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a b s t r a c t

In typical robust portfolio selection problems, one mainly finds portfolios with the worst-
case return under a given uncertainty set, in which asset returns can be realized. A too
large uncertainty set will lead to a too conservative robust portfolio. However, if the given
uncertainty set is not large enough, the realized returns of resulting portfolios will be
outside of the uncertainty set when an extreme event such asmarket crash or a large shock
of asset returns occurs. The goal of this paper is to propose robust portfolio selectionmodels
under so-called ‘‘marginal + joint’’ ellipsoidal uncertainty set and to test the performance
of the proposed models. A robust portfolio selection model under a ‘‘marginal + joint’’
ellipsoidal uncertainty set is proposed at first. The model has the advantages of models
under the separable uncertainty set and the joint ellipsoidal uncertainty set, and relaxes the
requirements on the uncertainty set. Then, onemore robust portfolio selectionmodel with
option protection is presented by combining options into the proposed robust portfolio
selection model. Convex programming approximations with second-order cone and linear
matrix inequalities constraints to both models are derived. The proposed robust portfolio
selection model with options can hedge risks and generates robust portfolios with well
wealth growth rate when an extreme event occurs. Tests on real data of the Chinese
stock market and simulated options confirm the property of both the models. Test results
show that (1) under the ‘‘marginal + joint’’ uncertainty set, the wealth growth rate and
diversification of robust portfolios generated from the first proposed robust portfoliomodel
(without options) are better and greater than those generated from Goldfarb and Iyengar’s
model, and (2) the robust portfolio selection model with options outperforms the robust
portfolio selection model without options when some extreme event occurs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Optimal portfolio selection has become a major research area in financial economics. The mean-variance (MV) portfolio
selection model, proposed by Markowitz [1,2], provides a fundamental basis for portfolio selection in both theoretical
and practical applications. The MV efficient frontier could be derived by solving the MV model and the optimal portfolio
can be found when the expected returns and covariance matrix of risk assets and investor’s attitude to risk are exactly
known. However, Michaud pointed out in [3] that although Markowitz efficiency is a convenient and useful theoretical
framework for portfolio selection, in practice it is an error prone procedure that often results in error-maximized and
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investment- irrelevant portfolios. This shows the fact that optimal solutions obtained from theMVmodel are often sensitive
to perturbations in parameters of the problem. Because the estimations of the market parameters are subject to statistical
errors, the optimal solutions obtained from theMVmodel might not be or may be far away from an optimal portfolio of risk
assets.

Emergingmodeling tools based on the robust optimization technique are proposed by Soyster [4] and developed by Ben-
Tal and Nemirovski [5,6], El Ghaoui and Lebret [7] to overcome the estimation errors of parameters. Many researchers focus
on portfolio selection models with either uncertainty parameters or uncertainty distribution that is called robust portfolio
selection. For example, Goldfarb and Iyengar [8] proposed a robust factor model for the asset returns, and assumed that the
vector of random asset returns r ∈ Rn follows the following factor model

r = µ + V T f + ϵ,

whereµ ∈ Rn is themean return vector, f ∈ Rm the random return vector ofm(<n) factors that drive themarket, V ∈ Rm×n

the factor loading matrix and ϵ the vector of residual returns, with f and ϵ being independent and ϵi, ϵj independent for any
i ≠ j. Furthermore, under the assumptions that f follows a joint normal distribution with mean 0 and positive definite
covariance matrix F and that ϵi follows a normal distribution with mean 0 and variance di(i = 1, . . . , n), they showed that
when the parameters µ and V are selected from the following uncertainty sets

Sm = {µ : µ = µ0 + ξ, |ξi| ≤ γi, i = 1, . . . , n},
Sv = {V : V = V0 + V , ∥vi∥Q ≤ ρi, i = 1, . . . , n},

the resulting robust portfolio selection problem can be reformulated as a second-order cone program (SOCP) which can be
solved efficiently by interior point algorithms [9], where constants γi and ρi depend on confidence levels given by users,
and vi is the i-th column of the matrix V and ∥a∥Q denotes the weighted norm of the vector a with respect to a symmetric
positive definite matrix Q .

Differing from Goldfarb and Iyengar’s assumptions, El Ghaoui et al. [10] proposed a worst-case Value-at-Risk (VaR)
robust portfolio selection model under the assumption that only the first order and second order moments of asset returns
are known. Recently, Zhu and Fukushima [11] presented a worst-case conditional VaR portfolio selection model in which
mixture distributions with uncertainty parameters are considered. Zhu et al. [12] and Huang et al. [13] extended Zhu and
Fukushima’s result to robust portfolio selection with downside risk constraints and uncertainty exit time constraints. More
robust portfolio selectionmodelswith either parameter uncertainties or distribution uncertainties can be found in the recent
survey paper provided by Fabozzi et al. [14].

The uncertainty sets Sm and Sv considered by Goldfarb and Iyengar [8] are in fact two separable uncertainty sets.
Halldórsson and Tütüncü [15], Tütüncü andKoenig [16] considered alternative two separable uncertainty setswith box-type
structure for the mean and covariance matrix. It is pointed out by Tütüncü and Koenig [16] that all separable uncertainty
sets have two common properties: (a) the actual confidence level of an uncertainty set is unknown, and can bemuch higher
than the desired one; and (b) the uncertainty sets are fully or partially box-type. Lu [17,18] extends Goldfarb and Iyengar [8]
results to a robust factormodelwith a joint ellipsoidal uncertainty set to overcome the shortcoming of separable uncertainty
sets and proposes a robust mean-variance portfolio selection model.

Robust portfolio selections mentioned above are relatively insensitive to the distributional input parameters and usually
outperform the classical MV portfolio selection (e.g. see [19]). Moreover, the realized portfolio return will be greater than
or equal to the calculated worst-case portfolio return when asset returns are realized within the considered uncertainty
sets. However, the good performance of robust portfolio selection may fail when an extreme event occurs, for example a
market crash, for which the asset returns can fall outside the underlying uncertainty sets. The generated robust portfolios
will be unprotected or have a weak guarantee in these cases. A straightforward way to avoid this problem is to enlarge
uncertainty sets to cover almost all extreme events. But, robust portfolios obtained by this way will be too conservative to
performwell under normalmarket conditions. Hence, how to protect theworst-case portfolio return in these cases becomes
a challenging problem for robust portfolio selection researches. Facing this challenge, Lutgens et al. [20] proposed a robust
portfolio selection model involving options, and the resulting model is a second-order cone program which may have, in
the worst-case, an exponential number of conic constraints. Zymler et al. [21] generalize Lutgens and Sturm’s method and
present an expectation maximization robust portfolio selection model under an ellipsoidal uncertainty set with derivative
insurance guarantee. By combining options into robust portfolio selection model, the realized robust portfolio with options
is protected and can outperform the robust portfolio without options under extreme event or normal market conditions.

In this paper wewill also consider the robust portfolio selection problemwith asset returns driven by the factormodel. It
is assumed that the random parameters µ and V in the model vary in a joint ellipsoidal uncertainty set instead of separable
uncertainty sets. European style options are introduced into the robust portfolio selection model to protect affection of
extreme events. The main contributions of this paper are as follows. A robust portfolio selection model is proposed based
on a factor model of random asset returns. The model maximizes the expectation of portfolio return subject to a worst-case
probability loss. A so-called ‘‘marginal + joint’’ ellipsoidal uncertainty set is introduced for parameters in the model. The
model is an extension of [8] robust VaR portfolio selectionmodel with separable uncertainly sets Sm×Sv and [17,18] results.
Then options are introduced into the robust portfolio selection model to protect the worst-case portfolio return in extreme
events. It is shown that the resulting robust portfolio selectionmodel can provide strong performance guarantees formost of
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possible realizations of asset returns, and that the resulting model can be reformulated as a tractable convex programming
with second-order cone and linear matrix inequality constraints.

