Theoretical Computer Science 82 (1991) 51-69 51
Elsevier

On adaptive versus nonadaptive
bounded query machines™

Ker-I Ko

Department of Computer Science, State University of New York at Stony Brook, Stony Brook,
NY 11794, USA

Communicated by M.S. Paterson
Received August 1987
Revised January 1989

Abstract

Ko, K.-I., On adaptive versus nonadaptive pounded query machines, Theoretical Computer
Science 82 (1991) 51-69.

The polynomial-time adaptive (Turing) and nonadaptive (truth-table) bounded query machines
are compared with respect to sparse oracles. A k-query adaptive machine has been found which,
relative to a sparse oracle, cannot be simulated by any (2* —2)-query nonadaptive machine, even
with a different sparse oracle. Conversely, there is a (3-2%~2)-query nonadaptive machine which,
relative to a sparse oracle, cannot be simulated by any k-query adaptive machine, with any sparse
oracle.

1. Introduction

The comparison of adaptive and nonadaptive computation has bzen investigated
in many different forms. It is oiten observed that adaptive computaiion is more
powerful than nonadaptive computation, if certain restrictions are put on the
computational models. However, when we lift these restrictions, the comparison
becomes more difficult. Consider, for instance, the simple example of binary versus
linear search. Assume that we want to compute a function f(n) which has the
property that 1 < f(n) < n. Also assume that an oracle is available to answer questions
of the type “Is f(n) <c¢?” for any constant ¢. Then, an adaptive binary search can
{ind f(n) by making only [log n] queries but a nonadaptive search has to make
n —1 queries to the oracle to find f{n). However, if the oracle 1s more powerful and

* Research supported in part by the NSF Grants CCR-8696135 and CCR-8801575.

0304-3975/91/%03.50 © 1991—Elsevier Science Publishers B.V.

52 K.-1. Ko

can answer questions of the type “Is f(n)e S?” then a more clever nonadaptive
search can also find f(n) in [log n] queries. (For instance, if n = 16, then a nonadap-
tive search can be done by the following four queries: “f(16)€e{1,2,...,8}?",
“f(16)e{1,...,4,9,...,12}7", “f(16)€{1,2,5,6,9,10,13,14}?" and *f(16)e
{1,3,5,...,15}7)

In complexity theory, adaptive computation using a query type device is formally
modeled by polynomial-time Turing reducibility (<3-reducibility) and its counter-
part for nonadaptive computation is polynomial-time truth-table reducibility
(=<’-reducibility). There have been extensive studies on these reducibilities. We
review some of the recent results. Ladner, Lynch and Selman [11] first separated
<P.reducibility from <J-reducibility in the simplest form: there exist sets A and B
such that A <! B but A £} B. In addition, sets A and B are constructed to run in
deterministic time 2°™ (i.e., A, Be EXPTIME).

A more general comparison is to consider the reduction classes defined by sparse
sets under various reducibilities. Let r =T or tt, and € a class of sets. Define P,(€)
to be the class of sets A which are <!-reducible to sets in €. Let TALLY be the
class of all tally sets and SPARSE the class of all sparse sets. The class Pr(SPARSE),
which denotes the class of sets < 7-reducible to sparse sets, has played an important
role in recent studies of structural complexity theory. Among other results, Karp
and Lipton [8] provided an interesting characterization of Pr(SPARSE): it is
equivalent to the class of all sets which are computable by circuits of polynomially
many gates, or the class P/poly. Book and Ko [5] pointed out that this class is
equivalent to the class of sets <g-reducible to sparse sets: P/poly = Pr(SPARSE) =
P,(SPAKSE). Moreover, they are also equivalent to the classes Pr(TALLY) and
P(TALLY). Therefore, <¥-reducibility is no more powerful than <F-reducibility
as iong as oracles are restricted to be sparse.

In a more recent paper, Tang and Book [12] considered the equivalence classes,
instead of reduction classes, defined by sparse sets. For r=T or tt, and any class
%, let E7(%) be the class of sets A for which there exists a set S€ € such that
A<7S and S<!A. Tang and Book compared the classes EL(TALLY) with
EXTALLY), and showed that E W(TALLY) s EY(TALLY). (The question of
whether E{(SPARSE) = E5(SPARSE) remained open.) This result, together with
the result of Book and Ko [5], showed that the relative power of adaptive versus
nonadaptive query machines depends very much on the specific formulation of the
question.

