

ds ¼
1

Lm

1þ s�r p
� �

ke�

dr ð12Þ
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Figure 7 Experimental set-up for DSP-based control of induc-

tion motor.
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Figure 8 Start-up and steady-state, motor speed. (a) Experi-

mental (b) simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-8
-6
-4
-2
0
2
4
6
8

Time (sec)

Ph
as

e 
C

ur
re

nt
 (

A
)

Reference Current

Motor Current

(a) 

(b) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-8
-6
-4
-2
0
2
4
6
8

Time (Sec) 

Ph
as

e 
cu

rr
en

t (
A

) 

Figure 9 Start-up and steady-state, motor phase-a current. (a)

Experimental (b) simulation.
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The angular slip frequency command ðx�slÞ is:

x�sl ¼
Lm

s�r
�
I�qs
k�dr

ð13Þ

Angular frequency is obtained as follows,

x�e ¼ x�sl þ xr ð14Þ

h�e ¼
Z

x�e � dt ð15Þ

Te ¼ Ktjke
drjIeqs ð16Þ

where xr is the motor speed, x�r the speed reference, Kps the

proportional gain PI controller, scs the time constant of PI
controller, Kt the torque constant p ¼ d

dt
, x�sl the angular slip

frequency, x�e is the angular frequency.

Eq. (16) is similar to that of the separately excited dc motor
and denotes that the torque can initially proportional to the
q-axis component of the stator current I�eqs ; if the qe-axis com-
ponent of the flux becomes zero (de-axis is aligned with the ro-
tor flux axis), and the de-axis component k�edr is kept constant.
This is the philosophy of the vector control technique. The
transformations used for the present system are expressed as
follows;

qe � de ! qs � ds
is�qs ¼ ie�qs cos hs þ ie�ds sin hs

is�ds ¼ �ie�qs sin hs þ ie�ds cos hs

( )
ð17Þ

where hs represents the sum of the slip and rotor angles.

qd=abced

is�as ¼ is�qscosðhÞ þ is�ds sinðhÞ
is�bs ¼ is�qs cos h� 2p

5

� �
þ is�ds sin h� 2p

5

� �
is�cs ¼ is�qs cos h� 4p

5

� �
þ is�ds sin h� 4p

5

� �
is�ds ¼ is�qs cos hþ 4p

5

� �
þ is�ds sin hþ 4p

5

� �
is�es ¼ is�qs cos hþ 2p

5

� �
þ is�ds sin hþ 2p

5

� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð18Þ
3.3. Five phase inverter

The modulated phases voltages of five phase inverter fed five
phase induction motor are introduced as a function of switch-

ing logic NA, NB, NC, ND and NE of power switches by the
following relations:

Vas

Vbs

Vcs

Vds

Ves

2
6666664

3
7777775
¼ Vdc

5

4 �1 �1 �1 �1
�1 4 �1 �1 �1
�1 �1 4 �1 �1
�1 �1 �1 4 �1
�1 �1 �1 �1 4

2
6666664

3
7777775

NA

NB

NC

NE

ND

2
6666664

3
7777775

ð19Þ

The per-phase switching state having a range of N = 0, 1.

4. Results and discussion

To verify the validity of the proposed system, an induction mo-

tor vector control system was constructed. Fig. 7 shows a
block diagram of the experimental system, which was com-
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Figure 10 Speed step up and step down changes, motor speed.

(a) Experimental (b) simulation.
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posed of a DSP board DSP 1104 which is based on 32-bit float-
ing point DSP TI TMS32OC3I. The board is also equipped

with a fixed point 16 bit TMS320P14 DSP which is used as a
slave processor [12], Five phases currents ia; ib; ic; ie and id are
sensed by Hall-effect current transducers. These signals are
fed to the DSP through the signal conditioning circuit. Also

the speed of the rotor is sensed by 2048 PPR incremental enco-
der for detecting the motor speed and fed to the encoder inter-
face on the DSP board. The control algorithm is executed by