The rest of the paper is organized as follows. The robust portfolio selectionmodelwithout options under a joint ellipsoidal
uncertainty set is presented in Section 2. While the robust portfolio selection model with options guarantee is given in
Section 3. The definition of the joint ellipsoidal uncertainty set is recalled in Section 4. In Section 5, a tight approximation
to the robust portfolio selection model with options is derived and the‘‘marginal + joint’’ uncertainty set is described.
The proposed robust portfolio selection models are reformulated as convex programming with linear matrix inequality
constraints in Section 6. Test results are reported in Section 7.

2. Robust portfolio selection without options

Assume that there exist n risky assets (stocks) available in a market. The random returns rate vector of the n risky assets
over the investment horizon [0, T ] is denoted by r = (r1, . . . , rn)T ∈ Rn with the interpretation that asset i returns (1 + ri)
dollars for every dollar invested in it. The returns on the assets in different market periods are assumed to be independent.
The single period return r is assumed to be a random vector and satisfy the following factor model

r = µ + V T f + ϵ, (2.1)
where µ ∈ Rn is the mean vector of asset returns, f ∈ Rm is the random return vector of m(<n) factors that drive the
market, V ∈ Rm×n is the factor loading matrix and ϵ is the vector of residual returns. The market factor vector f and residual
vector ϵ satisfy f ∼ N (0, F) and ϵi ∼ N (0, di)(i = 1, . . . , n), respectively, where ξ ∼ N (µ, Σ) means that ξ follows a
multivariate normal distribution with mean vector µ and covariance matrix Σ . The covariance matrix F is positive definite
and will be denoted by F ≻ 0. Let d = (d1, . . . , dnn)T , di > 0, i = 1, . . . , n, then D = diag(d) ≻ 0 means D is a diagonal
matrixwith di, i = 1, 2, . . . , n being its diagonal elements. Asmentioned in the Introduction, separable uncertainty setswill
lead to relatively conservative portfolios. Therefore, differing from the separable uncertainty sets Sm × Sv used by Goldfarb
and Iyengar [8], it is assumed in this paper that parameters µ and V in (2.1) vary in a joint ellipsoidal uncertainty set S (see
definition in the next section) and the robust portfolio selection model is as follows

(R1) : max
w

min
(µ,V )∈S

E[wT r]

s.t. max
(µ,V )∈S

P{wT r ≤ ρ} ≤ α,

w ∈ W = {w : w ≥ 0 eTnw = 1},
wherew is the vector of decision variables, ρ is theminimum return that the investor can accept for a given confidence level
α ∈ (0, 1/2), en ∈ Rn is the all-one vector, and E[·] and P{·} denote the expectation and probability operators, respectively.
The probability constraint in problem (R1) is also called chance constraint or Roy’s safety-first rule in literature.

It follows from (2.1) that f ∼ N (0, F) and ϵi ∼ N (0, di)(i = 1, . . . , n) imply

r ∼ N(µ, V T FV + D), (2.2)
and

wT r ∼ N(wTµ,wT (V T FV + D)w). (2.3)
Let ξ ∼ N (0, 1), then by the symmetry of normal distribution, for any given µ, V , the chance constraint in problem (R1)
can be rewritten as

P{wT r ≤ ρ} = P{wT r ≥ 2wTµ − ρ}

= P

wTµ + ξ


wT (V T FV + D)w ≥ 2wTµ − ρ


= P


ξ ≥

wTµ − ρ
wT (V T FV + D)w


≤ α

⇔ P


ξ ≤

wTµ − ρ
wT (V T FV + D)w


≥ 1 − α

⇔
wTµ − ρ

wT (V T FV + D)w
≥ F −1

ξ (1 − α), (2.4)

whereFξ (·) is the cumulative probability function of the randomvariable ξ and satisfiesF −1
ξ (1−α) > 0 sinceα ∈ (0, 1/2).

Based on (2.4), problem (R1) can be written as the following equivalent form

(R1′) max
w

min
(µ,V )∈S

wTµ

s.t. max
(µ,V )∈S


F −1

ξ (1 − α)

wT (V T FV + D)w − wTµ


≤ −ρ

w ∈ W .
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From the last inequality in (2.4), the inequality constraint in problem (R1′) implies that

min
(µ,V )∈S

wTµ − ρ
wT (V T FV + D)w

≥ F −1
ξ (1 − α).

It follows that theworst-case Sharp ratio [22] is required not less than a constant. Comparingwith themean-variancemodel
as considered in [17], problem (R1′) can in fact obtain the portfolio with greater Sharp ratio, i.e. the obtained portfolio based
on (R1′) has greater return per unit risk, see the further discussion in Section 7 for detail.

3. Robust portfolio selection with options

Assume that there exist q derivatives (European options) on n stocks given in Section 2. Let the expiration dates of
all options be the end of investment horizon [0, T ] and denote the random gross return rate vector of q options by
rd = (rd1 , . . . , r

d
q )

T
∈ Rq at the expiration date. Assume that option i on stock j has strike price Ki. If i is a put option

with price pi at time t = 0, then its return at time t = T can be expressed as (see also [20,21] for detail)

rdi =
max{0, Ki − S jT }

pi
=

max{0, Ki − (1 + rj)S0j }

pi

= max


0,

Ki − (1 + rj)S
j
0

pi


= max{0,bi + aij(1 + rj)}, (3.1)

wherebi = Ki/pi > 0 and aij = −S j0/pi < 0, S j0 is the price of stock j at time t = 0, j = 1, 2, . . . , n. It can be seen that rdi is
a convex piece-wise linear function with respect to rj. If i is a call option with price ci at t = 0, then its return at t = T is

rdi = max


0,

(1 + rj)S
j
0 − Ki

ci


= max{0,bi + aij(1 + rj)} (3.2)

withbi = −Ki/ci < 0 and aij = S j0/ci > 0.
Then using the component-wise maximization operator ‘max’ and (3.1) and (3.2), the vector rd has the matrix-vector

form

rd = max{0, b + Gr}, (3.3)

where G = (aij) ∈ Rq×n with aij = 0 for j ≠ k and aik > 0 or aik < 0 for call or put option i on stock k, b = b + Gen andb = (b1, . . . ,bq)T .
Let the random return vector for both stocks and options be

r =


r
rd


=


r

max{0, b + Gr}


∈ Rn+q.

A portfolio of an investor holding both stocks and options now can be expressed as a joint vector w =


w
wd


∈ Rn+q and

satisfies
n+q
i=1

wi =

n
i=1

wi +

q
i=1

wd
i = 1, (3.4)

where w = (w1, . . . , wn)
T

∈ Rn is the weight vector invested to n stocks and wd
= (wd

1, . . . , w
d
q)

T
∈ Rq the weight vector

invested to q options. Then the robust portfolio selection model with options has the following form

(R2) : maxw min
(µ,V )∈S

E[w Tr]
s.t. max

(µ,V )∈S
P{w Tr ≤ ρ} ≤ α,w ∈ W,

where the set W = {w : w ≥ 0 satisfies (3.4) }. It is clear that when G = 0 and b = 0, problem (R2) reduces to problem
(R1). Thus, the robust portfolio selection problem (R2) is a generalization of problem (R1). An advantage of model (R2) is
that options introduced into themodel can hedge the risk from either a large shock of asset returns or themarket crash even
though the uncertainty set is not large enough.