In addition to the unbounded reducibilities <% and <?, the bounded versions of
these reducibilities have also been studied extensively. Let r be either T or tt. For
each integer k=1, we say that A is <] -reducible to B, and write A <} _ B, if A is
<'-reducible to B by an r-type query machine which, on any input, only makes k
queries. It is natural to compare the power of these reducibilities. First, for the
simple separation results, Ladner et al. [11] have shown that there exist sets A and
B such that A Sf’kﬂ,_" B but A%} B. Thus, in nonadaptive oracle computation,
asking more queries yields more power of computation. This idea is further explored

Adaptive/ nonadaptive bounded query machines 53

by Amir and Gasarch [1], Beigel [2] and Goldsmith et al. [6], who considered the
structure of sets relative to which a k-query machine is stronger than a (k — 1)-query
machine (called ferse sets), and sets relative to which a 2*-query machine can be
replaced by a k-query machine (called cheatable sets).

Regarding the relationship between <j}_,-reducibility and <} r-reducibility, it is
clear that for each k=1, a k-query adaptive machine can be simulated by a
(2% —1)-query nonadaptive machine. Therefore, we have, for all sets A and B,

A<; . B=> A<}|:B = A<{_,,.B

By straightforward diagonalizations, we can show that the above relations are
optimal. That is, for every k=1, (a) there exist sets A and B such that A<} B
but A € (*_5. B, and (b) there exist sets C and D such that C <{;,,,.. D but
C ;.1 D (see Corollary 3.3 and Theorem 4.1). The result (b) above also implies
that the intuition that asking more queries yields more computation power is true
in adaptive oracle computation. (Similar results have been reported in [4] in the
recursion-theoretic setting.)

In addition to the simple separation results, many researchers have studied
reduction classes with respect to bounded reducibilities, in particular the reduction
classes defined by sparse oracles and oracles in NP. For any complexity class €,
we let P,_.(6) be the class of sets which are <}_.-reducible to some set B € €. Kobler
et al. [10] have showi that the classes P,.,(NP), k> 0, define a truth-table hierarchy
in Af which is nicely interwined with the boolean hierarchy in A}. Kadin [7] showed
that this hierarchy is a properly infinite hierarchy uniess the Meyer-Stockmeyer
pclynomial-time hierarchy collapses. Beigel [3] has shown that for every k=1,
P x(NP) = P¢_,).o(NP).

For the reduction classes defined by sparse oracles, Book and Ko [5] showed
that for each k=1, P, ,(SPARSE) < P,;.+1).«(SPARSE). In other words, there exists
a set which is computable by a polynomial-tire (k + 1)-query nonadaptive mac™ine
relative to a sparse oracle but it is not computable, relative to any sparse set, by
any polynomial-time k-query nonadaptive machine. This result indicates, in a
stronger form, that k+1 queries provide more information than k queries in
nonadaptive oracle computation. A natural question then asks whether this is true
if the queries are made in an adaptive form, and, in an even stronger sense, whether
this is true if k+ 1 queries are made in a nonadaptive form but k queries are allowed
to be made in an adaptive form. These are the questions to be investigated in the
current paper.

From the basic relations between <} ,-reducibility and <} ;-reducibility men-
tioned above, it follows immediately that

P..(SPARSE) < P, (SPARSE)< P,+_,,..(SPARSE).

The main results of this paper concern with the questions of whether the above
inclusive relations are proper. For the second inclusive relation, we show that it is

54 K.-1. Ko

optimal. That is, for every k =2,
P.+(SPARSE) € P_,,..(SPARSE).

This result immediately implies that for every k=1,
P.i.1).7(SPARSE) # P,.+(SPARSE).

