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We construct a.s. nonlinear regression representations of general stochastic processes (Xn)ntlhl. As a 

consequence we obtain in particular special regression representations of Markov chains and of certain 

m-dependent sequences. For m-dependent sequences we obtain a constructive method to check, whether 

these sequences have a monotone (m + I)-block factor representation. 
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1. Markov regression and standard representation 

Let X = (XlnEN be a stochastic, real-valued process. The aim of this section is to 

construct two types of a.s. regression representations of X by an i.i.d. sequence 

( U,I). One representation is of the form X,, =f,(X,, . . . , X,_, , U,,) a.s.; we call this 

representation ‘Murkov regression’ (on X). A second representation is of the form 

XlI=fn(U,,..., U,,) a.s.; we call this regression representation ‘standard representa- 

tion’ (on U). These constructions are the counterpart for autoregressive representa- 

tions in time series analysis. Here we obtain a nonlinear representation of X,, of 

the past and of innovations U,, (which are independent and not only orthogonal). 

We need a technical proposition about quantile transformations to construct 

standard representations. We write A for the Lebesgue measure and F_(t) := 
lim,?, F(s). 
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Proposition 1 (Ferguson, [3, Lemma 1, p. 2161). Let X be a real random variable 

with distribution function Fand let U be independent of X, R(0, 1)-distributed (R(0, 1) 

is the uniform distribution over the interval (0, 1)). Dejine for a E (0, l), 

&x, a) := P[X < x] + aP[X = x]. (1) 

Then 

F(X, U) 5 R(0, 1) ($ is equality in distribution), (2) 

F-‘(U) 2X (F-‘(t):=inf{s: Fat}) (3) 

and 

X = F-‘&X, U)) U.S. (4) 

Since a proof of this result seems to be not easy accessible in the literature, we 

provide a proof of this well-known result. 

Proof. Let D c R denote the set of discontinuities of F, then 

P[&X, U)EA] 

= P[ F(X, U) E A, X E D] 

+P[F(X, U)EA,XED’]P[F(X, U)EA,XED] 

= 1 P&x, U)EA]P[X=X] 
rrl> 

= 1 P[F_(x)+U(F(x)-F_(x))EA](F(x)-F_(x)) 
ri D 

= c A(A n (F-b), F(x)11 
F(x) - F_(x) 

(F(x) - F-(x)) 
li 1, 

= C h(An(F_(x), F(x)])=A(AnD), 
It I> 

where fi:= U,, I, (F_(x), F(x)]. Further (D’ is the complement of D) 

P[F(X, U)EA,XED=]=P[F(X)EA,XED~]=A(A~D’). 

In the proof we used that U and {X = x} are independent for all x E D. We conclude 

that 

P[F(X, U)EA]=A(AnD)+A(Anfi’)=A(A) 

and this proves (2). 

From the definition of the pseudo-inverse follows 

P( F-‘( I/) S t) = P( LJ S F(t)) = F(t) = P(X S t) 

which proves (3) and 

{F-‘(F(X, U))S t}={p(X, U)S F(t)}={XS t} as. 

which proves (4). 0 
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The as. representation in (4) has some useful applications in stochastic ordering 

[ll]. If F is continuous, then F(X, U) = F(X). 

We next consider the multivariate generalization of Proposition 1. Let X = 

(X1,. . . , X,,) be a random vector in Iw” and let F,, F2,,, . . . , F,, ,,,.,,, )_, denote the 

first marginal distribution function respectively the conditional distribution function 

of X, given X, , . . , X,_, Let V,, . . , V, be i.i.d. R(0, 1)-distributed random vari- 

ables and define the multivariate quantile transform 

Y, := F;‘( V,), 

YL:=F,,; ,,,,, k-,(VhlY ,,..., YA_,), 2sksn. 
(5) 

For this transformation see [8, 9, lo] and [ll]. Note that Y = (Y,, . . . , Y,) is 

of the form f(V) with V=(V,,..., V,), where the ith component J;( V>= 

f;(V,,..., V). 

Proposition 2. (a) X 2 Y. 

(b) There exists an i.i.d. R(0, I)-sequence U = (U,) ,_ ;- n such that 

x =f( U) U.S., as dejined above. (6) 

Proof. (a) The proof of (a) in the case n = 2 is as follows: 

P(Y,ca, Y7~b)=P(Y,~a,V,~~Fz,,(bIY,)) 

I 

LI 
z P( VI< Fz,,(bl t)) dF,(t) 

.x 

I 

a 
= Fz,,(blt) dF,(t) 

-x 

= P(XI s b, X, 4 a). 