It is worthwhile mentioning that the problem (R2) has at least three points that are different from [21]: (1) Zymler
et al. [21] assume that the random return vector has the form r = µ + ϵ which is clearly simpler than factor model (2.1).
(2) The uncertainty set considered by Zymler et al. [21] is separable. Moreover, the uncertainty set for the covariance matrix
is a singleton, this means that the covariance matrix is estimated exactly. (3) Both models use the different method to
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convert the resulting problem to the solvable SOCP. Additionally, problem (R2) is also different from the problem considered
by Zymler et al. [23], in which they extended El Ghaoui et al. [10] worst-case VaR portfolio selection to a robust portfolio
selection with non-linear VaR and derivative insurance guarantee. But, in Zymler, Kuhn and Rustem’s model, they assume
that returns of assets have uncertain distribution, but do not consider the existence of a parameters uncertainty set, that is,
parameters are assumed to be known exactly. This means their model is sharply dependent on the estimate of parameters.
In our model, we assume that returns of assets have the certainty distribution, but their values belong to an uncertainty
set and need not be known exactly. Hence, our model can be viewed to be complementary to Zymler, Kuhn and Rustem’s
model.

Clearly, it is extremely difficult to directly solve Problem (R2) since the vectorr is no longer normally distributed and we
can not exactly express problem (R2) into a form of (R1′) using known information of the random return vector r.

4. The joint uncertainty set

Before further discussion of problem (R2), we introduce the definition of joint uncertainty set in this section. Interested
readers can refer to [8,17] for more detail.

Suppose the market data consists of asset returns, {rt : t = 1, . . . , p} and factor returns {ft : t = 1, . . . , p} for p(p >
m + 1) periods. Then the linear model (2.1) implies

r ti = µi +

m
j=1

Vjif tj + ϵt
i , i = 1, . . . , n, t = 1, . . . , p.

Similar to typical linear regression analysis, we assume that {ϵt
i , i = 1, . . . , n} are all normally distributed with ϵt

i ∼

N(0, σ 2
i ) and series independent.

Let B = (f1, f2, . . . , fp) ∈ Rm×p be the matrix of factor returns, yi = (r1i , r
2
i , . . . , r

p
i )

T be the return series of asset
i, A = (ep, BT ), and xi = (µi, V1i, V2i, . . . , Vmi)

T where ep ∈ Rp is the all-one vector. Then we have

yi = Axi + ϵi, i = 1, 2, . . . , n,

where ϵi = (ϵ1
i , ϵ

2
i , . . . , ϵ

p
i )

T . For any given ω ∈ (0, 1), the joint ellipsoidal uncertainty set of parameters (µ, V ) with
ω-confidence level is defined as follows [17].

S := Sµ,V (ω) =


(µ, V ) :

n
i=1

(xi − xi)T (ATA)(xi − xi)
s2i

≤ (m + 1)c(ω)


(4.1)

for certain c(ω), where

xi = (ATA)−1ATyi (4.2)

is the least squares estimate of the parameter vector xi, and

s2i =
∥ yi − Axi ∥2

p − m − 1
(4.3)

is the unbiased estimate of σ 2
i . It will be shown in Section 6 that the uncertainty set S can be expressed as a quadratic

function constraint with respect to xi(i = 1, . . . , n) (see (6.10)) and hence S is convex. It is shown (see [17]) that S is an
ω-confidence uncertainty set of parameters (µ, V ) for certain c(ω), if and only if P

n
i=1 Yi

≤ c(ω)


= ω, i.e. c(ω) is the
ω-critical value of

n
i=1 Yi, where

Yi
=

(xi − xi)T (ATA)(xi − xi)
(m + 1)s2i

, i = 1, 2, . . . , n

are independent anddistributed according to the F-distributionwithm+1degrees of freedom in the numerator and p−m−1
degrees of freedom in the denominator.

5. An approximation to problem (R2)

As mentioned in Section 3, it is extremely difficult to directly solve problem (R2). In this section we will give an
approximation to problem (R2) such that explicit expressions for the problem can be obtained. For this purpose, following
lemmas are required and its proof is straightforward.

Lemma 5.1. Let a ∈ Rn be a nonnegative constant vector. Then, for any x ∈ Rn, we have

aT max(0, x) = max{xTy : 0 ≤ y ≤ a} (5.1)

and aT max(0, x) is a convex function with respect to x.
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Proof. The convexity of the function aT max(0, x) is a well known result of convex analysis and thus its proof is omitted.
Next we only prove (5.1). For any x ∈ Rn, notice that max(0, x) ≥ 0 and max(0, x) ≥ x. Hence, the left hand side of (5.1)
can be expressed as a linear program, that is,

aT max(0, x) = min
h

{aTh : h ≥ 0,h ≥ x}.

The dual problem of this linear programs is maxy{xTy : 0 ≤ y ≤ a}. This obtains the equality (5.1). �

Although the randomvector r follows amultivariate normal distribution,we cannot obtain the distribution of the random
vector rd since (3.3) is in fact a nonlinear function in r. However, a lower bound for the objective function of problem (R2)
can be obtained based on Lemma 5.1. In fact it follows from Lemma 5.1 and Jensen’s inequality [24] that for any (µ, V ) ∈ S,
we have

E[w Tr] = E[wT r] + E[(wd)T rd]
= E[wT r] + E[(wd)T max(0, (b + Gr))]
= E[wT r] + E[max{(b + Gr)Ty : 0 ≤ y ≤ wd

}]

≥ E[wT r] + max
0≤y≤wd

E[(b + Gr)Ty]

= wTµ + max
0≤y≤wd

{(b + Gµ)Ty}

= max
0≤y≤wd

{(w + GTy)Tµ + bTy}, (5.2)

where the last equality is based on the fact thatwTµ is independent of y.
Let Sµ be the projection of S on the subspace in whichµ exists. Then Sµ is a convex set since S is convex. Then from (5.2)

and the fact that (w + GTy)Tµ + bTy is independent of V , we have

min
(µ,V )∈S

E[w Tr] ≥ min
(µ,V )∈S

max
0≤y≤wd

{(w + GTy)Tµ + bTy}

= min
µ∈Sµ

max
0≤y≤wd

{(w + GTy)Tµ + bTy}

= max
0≤y≤wd

min
µ∈Sµ

{(w + GTy)Tµ + bTy}

= max
0≤y≤wd

min
(µ,V )∈S

{(w + GTy)Tµ + bTy}, (5.3)

where the second equality from the bottom is based on the max–min theorem of convex function (e.g. see [25] for detail).
For the probability constraint in problem (R2), from the definition of vectorr we have

P{w Tr ≤ ρ} = P{wT r + (wd)T rd ≤ ρ}

= P{wT r + (wd)T max(0, b + Gr) ≤ ρ}

= P

wT r + max

0≤y≤wd
(b + Gr)Ty ≤ ρ


= P


max

0≤y≤wd
{(w + Gy)T r + bTy} ≤ ρ


. (5.4)

Lemma 5.2. For the left hand side of the probability constraint in problem (R2), we have

max
(µ,V )∈S

P{w Tr ≤ ρ} ≤ min
0≤y≤wd

max
(µ,V )∈S

P

(w + GTy)T r + bTy ≤ ρ


.

Proof. For any given w,wd,G, b and ρ, let

ϕ(y) = P

(w + Gy)T r + bTy ≤ ρ


.