For the first inclusive relation, we can only give a weak result that for every k=2,
P, .«(SPARSE) & P, +(SPARSE),

where I, =3-272. In other words, the relations between P, {(SPARSE) and
P,,..(SPARSE) for h, k > 1 (they are obviously equal when h = k = 1) are as follows:

(1) P..(SPARSE)c P, .(SPARSE) for all h=2*-1; and P,(SPARSE)g
P...(SPARSE; for all h<2*-2,

(2) P,..(SPARSE)< P,~(SPARSE) for all h=<k;, and P, (SPARSE)Z
P..t(SPARSE) for all h=3-2%

(3) P,..(SPARSE) and P,.(SPARSE) are incomparable for all h and k such
that 3-2<h<2k-2.

(4) Whether or not P, (SPARSE) is a subclass of P, (SPARSE) is unknown
for h such that k<h<3-2%

The proofs for these results are by diagonalization. The main technique is an
inductive construction together with a careful use of the pigeonhole principle. This
technique has been used in [5] and [9] to obtain similar separation results. All of
the sets witnessing these separation results can be constructed to be in EXPTIME.
The inductive construction for the result (2) involves a complicated case analysis.
It seems that any big improvement over result (2) on the bound of 2-2* would
require a different proof technique.

Finally we remark that it has been proved in [5] that for every k=2,
Pi.o(TALLY)= P, (TALLY), because for any tally set T we can embed all
necessary information about a <} ,-reduction to set T in the following tally set
T'={0“**w, is a 2bit string encoding a k-tt-condition t, and
t(xr(0%),..., xr(0%)) = 1}. Therefore, the classes P (TALLY) and P, (TALLY)
are equivalent for all k= 1. In fact, they are all equivalent to P, ,(TALLY).

2. Definitions

In this paper we will consider the alphabet X = {0, 1}. We denote by |x| the length
of a string x and by ||X|| the cardinality of a set X. For a set X, yx denotes the
characteristic function of X, and X = 3*~ X. The empty string is denoted by A.

It is convenient to identify strings in £* with nonnegative integers. More precisely,
define a function ¢: N> Z* by ((0) =\, ¢(1)=0, ¢«(2)=1,...,t(n)=the nth string

Adaptive/ nonadaptive bounded query machines 55

in =* under the lexicographic order. In particular, for every k=1, ((2*-2)=1%"".
We will often drop the function name « ™' and write s to denote the number ¢+ '(s),
and s+1 to denote either the number « '(s)+1 or the string ¢(¢ " '(s)+1).

We assume that the reader is familiar with Turing machines, oracle Turing
machines and their time complexity. In the following, we define polynomial-time
k-tt-reducibility and k-T-reducibility. For any integer k=1, we say that set A is
polynomial-time k-tt-reducible to set B, and write A <}, B, if there exist polynomial-
time computable functions f and g such that for all x, f(x) is a list o€ k strings,
g(x) is a truth-table with k variables (i.e., a table specifying a boolean function on
k inputs), and xe€ A iff the truth-table g(x) evaluates to true on the k-tuple
{xa(xy), ... ,xB(xk» where f(x)=(x,..., x).

To describe <} r-reducibility, we first estabhsh some new notation on binary trees
of height k. Let T be a complete binary tree of height k. For each s 2* of length
< k-1, we write T(s) to denote the sth (or, more precisely, the ¢ '(s)th) node
under the breadth-first ordering. In other words, T(\) is the root, and for each s
of length k — 1, T(s) is a leaf, and for each s of length <k —1, T(s) has two children:
left child T(s0) and right child T(s1).

For any k=1, we say a function f on input x generates a tree of height k if f(x)
is a list of 2%~ strings (X, , Xo, X, Xo0, - - - » X;*-1). We will interpret the output of f(x)
as a tree T, of height k such that T,(s)=x, for all s of length <k —1. For any
integer k = 1, we say that set A is polynomial-time k-T-reducible to set B, and write
A <} 1 B, if there exist polynomial-time computable functions f and g such that
for all x, f(x) generaes a tree of height k, g(x) is a truth-table with k variables,
and xe A iff the truth-table g(x) evaluates to true on the k-tuple (xs(x,),
xs(x,), ..., xs(x;, 5_)) where each bit 5;, 1<i<k—1, is defined by s, = xe(x))
and s; = xp(x,, ;_), fori>1.