The general case follows by induction. 

(b) Sincef( V) z X we obtain from Proposition 1 in [7] the existence of a measure 

preserving transformation cp : (f&Z) + (0,X) such that 

X =f( U) a.s. (7) 

where U, = V, 0 cp, 1 i i G n, are again i.i.d. R(0, 1)-distributed random variables. 0 

Skorohod (1976) proved for random variables X, Y with values in Bore1 spaces 

and a given R(0, I)-distributed random variable V independent of X, Y the existence 

of a random variable U and measurable functions J; g such that 

X =f( Y, U) a.s., 

U = g(X, Y, V) is independent of Y 
(8) 

The following theorem extends this result to stochastic processes. Furthermore, in 

the case of real stochastic processes we obtain an explicit representation. 
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LetX=(X,,X2,. . .) be a real valued stochastic process and let V = ( V, , Vz, . . .) 

be an i.i.d. sequence of R(0, 1)-distributed random variables, V independent of X. 

Define 

U, := P,(X, , V,) (F, as in (l), F, distribution function of X,), 
(9) 

2, := FY’( U,), 

and let for kz2, 

Fk ,I,.., r_,(x,vlz I)...) z,_,):=P(X,,<xlZ,=z ,,..., zk_,=z~_,) 

+vP(x,=x~z,=z ,,‘.., Zk-,=Z~_,), 

U,:= FL,, ,..., LL,(XL, VA&. . . ,.%I), 
(10) 

z, := F,,,L~,( U!? lz, 9 . . . 9 -%I), 

where Fkl ,,.,,, I-, is the conditional distribution function of X, given X, , . . . , X,-, . 

Theorem 3. Ler Z = (Z, , Z,, . . .) then : 

(a) Z = X a.s. 

(b) U=(u,, &,. . .) is an i.i.d. R(0, 1)-distributed random sequence. 

(c) U, and (X,, . . . , X,_,) are independent. 

We call the representation X, =f,( U,), X,, =fk(X,, . . . , XI-, , U,) in (9), (lo), 

Markov-regression representation of X. 

Proof. The equality Z, =X, follows from (4). We continue by induction on k. 

Assume that (Z,, . . ., Z,)=(X,, . . . ,X,) a.s. Since P(,‘I+, lz,~~;,,....z~-~;~) is R(0, 1)_ 

distributed for all z, , . . . , zh we have that r/,+, and (Z,, . . . , Z,) = (X,, . . , X,) a.s. 

are independent. 

From 

{Z,+, +={E,:,,, ,.., &J,+,lZ,,...,Z,)=I 

={u,+,~F,+,l,,...,~(rIZ,,...,Z,)} 

={6+, ,I,.., ,(X,+,,V,,,/Z,,...,Z,)~F,+,,, 1.. ,(r\Z,>...,Z/J) 

= {X,+, s t} as. 

we conclude that XL+, = Z,,, a.s. Because U,, , and (X, , . . . , X,) are independent, 

we have that U,,, and U,, . . . , U, (functions of X,, . . .,X,, V,, . . , V,) are 

independent. 0 

The existence of a Markov regression representation for processes with values in 

Bore1 spaces is immediate from Theorem 3 (but is nonconstructive). 
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In the case that (Xn)ntN is an m-Markov chain (for some m EN), i.e. the condi- 

tional distribution of X,,,,,, given the past {X,, . . . , X,,,,,} only depends on 

{X,+1,. ‘. , XT+, } the Markov regression representation in Theorem 3 specializes to: 

Corollary 4. Let X = (X,,) be an m-Markov chain. Then there exists an i.i.d. sequence 

U=(U,, u,,.. .) of R(0, 1)-distributed random variables and a sequence of measur- 

able functions (fn) such that 

X, =sn(X,-,,, . . . , X,_, , U,) a.s. (n 3 m + l), 

U,, independent of (X,, . . . , X ,,_, ). 0 
(11) 

For the case of a Markov chain (m = l), see [6, p. 1551. By Theorem 3 the method 

of pathwise constructions of stochastic models is equivalent to constructions in 

distribution. One can characterize further distributional properties as in Corollary 

4. E.g. if (X,) is a Markov chain and a martingale, then X, has a representation 

X, =fn(X,-, , U,,) with JAfn(x, U) du =x for all x. 