Then for any ywith 0 ≤ y ≤ wd, we have

P


max
0≤y≤wd

{(w + Gy)T r + bTy} ≤ ρ


≤ ϕ(y). (5.5)



A.-f. Ling, C.-x. Xu / Journal of Computational and Applied Mathematics 236 (2012) 3373–3393 3379

The continuity of probability implies that there exists at least a y∗
∈ [0,wd

] such that ϕ(y∗) attains the minimum value of
ϕ(y) over [0,wd

]. Then we have

P


max
0≤y≤wd

{(w + Gy)T r + bTy} ≤ ρ


≤ ϕ(y∗) = min

0≤y≤wd
ϕ(y)

= min
0≤y≤wd

P

(w + Gy)T r + bTy ≤ ρ


,

and hence, from (5.4)

max
(µ,V )∈S

P{w Tr ≤ ρ} = max
(µ,V )∈S

P


max
0≤y≤wd

{(w + GTy)T r + bTy} ≤ ρ


≤ max

(µ,V )∈S
min

0≤y≤wd
P

(w + GTy)T r + bTy ≤ ρ


≤ min

0≤y≤wd
max

(µ,V )∈S
P

(w + GTy)T r + bTy ≤ ρ


where the last inequality comes from themax–min theorem of non-convex function (e.g. see [25] for detail). This completes
the proof. �

Inequalities (5.2) and (5.3) give a tight lower bound to the objective function of problem (R2), while Lemma 5.2 gives
an approximation to the chance constraint in problem (R2) when the right hand side of the inequality in Lemma 5.2 is not
greater than the given probability level α. Based on these facts, an approximation to the hard problem (R2) is given by

(R3) : max
w,wd,y

min
(µ,V )∈S

{(w + GTy)Tµ + bTy}

s.t. max
(µ,V )∈S

P

(w + GTy)T r + bTy ≤ ρ


≤ α

(w,wd) ∈ W, 0 ≤ y ≤ wd,

here we use (w,wd) ∈ W to express w ∈ W . It is clear that the optimal solution of problem (R3) is feasible for problem
(R2) and will be accepted as an approximate solution of problem (R2). If G = 0 and b = 0, then problem (R3) is reduced to
problem (R1), the robust portfolio selection problemwithout options. Using a similar method to (2.4), the chance constraint
in problem (R3) can be written as

max
(µ,V )∈S


F −1

ξ (1 − α)


φT (V T FV + D)φ − φTµ − bTy


≤ −ρ, (5.6)

where

φ = w + GTy =

In GT  w

y


, (5.7)

In is the n dimensional unit matrix. Let λ0 = F −1
ξ (1 − α) and

P =


In
G


(V T FV + D)


In GT  .

Then, inequality (5.6) can be rewritten as

max
(µ,V )∈S


λ0


(wT , yT )P


w
y


− (wT , yT )


µ

Gµ + b


≤ −ρ. (5.8)

Notice that the positive definiteness of the matrix V T FV + D implies that the (n + q) × (n + q) matrix P is positive semi-
definite. Because the objective function of problem (R3) is independent of the variables V , the worst-case expected return
within the joint ellipsoidal uncertainty set S is in fact equivalent to the worst-case expected return within the uncertainty
set Sµ, that is, problem (R3) can be rewritten as

(R4) : max
w,wd,y

min
µ∈Sµ


(w + GTy)Tµ + bTy


s.t. (5.8), (w,wd, y) ∈ W1,

where

W1 = {(w,wd, y) : (w,wd) ∈ W, 0 ≤ y ≤ wd
}
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is the new feasible region with respect to (w,wd, y). The uncertainty set Sµ is called a marginal uncertainty set relative to
the set S. The worst-case objective function of problem (R4) is defined in the marginal uncertainty set Sµ, while the worst-
case chance constraint (5.8) is defined in the joint ellipsoidal uncertainty set S. This is the main characteristic of problem
(R4), and the same way can be used to problem (R1′) without options. We call (R4) and (R1′) the robust portfolio selection
problems under ‘‘marginal + joint’’ ellipsoidal uncertainty set (Sµ, S).

We close this section by giving some remarks on problem (R4). Let µ1 be the worst-case estimate of µ in the objective
function of (R4) and µ2 be the worst-case estimate of µ in constraint (5.8). Generally speaking, µ1 ≠ µ2, but this does not
impact the solution of the proposed problem, moreover, in a sense it will improve the performance of solution. In fact, µ1
is the real worst-case estimate of µ in uncertainty set S, this leads to

(w + GTy)Tµ1 + bTy ≤ (w + GTy)Tµ2 + bTy

since µ2 ∈ Sµ. Thus, we in fact maximize the real worst-case expectation return for the given uncertainty set S which is
the same as [8]. But it can not obtain the realworst-case expectation return to the solo use of the joint uncertainty set as in
Lu (2011), [17,18] since it only can obtain the estimate µ2. However, the confidence level of (µ, V ) ∈ S in problem (R4) is
consistent with Lu (2011), [17,18] (see page 8 in [17]). Hence, problem (R4) in fact shares the advantages of models in, [8],
Lu (2011) [17,18].

6. A SOCP relaxation with LMI constraints

In this section, wewill formulate problems (R1′) and (R4) into convex programswith linearmatrix inequality constraints.
Because problem (R1′) is a special case of problem (R4) when G = 0 and b = 0, in what follows, we will focus on problem
(R4) and all the results in this section can be applied to problem (R1′).

To this end, we need an explicit form of the set Sµ. It can be observed from (4.1) that the joint ellipsoidal uncertainty set
S is symmetric with respect to xi = (µi, V 1i, . . . , Vmi)

T , i = 1, . . . , n. Thus the projection Sµ of S on the subspace in which
µ exists can be obtained by setting xi = (µi, V 1i, . . . , Vmi)

T , i = 1, . . . , n, that is,

Sµ =


µ : µi = µi + ζi,

n
i=1


ζi

si

2

≤ κ


, (6.1)

where κ = (m + 1)c(ω) and si is given by (4.3). Note that Sµ is still an ellipsoidal uncertainty set on the subspace of the
vector µ.

Now we consider the worst-case objective function of problem (R4) for any given (w,wd, y) ∈ W1, i.e.

min
µ

(w + GTy)Tµ + bTy

s.t. µ ∈ Sµ.
(6.2)

Lemma 6.1. Problem (6.2) has an unique optimal solution µ∗ with

µ∗

i = µi −


κsTssisi, i = 1, 2, . . . , n, (6.3)

and its optimal value is

φTµ −
√

κ∥Sφ∥ + bTy,

where

S =

s1
. . .

sn


is a positive definite diagonal matrix,s = (s1, . . . ,sn)T withsi = φisi, i = 1, . . . , n and φ = (φ1, . . . , φn)

T given by (5.7).

Proof. Denote

νi =
µi

si
, νi =

µi

si
, i = 1, . . . , n. (6.4)

Then the objective function of (6.2) can be written as
n

i=1

φisiνi + bTy =

n
i=1

siνi + bTy =sTν + bTy.
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Define

Sν = {ν = (ν1, . . . , νn)
T

: ∥ν − ν∥2
≤ κ}.

Then problem (6.2) is equivalent to

min
ν

sTν + bTy
s.t. ν ∈ Sν .

(6.5)

Straightforward calculation gives the KKT point of (6.5)

ν∗
= ν −


κsTss.

Combining (6.4) gives the optimal solution µ∗ with µ∗

i given by (6.3). Substituting µ∗ into (6.2) generates the second
conclusion of this lemma. The proof is completed. �

In what follows, we formulate inequality constraint (5.8) in problem (R4) into some equivalent linear matrix inequalities
(LMIs). To this end, the following lemmas are required.

Lemma 6.2 (Schur Complement, See [26]). Let A ∈ S++
n , C ∈ Sn, and B ∈ Mm,n, the m × n matrix space. Then

A B
BT C


≽ 0 if and only if C − BTA−1B ≽ 0.

Lemma 6.3 (S -Procedure, See [26]). Let Fi(x) = xTAix + 2bT
i x +ci, i = 0, 1, 2, . . . ,p be quadratic functions of x ∈ Rn. Then

F0(x) ≤ 0 for all x ∈ {x|Fi(x) ≤ 0, i = 1, 2, . . . ,p}, if there exists θi ≥ 0, i = 1, 2, . . . ,p such that
p
i=1

θi

ci bi

bT
i Ai


−

c0 b0

bT
0 A0


≽ 0.

Moreover, if p = 1, then the converse holds if there exists x0 ∈ Rn such that F1(x0) ≤ 0.

The following result is a property of the standard Kronecker product (denoted by ⊗) of two matrices.