For any complexity class €, we let P,_(€) ={A|there exists a set C € € such that
A <} _C}, whereris either tt or T. Recall that a set S is sparse if there is a polynomial
q such that for all n, ||{xe S||x|<n}||=q(n). Let SPARSE denote the class of all
sparse sets. We assume a fixed enumeration { p, }, -, of polynomials with nonnegative
integer coefficients. For each h>0, let SPARSE, denote the class of sets S such
that for all n, ||{x € S||x|=< n}||<p,(n). A set Ais a tally set if A< {0}*. Let TALLY
denote the class of all tally sets.

In the proof of the main results, we will need to enumerate all <} ,-reduction
machines and all <! -reduction machines. Let {f{*'} be an enumeration of all
polynomial-time computable functions that for each input x yield a list of k string-,
and {g!*’} be an enumeration of all polynomial-time computable k-tt-truth-tables.
Then, we can enumerate all <} ,-reduction machines as {M{}'}, where each M; o
is defined by the ith k-tt-condition generator f ‘0 and the jth k-tt-condition evaluator
g'*) as described above. We write L(M}’, A) to denote the set of strings accepted
by M'" relative to oracle A. We can also enumerate all < r-reduction machines
as {N{%}, where each Ni%' is deﬁned by the ith k-T-tree generator (i.e., the ith

(2% ")-tt-condition generator) f* " and the k-tt-condition evaluator gt as

56 K.-1. Ko
described above. We write L(NX', A) to denote the set of strings accepted by N}’
relative to oracle A.

3. A strong adaptive bounded query machine

In this section, we show that there exists an adaptive query machine which makes
only k queries to a sparse oracle A such that the set computed by this machine
relative to set A is not computable, relative to any sparse oracle S, by any nonadaptive
query machine which makes at most 2% —2 queries. This result is optimal, as it is
easy to see that a (2% —1)-query nonadaptive machine can simulate a k-query
adaptive machine.

Theorem 3.1. For every k=2, P, +(SPARSE) & P,, .(SPARSE), where m, = k-2,

Proof. We let k=2 be fixed and let m, =2*—2. Recall that a k-query adaptive
machine is defined by two polynomial-time functions f and g, where for each x,
f(x) generates a binary tree of height k and g(x) outputs a k-tt-condition. We define
a specific k-query adaptive machine N as follows. For any string x of length m;n
for some n =1, write X as Ul Ug. . . Uy, . . . Uy*-1, Where each u,, 1<|s|<k-1, is of
length n. The machine N on input x produces a tree T, of height k, in which each
node T.(s), 1<|s|<k—1, is attached with the string su,, and the node T,(\) is
attached with the string 0". We write T,(s)=su, and T,(\)=0". The machine N
on input x evaluates the tree T, relative to an oracie B, as follows: first N recursively
computes the sequence (s,,s;,...,8) by s;,=xs(T(\))=xs(0"), and s;,,=
x8(T(s...5)) = xa(5y...5m,,), 1<i<k—1; and N®(x) accepts iff the number
of 1's in the sequence (s,,..., s;) is odd. In other words, if N queries oracle B
about string T,(s) and receives an answer “no” then the next query is T,(s0),
otherwise the next query is T,(s1); and N accepts x iff the number of “yes’ answers
is odd.

For each set A, let L, (A) be the set of all strings of length m,n for some n which
are accepted by machine N relative to set A. It is obvious that L,(A) <j ; A. We
will construct a sparse set A such that for all sparse sets S, it is not the case that
L,(A) <}, . S. This will allow us to conclude that P, {(SPARSE) & F,,.«(SPARSE).

The construction is done by stages. For each pair (i, j), let M;;= M{7+'. Recall
that {M,;} is an enumeration of all s,':,k_"-reduction machines, where each M, is
defined by the ith polynomial-time m,-tt-condition generator f{™’ and the jth
polynomial-time m,-tt-condition evaluator g;™’. Also recall that { p,} is an enumer-
ation of polynomial functions. At stage e =i, j, h), we will find an integer n = n,
and construct A, such that L, (A,) " Z™" # L(M,;, S)n ™" for all S € SPARSE,,.

Prior to stage 1, we let § =1/(4m,), Ay=0 and n,=1.