The following alternative construction of a standardization sequence U = 

(U,, U,,. . .) of X = (X,, X,, . . .) will be of interest in connection with m-dependent 

sequences. This i.i.d. sequence U is a.s. equal to the sequence U in Theorem 3. We 

will explain this in Remark 16. 

Let V=(V,, V,,.. .) be an i.i.d. R(0, I)-distributed sequence independent of 

X=(X,, x,, . . .). Let G, be the distribution function of X, and define 

u, := G,(X,, VI), 

f-J,:=&, ,.,./ k-,(X, ~bJ,>..., U,-,) (kzz), 
(12) 

where GI,i,, ..,k_, is the conditional distribution function of X, given (U, , . . . , U,_,). 

The functions G are associated to G as in the proof of Theorem 3. Similarly to the 

proof of Theorem 3 we obtain: 

Theorem 5. (a) ( U, ) is an i.i.d. R(0, 1) -sequence. 

(b) X, = G;‘( U,), 

X,=G,,: ,..., k-,WIU,,..., U,p1). 0 
(13) 

We call the representation in (13) the standard representation of X. 

If for some m EN, 

G h+m+lII... ,~+m(t~+m+, It,, . . . , fh+,n) =&c+m+,(h+,, . . . , him+,). (14) 

i.e. the conditional distribution of X,,,,,, given U,, . . _ , U,,,,, depends only on 

U !%+I,.... U I, + ,,I 9 we say that X has m-Markov regression on U. 

Corollary 6. Zf X has m-Markov regression on U, then X is a generalized (m + 1 )-block 

factor, i.e. (X,,) has the representation 

X, =f;!( U,,-,,,, . . , U,,-, , U,,) a.s., n>m+l. 0 (15) 
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An interesting problem in probability theory is to find simple sufficient conditions 

for the existence of an (m + 1)-block factor representation as in (15) (cf. [13]). 

2. Markov chains and m-dependence 

A process (X,,) is called m-dependent (m EN) if (X,,),,. , and (X,), _,+,,, are indepen- 

dent for all t EN. It is trivial that a generalized (m + l)-block factor (X,) = 

(A!( u,,, u,,+, >. . . ? U,,+,,)) a.s. of an i.i.d. sequence (U,) is m-dependent. 

For quite a time it was conjectured that every stationary m-dependent process 

has a representation as (m + 1)-block factor (f( U,,, . . , r/l,+,)) (here J;, is indepen- 

dent of n !). In [2] a two-parameter family of counterexamples is given of stationary 

one-dependent processes, assuming only two values, which do not have a two-block 

factor representation (f( U,,, U,,,,)) of an i.i.d. sequence (Cl,,). It was shown in [4] 

that certain extremal O-l valued one-dependent stationary processes have a two- 

block factor representation while in [l] it was shown that a stationary one-dependent 

Markov chain with not more than four states has a two-block factor representation. 

There is a counterexample for five states. 

In addition to the results on Markov chains in [I] it is proved that one-dependent 

renewal processes are two-block factors. It will be shown next that a symmetry 

condition implies that one-dependent Markov chains are already independent. 

Proposition 7. Let (X,) be a stationary, one-dependent O-l valued Markov chain. 

Then (X,,) is an i.i.d. sequence. 

Proof. We use the short notation 

[a,. . . a,,] := P[X, = a I,“., x, = %I. 

From [0] = [00] + [Ol] = [00] + [lo] follows that [Ol] = [lo]. In our formulas we use 

the convention O/0=0. By the stationarity, the one-dependence and the Markov 

property we have 

Thus we obtain 

=[a,,]‘-2[a,,]‘+[a,]“=O. 

This implies [ Q~u,]/~ = [ uh]m f or all a,al, which is equivalent to [~~a~] = 

[a,][~,]. Combined with the Markov property this implies independence. 0 
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Remark 8. From the proof it follows that the statement of the proposition also holds 

for one-dependent Markov chains with countable state space under the condition 

[a,aJ=[aZa,] for all a,, u2. 

For any two-valued stationary one-dependent process we have a much stronger 

reversibility property: 

Proposition 9. Let (X,,), be a stationary one-dependent O-l valued process. Then 

[a, ’ . . &I = [a, ’ . . a,] for all n and all a,, . . . , a, E (0, 1). 