Lemma 6.4 (See [27]). If H1 ≽ 0 and H2 ≽ 0, then H1 ⊗ H2 ≽ 0.

For any given (w,wd, y) ∈ W1, and ρ, we define a function of µ and V

Q(µ, V ) = λ0


(wT , yT )P


w
y


− (wT , yT )


µ

Gµ + b


+ ρ

= λ0


(w + Gy)T (V T FV + D)(w + Gy) − (w + Gy)Tµ − bTy + ρ.

Then inequality constraint (5.8) means that Q(µ, V ) ≤ 0 holds for any (µ, V ) ∈ S. From (4.1), the uncertainty set S can be
expressed as

S =


(µ, V ) :

n
i=1

xTi


ATA

(m + 1)s2i


xi − 2

n
i=1


ATAxi

(m + 1)s2i

T

xi +
n

i=1

xTi


ATA

(m + 1)s2i


xi − c(ω) ≤ 0


. (6.6)

Let

u =


−

ATAx1
(m + 1)s21

...

−
ATAxn

(m + 1)s2n

 ∈ R(m+1)n, η =

n
i=1

xTi


ATA

(m + 1)s2i


xi − c(ω), (6.7)

R =


ATA

(m + 1)s21
. . .

ATA
(m + 1)s2n

 ∈ R[(m+1)n]×[(m+1)n], (6.8)
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and

x =

x1
...
xn

 ∈ R(m+1)n, (6.9)

where xi = (µi, V1i, V2i, . . . , Vmi)
T

∈ Rm+1, i = 1, 2, . . . , n. Then, the uncertainty set S can be rewritten using the following
quadratic function constraint

S =

x : xTRx + 2uTx + η ≤ 0


. (6.10)

The following lemma gives LMI expressions for the inequality constraint (5.8).

Lemma 6.5. Let S be a ω-confidence uncertainty set given by (6.6) (hence by (4.1)) for any given ω ∈ (0, 1). Then there exists
a positive semi-definite matrix X ∈ Rn×n and a θ ≥ 0 such that inequality constraint (5.8) in problem (R4) is equivalent to the
following linear matrix inequalities (LMIs)θη − 2(ρ − bTy) θuT

+ vT

θu + v θR − λ0X ⊗


0 0
0 F

 ≽ 0, (6.11)


τ1 φT

φ X


≽ 0, θ ≥ 0, (6.12)

where

v = −(φ1, 0T
m, . . . , φn, 0T

m)T ∈ R(m+1)n (6.13)

0m is the m-dimension all-zero vector, and τ1 =


φTDφ.

Proof. Applying (5.7), we can write Q(µ, V ) as

Q(µ, V ) = λ0


φT (V T FV + D)φ − φTµ − bTy + ρ

= λ0


φT (V T FV )φ + φTDφ − φTµ − bTy + ρ.

Let φ ≠ 01 and τ1 =


φTDφ. Then τ1 > 0 since D is positive definite. Thus, the second-order derivatives of Q(µ, V ) exist

at (µ, V ) = (0n, 0m×n), and the first-order and second-order derivatives of Q(µ, V ) at (µ, V ) = (0n, 0m×n) are given by

∂Q

∂xi


(µ,V )=(0n,0m×n)

=


−φi
0m


, i = 1, . . . , n,

and

∂2Q

∂xi∂xj


(µ,V )=(0n,0m×n)

=

 0 0T
m

0m λ0
φiφj

τ1
F

 , i, j = 1, . . . , n,

where xi = (µi, V1i, V2i, . . . , Vmi)
T

∈ Rm+1, i = 1, 2, . . . , n. When
n

i=1 ∥xi∥2 is small enough, the function Q(µ, V ) can be
approximated by its second-order Taylor series expansion at (µ, V ) = (0n, 0m×n)

Q(µ, V ) = Q(0n, 0m×n) +

n
i=1


∂Q

∂xi


(µ,V )=(0n,0m×n)


xi +

1
2

n
i,j=1

xTi


∂2Q

∂xi∂xj


(µ,V )=(0n,0m×n)


xj + o


n

i=1

∥xi∥2



∼=
1
2

n
i,j=1

xTi

 0 0T
m

0m λ0
φiφj

τ1
F

 xj +
n

i=1


−φi
0m


xi − bTy + ρ. (6.14)

Using notations of (6.9) and (6.13), (6.14) can be expressed as a standard quadratic function in matrix-vector formQ(x) = 2Q(µ, V ) = xTMx + 2vTx + 2(ρ − bTy) (6.15)

1 If there exists matrix G, such that φ = w + GT y = 0 for certain (w, y) ∈ W1 , then function Q(µ, V ) = −bT y + ρ that is independent of (µ, V ). Thus,
the derivatives of Q(µ, V ) with respect to (µ, V ) at (µ, V ) = (0n, 0m×n) is zeros. We do not consider this trivial case.
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where

M = (Mij) ∈ R[(m+1)n]×[(m+1)n], (6.16)

with

Mij =

 0 0T
m

0m λ0
φiφj

τ1
F

 ∈ R(m+1)×(m+1), i, j = 1, . . . , n.

In view of the definition of joint uncertainty set S and ω > 0, it follows that c(ω) > 0 (see also Proposition 3.1 and (13)
in Lu (2011) [17] for detail). Clearly, x ∈ S since xTRx + 2uTx + η = −c(ω) < 0 holds, where

x =

x1
...
xn

 ∈ R(m+1)n.

Thus, the uncertainty set S is nonempty. Then, by (6.10) and (6.15) and Lemma 6.3, Q(x) ≤ 0 for all x ∈ S if and only if
there exists a θ ≥ 0 such that

θ


η uT

u R


−


2(ρ − bTy) vT

v M


≽ 0, (6.17)

where u, η and R are given by (6.7) and (6.8),

M = λ0


φφT

τ1


⊗


0 0T

m
0m F


where ⊗ denotes the Kronecker product of matrices. Applying the fact that F ≻ 0 and Lemma 6.4, (6.17) holds if and only
if there exists X such that

θη − 2(ρ − bTy) θuT
− vT

θu − v θR − λ0X ⊗F


≽ 0, X ≽
φφT

τ1
, θ ≥ 0, (6.18)

whereF =


0 0Tm
0m F


. Hence, for any x ∈ S, Q(x) ≤ 0 (or Q(µ, V ) ≤ 0) holds if and only if there exist θ ≥ 0 and a matrix

X such that conditions (6.18) hold. In view of τ1 > 0 and Lemma 6.2, we have that X ≽
φφT

τ1
holds if and only if the matrix

X satisfies
τ1 φT

φ X


≽ 0.

This obtain the equivalent conditions given by (6.11) and (6.12). The proof is finished. �

Based on Lemmas 6.1 and 6.5, problem (R4) can be expressed as a second-order cone programming (SOCP), i.e. we have
the following result.

Theorem 6.6. Let S given by (4.1) be a ω-confidence uncertainty set for any given ω ∈ (0, 1). Then robust portfolio selection
problem (R4) can be relaxed as the following optimization problem with LMI constraints and second-order cone constraints

max
τ ,τ1,τ2,θ,w,wd,y,φ,X

τ

s.t.
√

κ∥Sφ∥ ≤ τ2
τ + τ2 − φTµ − bTy ≤ 0

θη − 2(ρ − bTy) θuT
+ vT

θu + v θR − λ0X ⊗F


≽ 0,
τ1 φT

φ X


≽ 0,

∥D1/2φ∥ ≤ τ1
φ − w − GTy = 0
(w,wd, y) ∈ W1, θ ≥ 0,

(6.19)

where scales τ , τ1, τ2, θ, vectors (w,wd, y), φ, and matrix X are unknown variables, and η,u, v, and matrices R,F are
coefficients.