‘Simulink’ and downloaded to the board through host com-
puter. The outputs of the board are ten logic signals, which
are fed to the, 5-phase inverter through driver isolation cir-

cuits. The sampling time for mental implementation is chosen
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Figure 11 Speed step up and step down changes, motor phase-a

current. (a) Experimental (b) simulation.
as 100 s. Also, the proposed control system shown in Fig. 1 is
designed for a simulation investigation. Simulation is carried
out using the general purpose simulation package Matlab/Sim-

ulink [13], Simulation and experimental results are presented
to show the effectiveness of the proposed scheme at different
operating conditions. These results are classified into two cat-

egories; the first represents start-up and steady-state while the
second represents the dynamic performance.

4.1. Starting and steady state performance

Start-up and steady-state results are illustrated by Figs. 8 and
9. Fig. 8a and b shows the motor speed. Fig. 8a shows the

speed signals obtained in real time, whereas Fig. 8b shows
the corresponding signals obtained from simulation. There is
a good correlation between these signals, from start-up point
up to the steady state value. Fig. 9a shows the motor phase

current obtained in real time. Whereas, Fig. 9b shows the cor-
responding signal obtained from simulation. In the two figures,
the current signals are of sine wave profiles on which controller

switching transients are shown.

4.2. Dynamic performance

For studying the dynamic performances of proposed system, a
series of measurements and simulations have been carried out.
In this respect, the dynamic response of the proposed algo-
rithm is studied under speed step change.

To study the dynamic response of the control system due to
a step changes in the command of speed, the motor is subjected
to step changes in the speed command at no load to evaluate

its performance. At t= 1 s. The motor speed command is
changed from 120 rad/s to 150 rad/s and return back to
120 rad/s after 2.25 s. Fig. 10a and b shows the motor speed
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Figure 12 Speed step up change, motor speed. (a) Experimental

(b) simulation.
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Figure 13 Speed step up change, motor phase-a current. (a)
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signals corresponding to these step changes. It can be seen that
the motor speed is accelerated and decelerated smoothly to fol-

low its reference value with nearly zero steady state error.
Fig. 10a shows the speed signal obtained in real time.
Fig. 10b shows the corresponding signal obtained from simu-

lation. These results show a good correlation between these
speed signals. Phase current corresponding to this speed step
changes are shown in Fig. 11a and b respectively. Fig. 11a rep-

resents the phase current these results ensure the effectiveness
of the proposed controller and shows good behavior of its dy-
namic response.

To study the response of the control system under load con-

dition, at t= 0.75 s the speed command is changed from
120 rad/s to 150 rad/s at full load. Fig. 12a and b shows the
motor speed signals corresponding to these step change. It

can be seen that the motor speed is accelerated smoothly to fol-
low its reference value with nearly zero steady state error.
These results show a good correlation between these speed sig-

nals. Phase current corresponding to this speed step change are
shown in Fig. 13a and b respectively.

5. Conclusions

The paper demonstrates the versatile application of fuzzy the-
ory for the control of five-phase induction motor drive system.

A simple structure of fuzzy logic controller has been proposed.
This structure has been derived from the dynamic model of
five-phase induction motor drive system using the vector con-
trol technique. The effectiveness of the fuzzy logic controller

has been established by performance prediction of an experi-
mental and simulation of five-phase induction motor drive
over a wide range operating conditions. The proposed fuzzy

logic controller based drive system has been successfully imple-
mented in the real time for the laboratory five-phase induction
motor. Simulation and experimental results have confirmed
the expected performance of the fuzzy logic controller. The re-
sults show that the effectiveness and robustness of the pro-
posed speed control method.

Appendix A

Motor parameter

No. of poles 4

Stator resistance 7.4826 X
Rotor resistance 3.6840 X
Rotor leakage inductance 0.0221 H

Stator leakage inductance 0.0221 H

Mutual inductance 0.4114 H

Supply frequency 50 Hz

Motor speed 1500 r.p.m.

Supply voltage 380 volts

Inertia 0.02 kg m2
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