Proof. For n = 2 the statement follows from [0] = [00] + [Ol] = [00] + [IO], hence 

[Ol] = [lo] as in the proof of Proposition 7. We use induction on n. We write 

[1”]:=[12]. 

m times 

Assume that the statement holds for n, then for n + 1 we denote the number of 

zeroes in w = a, . . f a,~,,, by n,(w). We continue by induction on no(w). 

If no( w) = 0 then the statement is trivial. Assume that the statement holds for n, G k. 

Ifn,,(w)=k+1>Othenw=1”0vforsomem~O.Then 

[a, . . a?&,+, ]=[l”Ov]=[l’“][v]-[l”“‘U] 

= [l”‘][u,+, . . . a,,,] -[l’“+‘um+* . . . a,,,,] 

= [a,,, . . . u,+,][l”‘]-[a,,, . . * um+21’n+‘] 

= [a ,,+, . . * %,+z Ol”‘] = [a,,+,&. . . a,] 

which proves the proposition. 0 

The statement of Proposition 9 does not hold for one-dependent processes that 

assume three or more values. If the condition [u,uJ = [~~a,] for all a,, uz does not 

hold, then the statement of Proposition 7 is no longer valid as the following example 

shows. 

Example 1. Let (U,,),, be a Bernoulli sequence with P[ U,, = l] = p = 1 - P[ U,, = 0] 

for some PE (0, 1). Define the two-block factor (X,,),, by 

x, =zu,+ u,,,,. 

It is easily checked that (X,), is a one-dependent Markov chain with state space 

(0, 1,2,3} and transition matrix 

1-P 
0 

1-P 
0 

and apparently 

P 0 0 

0 1-p P 

P 0 0 0 1-P P 1 

(X,,),, is not an i.i.d. sequence. 
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Under a symmetry condition we prove a general version of Proposition 7. 

Proposition 10. Let (X,), be a stationary, one-dependent real Markov chain and 

assume that 

p(X,.X,) = pcx,.x,)~ (16) 

Then (X,,), is an i.i.d. sequence. 

Proof. Let f: [w+ (0,l) be one to one measurable, then Y,, :=f(X,,) also 

is a one-dependent Markov chain and (E Y,)’ = E( Y, Y3) = E[lE( Y, Y3 1 Y*)] = 

QE( Y, I Y&G Y31 Y2)l. S’ mce E [ Y, 1 YJ = g( YJ for a measurable g we can continue 

by using the stationarity and (16), E(g( Y,)E[ Y3 1 YJ) = Eg( Yz) Y3 = Eg( Y,) Yz = 

Eg( Yz) Y, = E(g( Y,)E[ Y, 1 YJ) = EZ’, where Z = E[ Y, 1 Y,]. Therefore EZ = E Y, 

and (lEZ)‘= E(Z’) imply that Z = EZ a.s., i.e. 

E(f(X,) If(X,) = t) = Ef(X,) [P’Cx2’ a.s.] 

equivalently 

E(f(X,) I X2 =f-‘( t)) = iEf(X,) [ Px2 a.s.1. 

Since this holds for all f we obtain independence. 0 

We leave it as an exercise to the reader to prove that the assumption P’x13xz’ = 

P(x23xl) is equivalent to reversibility of the Markov chain, i.e. Pcx~,..-3x,,’ = P(cx,~3...3xl’ 

for all n. Of course X, could take also values in a Bore1 space. By a modification 

of the constructions in section one we next show that one-dependent Markov chains 

have a three-block factor representation. 

Theorem 11. Let (X,), be a real Markov chain. Then there exists an R(0, 1)-sequence 

(Lm), and a sequence of functions g,, such that U,, is independent of 

X,, . . * 9 X,_, , X,,, , . . . and 

X, = g,(U,, X,-I 9 X,+,). 

Zf (X,,), is additionally one-dependent, then there exists an independent sequence ( Y,,),, 

and a sequence of functions (fn), such that X,, is a three-block factor of (Y,,),,, 

XII =f,( yn-2, Y,P, 3 Yn). 