3384 A.-f. Ling, C.-x. Xu / Journal of Computational and Applied Mathematics 236 (2012) 3373–3393

Proof. By introducing an auxiliary variable τ , problem (R4) can be rewritten as

max
w,wd,y,τ

τ

s.t. min
µ∈Sµ


(w + GTy)Tµ + bTy


≥ τ

(5.8), (w,wd, y) ∈ W1.

(6.20)

Using the result of Lemma 6.1, the first inequality of problem can be replaced by

φTµ −
√

κ∥Sφ∥ + bTy ≥ τ . (6.21)

Introducing one more auxiliary variable τ2, inequality (6.21) can be replaced by the following two constraints
√

κ∥Sφ∥ ≤ τ2, τ + τ2 − φTµ − bTy ≤ 0

where the first one is a second order cone constraint while the second one is a linear inequality constraint. This gives the
first two inequality constraints in problem (6.19). Let

∥D1/2φ∥2 = τ1.

Then the condition Q(µ, V ) ≤ 0 can be written as

Q(µ, V ) = λ0


φT (V T FV )φ + τ 2

1 − φTµ − bTy + ρ ≤ 0.

The equality constraint ∥D1/2φ∥2 = τ1 can be further relaxed as ∥D1/2φ∥2 ≤ τ1 so that it becomes a second order cone
constraint too. Then, the third, fourth and fifth inequality constraints in problem (6.19) come from the result of Lemma 6.5.
The proof is completed. �

Problem (6.19) is a tight approximation to problem (R4).When the results of Lemma 6.1, 6.5 and Theorem 6.6 are applied
to problem (R1′), that is the case of the robust portfolio selection without options, a similar SOCP form of problem (R1′) can
be obtained, that is, when G = 0, b = 0, problem (6.19) reduces to the following SOCP

max
τ ,τ1,τ2,θ,w,wd,y,φ,X

τ

s.t.
√

κ∥Sw∥ ≤ τ2
τ + τ2 − wTµ ≤ 0

θη − 2ρ θuT
+ vT

θu + v θR − λ0X ⊗F


≽ 0,
τ1 wT

w X


≽ 0,

∥D1/2w∥ ≤ τ1
w ∈ W, θ ≥ 0.

(6.22)

This is a tight relaxation of problem (R1′).We call τ in both problems (6.19) and (6.22) theworst-case return.Wewill compare
the performance of robust portfolio selection problems (6.19) and (6.22) on simulated and real market data in the next
section. The duality of problem (6.19) can be obtained easily by introducing some dual variables, see Appendix for detail.

7. Test results

This section reports test results to compare performance of problem (R1) under the ‘‘marginal + joint’’ ellipsoidal
uncertainty set (Sµ, S) with that of the Goldfarb and Iyengar [8] model (denoted by RGI, see problem (47) in [8]) under
the separable uncertainty set Sv × Sm, and performance changes from problems (R1) and problem (R2) to problems (6.19)
and (6.22). All computational tests are performed using SeDuMi V1.3 [28] on a 2.0 GHz Core 2 Duo machine.

Three classes of test problems are used in numerical experiments. The first class of test problems are generated based
on simulated stocks data. The second class of test problems are obtained based on real stocks data from the Chinese stock
market and the third class of test problems are generated based on simulated options data. The first two classes of test
problems will be used to compare the performance of models (R1) and RGI, while the third class of problems will be used
to test the performance of model (R2) by implementing models (6.19) and (6.22).

7.1. Test results on simulated stocks data

In this subsection, the performance of proposed model (R1) and Goldfarb and Iyengar [8] model (denoted by RGI) on
simulated stocks data will be reported. Data on stock returns are randomly generated using the same way as described
in [8] (see also [17]). n = 40 (the number of stocks) and m = 5 (the number of factors) are selected. The expected return
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vector µ ∈ Rn of n assets are independently generated according to a uniform distribution on interval [0.5%, 2.5%]. Both
the symmetric positive semi-definite factor covariance matrix F and the factor loading matrix V are randomly generated
using the MATLAB function randn(n,m) and the elements of both the matrices are located in the interval [0.1%, 5%]. The
covariance matrix D of the residual returns ϵ is assumed to be certain and sets to D = 0.1diag(V T FV ), that is, the linear
model explains 90% of the asset variance.

Based on the generated V , F and D, sequences of asset return vector r and factor return vector f are generated according
to the normal distributions N (µ, V T FV + D) and N (0, F) for an investment period of length p = 90, respectively. Then xi
and s2i , i = 1, . . . , n are calculated from the resulting sequences r and f using (4.2) and (4.3). The joint uncertainty set S
is determined by (4.1) for a given confidence level ω > 0 (the computation of c(ω) > 0 in (4.1) can refer to [17]) and the
corresponding marginal uncertainty set Sµ is determined by (6.1) for the same value of ω. Note that using a similar method
to [8], the matrices D and F are not updated in generating sequences data of r and f. A risk averse investor will choose a
value of ρ larger than −0.05. Three values of ρ, i.e. ρ = −0.05, −0.03 or −0.012 will be used to test the performance of the
models.

We first compare the mean Sharp ratios of the proposed model (R1) with model RGI [8] and Lu’s [17,18] (denoted by
RLU) model based on the simulated data, see Fig. 1. In Fig. 1 and the following figures, RLX1 denotes the results of problem
(R1) with the optimal solution obtained by solving model (6.22). The mean Sharp ratio is given by3

MSR =
(µ − rf en)Tw∗

(w∗)T (V
T
FV + D)w∗

where µ, V is estimated by (4.2), rf = 2.5% is taken as the risk-free annual return rate and w∗ is the optimal solutions
obtained respectively bymodels (R1), RGI and RLU.We find from Fig. 1 that RLX1 has the best mean Sharp ratio for different
confidence level and RGI has clearly the better mean Sharp ratio than RLU for most of values ω. Indeed, it is not surprising,
from (2.4) and the inequality constraint of problem (R1′), that themean Sharp ratio of problem (R1) is not less than a constant,
that is

(µ − rf en)Tw∗
(w∗)T (V

T
FV + D)w∗

≥ min
(µ,V )∈S

(µ − rf en)Tw∗
(w∗)T (V T FV + D)w∗

≥ F −1
ξ (1 − α) +

ρ − rf eTnw
∗

(w∗)T (V T FV + D)w∗

which is also shared by model RGI but not shared by model RLU, whereV is the worst-case estimate of V but can not be
obtained explicitly. Based on the fact, in the rest of this section, we only consider the performance comparisons of model
(R1), (R4) and RGI since these models have a similar constraint, i.e. a chance constraint that is different from the mean-
variance considered by Lu (2011) [17]. Another interesting result is found from Fig. 1. MSR increases as the confidence level
ω when investors choose high risk expected returns (ρ = −0.05) and decreases as the confidence level ω for relatively
conservative expected returns (ρ = −0.01). It is not hard to understand this phenomenon, because both ρ and ω can
reflect the investors’ attitude to risk. Too high risk or a conservative portfolio may not be the best Sharp ratio portfolio. The
result in Fig. 1 suggests that in order to get a portfolio with good MSR, one may choose either a relatively small ρ and large
ω or a relatively large ρ and small ω.

In the following Figs. 2–4, we give the comparisons of the worst-case return and diversification number of the resulting
portfolio4 of model (R1) with those of model RGI in [8]. The worst-case return in the three figures is τ that is the resulting
maximum value of the objective function in problem (6.22).

The following observations can be obtained from the three figures. (1) For a fixed value of ρ, the worst-case returns of
two models decrease and diversification numbers of resulting portfolios increase as the uncertainty set becomes larger, i.e.
when the value of ω increases. It is clear that a larger value of ω indicates that the investor is more conservative and will
select a portfolio to diversify market risks. (2) For a fixed value of ω, the worst-case return of two models also decrease and
diversification numbers of resulting portfolios increase as the preset value of parameter ρ increases from −0.05 to −0.01.
This is because, as mentioned above, the parameter ρ is used to reflect risky tolerance of investors. A value of ρ close to zero

2 ρ here is corresponding to α of problem (40) in [8]. The returns rate r of risky assets in our framework express the gross returns rate per annum, instead
of the pure returns used in [8].
3 The worst-case Sharp ratio

WCSR = min
(µ,V )∈Sm×Sv

(µ − rf en)Tw∗
(w∗)T (V T FV + D)w∗

is also used to measure the performance of optimal portfolio in [8]. But unlike the separable uncertainty set Sm × Sv in [8], we can not obtain directly the
worst-case Sharp ratio in joint uncertainty set S. Thus, for simplicity, we only compare the mean Sharp ratio which in fact can also reflect the performance
of the optimal solution.
4 See Definition 1 in [18] on the detail definition of diversification number of a portfolio.
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a b

Fig. 1. Comparisons of RLX1, RGI with RLU on the mean Sharp ratio. θ is the risk averse parameter of [17,18].

Fig. 2. Comparisons of RLX1 and RGI on the worst-case return and diversification number of resulting portfolio.

indicates that the investor is risk averse and hence, a portfolio with good diversification will be preferred to him. (3) The
model (R1) proposed by this paper generates portfolios with worst-case return and diversification number greater than that
generated by the model RGI of [8]. This is not surprising, since for a given value of ω, the confidence level of the ‘‘marginal +
joint’’ uncertainty set (Sµ, S) is exactly the same as ω, while the confidence level of the separable uncertainty set Sv × Sm
is much higher than ω. It can be observed from these three figures that for small values of ω, model (R1) is more robust
than model RGI, and that for large values of ω, model RGI displays overconfidence. Hence, the proposed ‘‘marginal + joint’’
uncertainty set possesses the advantages of both the separable uncertainty set Sv × Sm and the joint uncertainty set S.

7.2. Test results with real market stocks and simulated options data

In this subsection, data from the real stock market is used to test the performance of the proposed models. Tests are
performed by the following rolling-horizon procedure (RHP).
RHP:
1. Select n stocks and m market factors. Collect data of these stocks and factors, and then calculate on the return vectors r

of stocks and the return vectors f of factors. Partition these data into T equal periods, and each period contains p trading
days. Set t = 1.
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Fig. 3. Comparisons of RLX1 and RGI on the worst-case return and diversification number.

Fig. 4. Comparisons of RLX1 and RGI on the worst-case return and diversification number.

2. Estimate the following parameters using the data of p trading days in the t-th period.
(a) Evaluate the least square estimates x (i.e. µ and V ) using (4.2).
(b) Evaluate s2i , the estimation of variance σ 2

i of residual ϵi, using (4.3), set di = s2i (i = 1, . . . , n), and then calculate the
maximum likelihood estimate F on covariance matrix of market factors by the following formula

F =
1

p − 1


BBT

−
1
p
(Bep)(Bep)T


.

3. Give a confidence threshold ω,5 to set up both the joint ellipsoidal uncertainty set S and the corresponding marginal
uncertainty set Sµ using (4.1) and (6.1), respectively.

4. Solve SOCP problem (6.22) to obtain a robust portfoliowt for problem (R1).
5. Simulate prices of call and put options with mature in half a year using Black–Scholes formula [29] and calculate matrix

G and vector b in (3.3).

5 Setω = ω1/n , we can build the separable uncertainty Sm × Sv using (56) and (57) in [8], and the confidence level of Sm × Sv in fact is greater thanωn
= ω, see [8,17] for detail.
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Table 1
The stock codes of chosen 21 stocks from SSE50.

600,000 600,005 600,015 600,016 600,019 600,028 600,030
600,036 600,050 600,089 600,104 600,362 600,383 600,489
600,519 600,547 600,550 600,739 600,795 600,837 600,900

Fig. 5. Comparisons of model RLX1 and RGI on the average worst-case return and diversification number.

6. Solve SOCP problem (6.19) to obtain a robust portfoliow t for problem (R2).
7. Use wt and w t as investment strategies in the next period and calculate their results. Set t = t + 1 and go to step 2 if

t < T .

We select n = 21 stocks from Shanghai Stock 50 index (SSE50) in tests, and Table 1 lists the codes of these stocks.m = 5
market factors are considered consisting of Shanghai Stock index (SSE), Shanghai Stock 50 index (SSE50), Shanghai Stock
index 180 index (SSE180), Shanghai Stock A Share index (SSAS) and Shanghai Stock Industry Index (SSI). The collected price
time-series of these stocks and factors cover the period from May 8, 2006 to June 25, 2010 (a total of 1008 trading days).
The period is then partitioned into 8 subperiods of length p = 126 (half a year) so that there are 7 investment subperiods
in the test and each subperiod contains p = 126 trading days.

RHP is first applied to the 21 stocks data, and then comparisons of model (R1) with model RGI are performed on the
average worst-case return, average diversification number and wealth growth rate at each subperiod. Let wt be the robust
portfolio generated by solving model (6.22) based on the t-th subperiod data, τ t and N t(t = 1, . . . , 7) the resulting worst-
case return and diversification number. Then, the average worst-case return is calculated by (

7
t=1 τ t)/7 and the average

diversification number is calculated by (
7

t=1 N
t)/7. Assume that wt is used as the investing strategy over the (t + 1)-th

subperiod. Then the wealth growth rate ofwt over the (t + 1)-th subperiod is calculated by 
1≤k≤p


en +r t+1

k

T

wt
− 1, (7.1)

wherer t+1
k ∈ Rn is the k-th column of matrix rt+1

= [r t+1
1 , . . . ,r t+1

k , . . . ,r t+1
p ], the estimations of return rate r at the

(t + 1)-th subperiod.
Fig. 5 gives results of models RLX1 and RGI on the average worst-case returns and diversification numbers for fixed value

of ρ = −0.05. It can be observed from the figure that the average worst-case return of model RLX1 is greater than that of
themodel RGI, and the robust portfolio obtained frommodel RLX1 is fairly diversified. Results in Fig. 6 show that the wealth
growth rate generated from model RLX1 is greater than that generated from model RGI for all subperiods. Fig. 7 gives the
wealth growth rates of model RLX1 for different values of ω. It can be observed from the results in Fig. 7 that the variances
of the wealth growth rates in all investment subperiods decrease as the value ofω increases, and that robust portfolios with
relative steady and conservative returns can be obtained when the uncertainty set is enlarged.

The next test is performed for model (R2) and its SOCP approximation (6.19) (denoted by RLX2) based on real market
stocks and simulated options. It is assumed that there are 15 put and 15 call options which mature in half of year on each
stock, and hence there exist 21 stocks and 630 options available for portfolio selection. It is assumed that the price process
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Fig. 6. Comparisons of model RLX1 and RGI on wealth growth rate for ω = 0.95, 0.97 and 0.99.

Fig. 7. Wealth growth rate of model RLX1 for different ω.

S it , t ≥ 0 of stock i follows a geometric Brownian motion so that the well-known Black–Scholes foumula [29] can be used to
simulate prices of all put and call options and formulas (3.1) and (3.2) can be used to evaluate the elements of the vector b
and the matrix G in (3.3)

Let S it , t = 1, 2, . . . , 7 be the price of stock i at the beginning of the t-th investment subperiod (half a year), and
h = (110% – 95%)S it/14. Then the strike prices of all 15 put and 15 call options on stock i for the t-th investment subperiod
takes the values of 95%S it + kh, k = 0, 1, . . . , 14. Letr i

t denote the annual return of stock i in (t − 1)-th subperiod, and

µi
t = E[r i

t ], (σ i
t )

2
= var(r i

t )

be its expectation and variance. It follows from the factor model (2.1) that the expectation and variance can be computed
by the following equalities

µi
t = E[r i

t ] = µ i
t , (σ i

t )
2

= var(r i
t ) = V

T
tiFtV ti + dti, i = 1, . . . , n, (7.2)
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Fig. 8. Wealth growth rate of RLX2 for ω = 0.75, 0.85 and 0.95.