Proof. Let F, be the distribution function of X, and let Fnl,_,,n+, (n 2 2) be the 

conditional distribution function of X, given X,_, , X,,,, . Define U, := F,(X,, VI) 

and (n 32) U, := ~~,,-,,n+,((Xn, V,,)lXn_,, X,,,), where (V,,) is an i.i.d. R(0, l)- 

sequence independent of (X,,), . 
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Because(CJ,~X,~,=x,_,,X,,+,=x,,+, ) is R(0, l)-distributed for every x,_, , x,,+, , 

the Markov property implies that U,, is independent of (X,, . . . , X,_, , X,,,, , . . .). 

Analogously to Theorem 3 we have 

X, = K&l,,+, (u,IX,~,,X,+,):=gn(U,,X,-,,X,+,). 

Define Y, := X,, Y,, := (Xzn_, , U2n_Z) (n 2 2) and we obtain 

X, =fi( Yl), X? =f2( YI, YJ, x3 =a Yd, 

x2, =h,( yn, Yn+,), xzn+, =hn+,( Yn+,), n 2 1. 

If (X,,) is one-dependent, then ( Y,,), is an independent sequence. We can make a 

decent three-block factor out of this sequence by taking some i.i.d. R(0, l)-sequence 

( 7’N)N that is independent of X, Y and U. Define the process (Z,)N by 

Z,,+, := TN+, , N 10, 

Z,, := YN, N 3 1. 

It is trivial that 

XN = hN (ZN, -TV+, , G+*) 

for measurable functions h,. q 

Remark 12. From the last proof follows that every one-dependent Markov sequence 

of length 3 is a two-block factor of an i.i.d. sequence. 

3. Standard representation and m-dependence 

In this section we want to prove a partial converse of Corollary 6, namely if (under 

some assumptions) (X,) has an (m + 1)-block factor representation, then (X,,) has 

m-Markov regression on the standard representation U in (12). In this way we 

obtain a constructive method to check the possibility of an (m + 1)-block factor 

representation for some subclasses of m-dependent sequences. This also justifies 

the notion of standard representation for (12), (13) and implies that the standardiz- 

ation U in (12) is the right standardization for the (m + 1)-block factor representation 

problem. We shall deal explicitly with the case m = 1. We begin with the following 

example. 

Example 2. Let V = ( V,,)ncN be an i.i.d. R(0, l)-distributed sequence and define 

X, = V,, X, = V++ V, (n 22). Then (X,,)nEN has a two-block factor represen- 

tation on the standardization ( V,,)ncN. We consider the standardization (U,,), 

of (12). Obviously U, = X, = V, . Furthermore, 6,1,(x, ZI 1 v,) = P[X, 5 x 1 V, = u,] = 

P[V,SX-v,]=x-v,, v,~x<u,+l. So U2:=&,(X2, V,lU,)=X,-V,= V,. By 
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induction we obtain in a similar way U,, = V,, Vn, i.e. our standardization (12) 

produces the right standardization leading to the two-block-factor representation 

x,=v,,x,,=v,, ,+v,, (na2). 

Generalizing this example, we say that .f,( V,),,f?( V, , V,),f?( V,, V,), . . . is a 

monotone two-hlock,factor, if f, ,,f;( U, . ) are monotonically nondecreasing for all i, v. 

Obviously the standard representation (13) has a monotonicity property as defined 

here; so this assumption is necessary if the two-block factor representation is identical 

to the standard representation. 

Theorem 13. Assume that X, =f,( V,) U.S., X,\ =fj( V, ,, V,) as. has a monotone 

two-block factor representation and assume that all (conditional) distribution functions 

G, 1 GAIL,-, in (13) are continuous, then the standardization U in (12) is identical 

to V and the standard representation (13) gives the two-block factor representation. 

Proof. Since G, = G, and GI,, ,,,,., A_, = G,, ,,,,., A_, we obtain from (12), (13), 

u, = G,(X,), 

where 

G,(x) = P(X, s x) = P(f,( V,) s x) = P( V, s g,(x)) = (g, =f;‘) = g,(x) 

and, therefore, 

U,=g,of,(V,)= V, a.s. 

u,= Gz,,(X21 V,), 

where 

G>/,(+,)=P(f20’,. V&xlV,=%) 

= KA(v,, V,) d x) = P( v, s g,(v, , x)) 

=gz(v,,x) (g2(v,;)=fZ’(v,,.)). 

Therefore, 

U2=g2(V,,.L(V,, VA)= VZ, 

G~,,~(xIv,,~~)=P(~;(V*, V,)~xlV,=u,, Vz=vJ 

= KA(v2, V,) s x) = g,(vz, x) 

implying that 

&=g3(Vz,A(V2, V,))= V, as. 

The general case now follows from induction. So we obtain that our standardization 

yields the right standardization for the two-block factor representation, which is 

obtained by (13), since obviously using U = V as. 

G LI,,.. ,A&,(. I u/1 9 . . . 3 U,-,I= Gkl I,..., k-d.1 V,, . . . , V,-,) 
= GI,,,,-,(.~ v,-1). 0 
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If the conditional distribution functions GA,,,...,,_, are not continuous, it is not 

possible to reconstruct (V,) from X = (X,). We next show that the standardization 

(12), (13) can be applied to a version x of X. 

Theorem 14. If X has a monotone two-block factor representation X = f( V) U.S., then 

there exists an i.i.d. R(0, 1)-sequence (0) = ( ui) such that the standard representation 

of T? := f( 0) reproduces ii and T? = f( a). 

Proof. Let f,, fk( uk_, , .) be monotonically nondecreasing for all k, z.+, with X, = 

fi(V,), &=h(V,-,, V,), ka2. 
Let (c) be an i.i.d. R(0, 1)-distributed sequence independent of (V,) and consider 

the standard representation (12), with a, := G,(X,, v,), where 

&x,CY)=P(X,<x)+aP(X,=x) 

=P(f,(V,)<x)+aP(f,(V,)=x) 

=P(V,<f,‘(x))+aP(V,Ef,‘{x}) 

=f I’(x) + ah (f Y’{xl); 

f;‘(x)=inf{y:f,(y)~x}, fl’{Xl={Y:f,(Y)=xl. 

Therefore 

u, =fl’ ofi( cw,-‘u-,( V,)l) =f r’(X,)+ V,h(f r’{X,l). (17) 

Define Xi := f,( 0,) =X,, Xi:= f2( I??, , V2) then (I?,, V,, V3,. . .) are i.i.d., R(0, I)- 

distributed and 

x”‘:=(x:,x;,x,,x, )... ):(x,,x,,x,,x, ,... )=X. 

In the next step consider 

~~,,(X,LY~U,)=P(X~<x~U,=u,)+aP(X~=x~U,=u,) 

= P(f?(& 9 V*) < x) + aP(f2(4 1 V2) = x) 

=P(V,<f;‘(u,, X))+(YP(V7E{fr’(U,,X)}) 

=f2’(1(,,X)+“Yh({f2’(U,,X)}) 

the generalized inverse is taken w.r.t. the second component. Then our standard 

construction gives 

U*:= &((Xi, V1,I 0,) 

=fz’(fl,,f*(u,, Vd)+ Vd({fY’(U,,f,(U,, VA)) 

=f Y’( a,, Xi) + VzA({f ,‘( G, Xi)}). (18) 

Since (0,) u,) are functions of (V,, v,, V,, v2) the sequence (fi,, l??, V,, V,, . . .) 

is i.i.d., R(0, 1)-distributed. Define 

X’2’:= (f,( Gjl),f2( 01, U2),.fJ G2, VJ),f4(V3, VA. . .) (19) 

then X”’ z X. 
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We apply our standard construction to the third component Xi:=f;( I!?,, V3) of 

XC2’ to obtain r/3 := &‘,i,,,((Xj, V,) 1 l?, , ii,), where 

&,Z(X, fir I UI 7 u2) = Ju( u2, V,) <x I 0, = Ul, G = 4 

+ cxP(J;( u,, V,) = x 1 (U, = u,, 0, = u2) 

=P(V,<f,‘(u,, x)) + a v3 E u-;‘(Uz, x)1). 

Therefore, 

G=f,‘(G,J;(G, v3))+ m(K’(~2,“fdG, V,)))). 

Again ( l?, , C?, , f13, V,, V, , V, . . .) 2 ( V, , V,, V, , . . .) and 

X”‘=(f,(G),.L(G, rsr,),h(U2, G)Jm, V4),_G(V4, VA. ..) 5 x 

and we can continue this process by induction. Thus we obtain that for a version 

X of X we have the two-block-factor representation 

X,=f,(U,), X2=“6(% G), X,=./I@,, G),..., (20) 

where the (0,) are obtained from our modified standardization process. 