Fig. 9. Average diversification number of RLX2 on call, put options and stocks as a function of ω.

where µ i
t , V t , Ft and dti are estimated based on step 2 in RHP and (t −1)-th subperiod data, and V ti is the i-th column of the

factor loading matrix V t , then

µi
t =

1
2
µi

t , σ i
t = σ i

t


1
2

(7.3)

will be used in Black–Scholes formula to calculate prices c itj of call options and prices pitj of put options (j = 1, 2, . . . , 15)
used in t-th investment subperiod. While

r it = µi
t (7.4)

will be used in (3.1) and (3.2) to calculate the elements of the vector b and the matrix G that are used to build the robust
portfolio selection model for the t-th subperiod.

Fig. 8 gives the results of wealth growth rate obtained from RLX2 with real stocks and the simulated options. Letw t
= (wt ,w d,t) be the robust portfolio of stocks and options obtained from RLX2 at the t-th subperiod. Then the wealth

growth rate is calculated by 
1≤k≤p


en +r t+1

k

T

wt
+
r d

p

T w d,t
− 1, (7.5)

wherer d
p = max{0, bt+1

+ Gt+1r t+1
p } ∈ Rq. It can be observed by comparing results in Figs. 6 and 8 that the portfolio

generated by RLX2 is more robust than those generated by RLX1 and RGI, since the difference between the largest and the
lowest wealth growth rates in Fig. 8 is not greater than 0.05 while the same difference for RLX1 and RGI is not less 0.1 (see
the case of ω = 0.99 in Fig. 6). Moreover, results of Fig. 8 also show that robust portfolios generated by model RLX2 is not
too conservative. This is because the lowest wealth growth rate of RLX2 is not less 0.43 which is greater than the average
wealth growth rate of RLX1 exhibited in Fig. 7.

Fig. 9 exhibits the diversification numbers of the robust portfolios generated from model RLX2 as function of the
parameter value of ω. When investors assign a fair small value to ω, i.e. the uncertainty set is very small, model RLX2 will
generate a portfolio with either pure call options (ω ≤ 0.063) or call options plus stocks (0.063 ≤ ω ≤ 0.242). This is
not surprising, because a small uncertainty set implies that the investor expects a high return. It is known that the leverage
effect of call options guarantees a desired return when they mature in-the-money. It can also be observed from Fig. 9 that
the average numbers of call options in resulting portfolios decrease to zero as the value of ω increases close to 0.242. When
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the value of ω increases close to 0.311, components of resulting portfolios are changed from entire stocks to stocks plus
put options. Then the average volume of stocks and put options contained in resulting portfolios increase as the value of ω
continue to increase, and when the value of ω approaches 0.772, the average volume of stocks and put options contained
in resulting portfolios stays constant. This implies that a uncertainty set with value of ω ≥ 0.772, instead of an uncertainty
set with ω = 0.99 in model RLX1 and RGI, can be chosen for risk averse investors and the wealth growth rate of resulting
portfolio is still very robust.

8. Conclusions

A robust portfolio selection model under a ‘‘marginal + joint’’ uncertainty set is proposed in this paper. The model
processes the advantages of both the separable uncertainty set and joint ellipsoidal uncertainty set. Furthermore, one more
robust portfolio selectionmodel with option protection is proposed by combining options into the robust portfolio selection
model above. Convex programming approximations with LMIs constraints to both models are formulated. The proposed
robust portfolio selectionmodel with options can hedge risks and generates robust portfolios with well wealth growth rate,
when either an extreme event such as a market crash occurs or returns of stocks are outside of the uncertainty set. This
property of the model has been confirmed by tests on real data from the Chinese stock market during a period involving
October 17, 2007 when the SSE index had a large drop (over 200 points) and simulated options.
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Appendix

Nowwe give the duality of problem (6.19) by introducing some dual variables. The dual variables and their corresponding
constraints in problem (6.19) are listed in Table A.1, where Y 1

11, Y
2
11 ∈ R and Y 1

22 ∈ R(m+1)n×(m+1)n, Y 2
22 ∈ Rn×n, xi =

(xi1, (x
i
2)

T )T with xi1(∈ R) ≥ 0, xi2 ∈ Rn satisfying ∥xi2∥ ≤ xi1 (i = 1, 2), that is,

xi ∈ socp(n + 1) =

x = (xi1, x
i
2, . . . , x

i
n+1)

T
∈ Rn+1

:

n+1
k=2

(xik)2 ≤ xi1

 , i = 1, 2.

Then the dual problem of (6.19) is given by

min
x1,x2,x3,x4,Y1,Y2

2ρY 1
11 + x41

s.t. 2W TY 1
12 − 2Y 2

12 − D1/2x12 − Sx22 − µx31 + x24 ≥ 0
−2bY 1

11 − bx31 − Gx42 ≥ 0
λ0F ⊙ Y 1

22 − Y 2
22 = 0

−


η uT

u R


· Y 1

≥ 0

enx41 − x42 ≥ 0, eqx31 − x32 ≥ 0

−
1

√
κ
x21 + x31 ≥ 0, −Y 2

11 + x11 ≥ 0, x31 ≥ 1

Y 1
≽ 0, Y 2

≽ 0, x1, x2 ∈ socp(n + 1), x3 ≥ 0,

(A.1)

where

W =



1 0 0 · · · 0
0m 0m 0m · · · 0m
0 1 0 0 0
0m 0m 0m · · · 0m
...

...
... · · ·

...
0 0 0 0 1
0m 0m 0m · · · 0m


is an n(m + 1) × n matrix and
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Table A.1
The constraints of (6.19) and its dual variables.

The constraints of (6.19) −→ Dual variables
θη − 2(ρ − bT y) θuT

+ vT

θu + v θR − λ0X ⊗F


≽ 0, −→ Y 1
=


Y 1
11 Y 1

12
Y 1
21 Y 1

22


≽ 0

τ1 φT

φ X


≽ 0, −→ Y 2

=


Y 2
11 Y 2

12
Y 2
21 Y 2

22


≽ 0

∥D1/2φ∥ ≤ τ1 −→ x1 ∈ socp(n + 1)
√

κ∥Sφ∥ ≤ τ2 −→ x2 ∈ socp(n + 1)

τ + τ2 − φTµ − bT y ≤ 0 −→ x31 ≥ 0
y − wd

≤ 0 −→ x32(∈ Rq) ≥ 0

eTnw + eTqw
d

= 1 −→ x41 ∈ R
φ − w − GT y = 0 −→ x42 ∈ Rn

τ ≥ 0, τ1 ≥ 0, τ2 ≥ 0,
w ≥ 0,wd

≥ 0, y ≥ 0, −→ x5(∈ R2(n+q)+4) ≥ 0
θ ≥ 0, φ ≥ 0

F ⊙ Z :=


F · Z11 · · · F · Z1nF · Z21 · · · F · Z21

...F · Zn1 · · · F · Znn

 ∈ Rn×n

Z = (Zij) with Zij ∈ R(m+1)×(m+1) for i, j = 1, . . . , n, andF =


0 0Tm
0m F


.

The following theorem indicates that problem (6.19) and its duality (A.1) satisfy the strong dual theorem and is solvable
using some existing primal–dual interior algorithms.

Theorem 1. Let ω ∈ (0, 1), θ > 0. If F ≠ 0 is positive semi-definite and the matrix A = (ep, BT ) is full column rank, then
problem (6.19) and its dual (A.1) are both strictly feasible and satisfy the strong dual theorem, i.e. they are solvable and the duality
gap is zero. �

The proof of this theorem is similar to that of Theorem 4.5 in [17], and hence is omitted here.
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