Next we apply the standardization (12) to X to obtain 

U,:= 6,(X,, V,)=f;‘(X,)+ V,A(f;‘({X,})) 

=fr’(fi(u,))+ ~,~(.I-I’U”,(G)H 

=fr’(X,)+ V,A(fY’(X,)) = fi,, 

i.e. the standardization reproduces u,. In the next step 

u2= ~2,,((~,, %)I U,) = 02, 

u, = G,,,,((%, V,) I u, , U2) = ~,,,,2((-% v3) I u,, m = G, 

and so on. 0 

So in general from the two-block factor representation X =f( V) we construct by 

a modification of the standardization procedure a version X of X with a two-block 

factor representation X =f( 0). The standardization (12), applied to this representa- 

tion reproduces 0 i.e. U = iJ and (13), our standard regression representation, 

reproduces this two-block factor representation of X. 

Remark 15. Obviously a result similar to Theorem 13,14 also holds for (m + l)-block 

factor representations. While Theorem 13 is constructive, Theorem 14 indicates the 

applicability of the standard construction to a (not known) version of X. 

Remark 16. The i.i.d. sequence U in Theorem 3 is a.s. equal to the i.i.d. 

sequence U in Theorem 5. The proof is essentially the same as the proof of 

Theorem 13. We leave it as an exercise to the reader. The consequence of this 

observation is that the Standard Representation X,, =f,(X, , . . , X,-, , U,) can 

also be obtained by iterating the Markov Regression X,, = gn( CJ,, . . . , U,); 

X2=.&(X,, U,)=fi(h(U,), U2)=g2(U,, U2) and Xj=h(X1,X2, G)= 

.Kh( U,),f,(.f,( U,), U2), Ud = g3( UI, U2, f-4) etc. 
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The question now is: how restrictive is the assumption of a monotone two-block 

factor representation? 

Example 3. (a) Let (V) be an i.i.d. R(0, I)-sequence and consider the two-block 

factor X, = V,, X1 = V, - V,, X, = V, - V,, . . . . We obtain a monotone two-block 

factor representation by defining U, = V, , U, := 1 - V, i 3 2. Then 

X, = U, , x,=u,+lJ-1, x,=u,-u,, x,=u,-r/, )...) (21) 

is a monotone two-block factor representation. 

(b) IfX,=V,,X,=(V,-$)V,,X,=(V,-f)V, . . . . thendefine 

Ul = VI , u, = 1 v, if V,_,a$, 
i 3 2. 

1-V if V_,<f, 

It is easy to check that (U,) is an i.i.d. R(0, 1)-sequence and we obtain the monotone 

representation (in distribution) X of X, 

x,=f-J,, , x_= (U;-,-9U 
{ 

if U,.,Z$, 

(U,_,-$)(1-U,) if U,_,<$, iZ22. 
(22) 

(c) If more generally than in (b) X, =f,( V,), X, =A( v_, , V,), f, t and for all 

V,P I, i,J;(ui-,, .) is either monotonically nondecreasing or nonincreasing (i.e. 

f;(v,-,;)t for v,_,E VT andf;(Vi_,, . ) J for zli_, E V,) then define a sequence 

u, := v, ) u, := v, { 
if LJ_,E VT, 

iZ2. 
1- V, if U,_, E V,, 

Then (U,) is an i.i.d. R(0, I)-sequence and with g, =f,, 

S,(S?, , vr> = 1 f;(S- I3 vt) if v,_, E VT, 

.L(L,, I- 0,) if vtml E K, 

the sequence g,( U,), gz( U, , U,), . . . has the same distribution as X. Therefore, X 

has a monotone two-block factor representation. 

For the general question we use the following proposition. 

Proposition 17. Let (V,,) be an i.i.d. R(0, l)-sequence and X, =f,( V,), X,, = 

fn(Vn--,, Vtl), n 2 2, a generalized two-block factor. Furthermore, let (v,) be an i.i.d. 

R(0, 1)-sequence independent of (V,). Then thereexist an i.i.d., R(0, I)-sequence (U,), 

U,, = h,,( Vn-,, V,,, e,) independent of (V,, . . . , V,,_,) and functions (g,,) such that 

X, =g,(U,), X,,=gn(V+,, U,,), na2, and 

g,,gn(on-,,.) monotonically nondecreasing Qn, v,_, . (23) 

Proof. Let G, be the distribution function of X, and let G,,._k,,,..,_, be the conditional 

distribution function of X,, given VnmL, . . . , V,_, . Define 

u, := 6,(X,) v,,, 

un := G’,,, n-l (X,, vn/V,,..., Vn-,), nz2. 
(24) 

. . 
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Since the conditional distribution of U,, given V, = u,, . . . , V,_, = ZI,-, is R(0, 1) for 

all u, , . . . , v,_, we have that U,, is independent of ( V, , . . . , V,_,). Since U, = 

h,( V,, . . , Vhr v,, . . , v,), this implies that U, is independent of U,, . . . , U,,_, . 

From (4) we conclude that 

X, = G;‘( U,), X,, = C$,,.....AU, 1 V,, . . . , V+,), n 22. 

Actually, G,, ,,..., _, = G’,,,,_, since 

G n,, (., ,l~,(xI~I,...,~,,~,)=p(X,,~xl v,=u,,..., vn-,=%I) 

=P(fn(K,-I, v,,)~xlv,=v, ,... , v,,-,=%,) 

=Wi(v-,, K,)‘x)= G,,,-AxIzL,) 

(and similarly for 6 ,,I,,..,,,~,). So we have X,, = G$-,(U,,I V,.,)=g,?(V,-,, U,/,,), 

where g,, (u,, ~I , . ) is nondecreasing. q 

Obviously from (23) we obtain a monotone two-block factor representation if 

VI,_, = h( U,..,) for some function h. In genera1 we obtain the following weakened 

monotone representation property. 

Corollary 18. Let ( W,,) be an i.i.d. R(0, 1)-sequence independent of (V,,), (v,,) and 

let X, =A( V,), X, =A( V,-, , V,), i Z= 2, be a generalized two-block factor. Then there 

exists an R(0, I)-sequence u, = t?,( U,, V,, W,) such that 0, is independent of U, and 

X,=g,(U,), X,=g,(U,, a,, U,), X,=g3(U*, &, U,),..., 

where gl, du,, U,, ’ 1 are monotonically nondecreasing. 

(25) 

Proof. From Proposition 17 we have a monotone representation, X, = h,( U,), X, = 

h,,(V,,_,, U,,),n~2.Weapply(8)toobtain V,=g,(U,, U,)where l?,=&(U,, V,, W,) 

is independent of U,. Together we obtain (25). 0 

Generally, we can not assert that (U,,, V,) is independent of (V,, . . . , V,_,) (we 

only have separately the independence of U, respectively V,, of (V,, . . . , I’,_,)). In 

the case that (U,,, V,) is independent of (V,, . . . , V,_,) we obtain that in the 

representation (25) the sequence 

U,, U,, U,, U,,... is an i.i.d. R(0, 1)-sequence. (26) 

Example 4. Let (x) be an i.i.d. R(0, I)-sequence and let X, =( V, -$)‘, X, = 

V,_, . ( V, -$)‘, i b 2 be a generalized two-block-factor. Then the construction of (25) 

is the following: F,,(x) = 2&, g,(y) = ($y)’ and U, = 21 V, --$I. Let F; be random 

signs defined by E, = +l if V, z=$ and F, = -1, else, and define U, =21 V, -31. Then 

V, = :+te,U, (and we can formally write E; as function of an R(0, 1)-random variable 

a,). Obviously, (e,, U,) is independent of V,, . . . , V,_., and we obtain from (25) the 

weakened monotone representation 

x, =g,(U,), X,=(~+~F,U,)g,(UJ,. . (27) 
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Proposition 19. There exists a generalized two-block factor which 

monotone two-block factor representation. 
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does not have a 

Proof. Let (V,) be an i.i.d. R(0, l)-sequence and let Xi = 1 V, -41, X, = V,_, Vi, i 2 2. 

In order to show that (X,) does not admit a monotone two-block factor representation 

we apply Theorem 13. So we calculate the standardization (U,) from (12) and we 

show that the standard representation is not a two-block factor. Since G,(x) = 

P(X, 6 x) =2x, we obtain U, = 21 V, -41. Furthermore, 

i.e. 

,_1. 
[ 

2 v, v, 2 v, v, 

2 I+2(V,-~(n1+I-2(V,-:(A* . 1 
With some calculations we obtain 

1 -A 1 X [ 

2’ (l-U,)& 

X 1 

A l+(*+E,)U,n l I 
if u?s-- 

1+u,’ 
= 

1 1 

224-l 
if u2>- 

l-CM,’ 

From this we conclude that (X,) does not have a monotone two-block factor 

representation. 0 
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