Adaptive / nonadaptive bounded query machines 57

Stage e = (i, j, h). Let n be an integer satisfying n > m,n,_, (so that the conditions
established in earlier stages are not affected by the construction of the current stage),
8n>2" and n p,(g(men)) <2°", where q is a polynomial bounding the runtime
of machine M;; (so that the number of strings in S SPARSE, which are queried
by M;; on some string of length m;n is bounded by 2°"/m,). Let n, = n. For each
x, assume that f{"™)(x) =(x,, ..., X,,,). Consider the m,-tt-conditions gi™(x), for
all xe ™", Since there are only 2°™ different m-tt-conditions, there exists an
my.-tt-conditio: ¢ such that G, ={x e I™"|g{™(x) = t} has size =2™"~2"™, Fix such
an my-tt-condition ¢ and let G = G,. Note that |G|/ =2""®" Now we consider
two cases.

Case 1. The function f{™ is not one-to-one on G.

Let x and y be two strings in G such that fi{"™(x)=f{"(y). Write x=
UoU Ugp. . . Uy«-1 and y = Vv, Ugy. . . ;%1 With each u; and each v, of length n. Then,
x # y implies that there exists s <1*~' such that u, # v,. Let s be the smallest such
index s, and assume that s=s,s,...5, where each s, is a bit 0 or 1. We assign
T.(\)=0" to B iff s5,=1, and T,(s,...s,)=s,...54u, , to B iff s,.,=1, for all r
such that 1=<r=<1[-1. Then we assign T,(s)=su, to B (and leave T,(s) = sv, to B).
Note that y agrees with x on the first (s — 1)n bits, and so the computation of M 2(y)
is exactly the same as that of M®(x) until it asks the query T,(s), for which it
receives a different answer from the query T,(s). (Note that we have assigned values
to B in such a way that T,(s) will be the (I+1)st query to B.) Since all later queries
T.(s') and T,(s") with s'>s and s">s receive answer “no”, we have xe
L.(B) & yg L,(B). However, f\™(x) =f{™(y) implies that for any set S, x and
y are both in L(M,;, S) or both in L(M,;, S). Thus, cither z=x or z =y satisfies
the requirement ze L,(B) © z¢ L(M,, S). Let A,=A,_,UB.

Case 2. The function f{™* is one-to-one on G.

We consider two more subcases.

Subcase 2.1. There exist an integer r, 1 <r<m,, and a string z, such that the set
H,(z) ={xe G|x, =z} has size ||H,(z)||=2/™"?%".

Then, there exist two strings v, we X" such that |H,(z)n{v}Z" V"=
2(M1732 and || H,(z) n {w}Z ™" = 2¢™ 173207 (Let v be the string in 2" such
that |H,(z) n{v}2™""|| is maximized, and w be the string such that ||H,(z)
{w}X™~V"| is the second largest. Then,

|H,(z) A {o}Z™ D" = | H,(2)||- 27" = 2™ 1280,
and
"H,(Z)ﬁ{w}z(mr’l)n" > “H,.(Z)—{D}E(m"_”"" .9

= (2(mk—25)n _2(mk—l)n) N 2(m,‘—l—36)n.)

We will prove the theorem in this case by induction. The induction statement is a
little stronger than the intended result. We state it in a separate lemma as follows.

58 K.-1. Ko

Lemma 3.2. The following holds for all j, 1<j<m—1. Assume that there exist a
function f which yields, on input x, a list of j strings (x,,...,X;), and a set G<
(V1. O —j 1} ZU" for some strings v, ..., U ;1€ 2", satisfying the following
properties:

(1) fis one-to-one on G, and for all xe G and all r, 1<r<j, |x,| < q(myi.); and

(2) there exist Strings v, _; and w,, _; such that |G A V;|| =29~ Cm-2702" gnd
|G A W,|| =203+ 08n - where V;={uv,.. D1 Vm, 32" and W, =
{010+ Oy —jmt Wi 127"
Then, there exists a set C such that

(3) for each i, n<i<n+k-1, |[CnZ'|<1, and for each i, i<n or n+k<i,
Cn3I'=0, and

(4) for all Se SPARSE,, and all j-tt-conditions t, there exists an x € G such that
xe Li(C) & t(xs(xy), ..., xs(x;))=0.

To apply Lemma 3.2 to Subcase 2.1, let j=w.,—1 and f(x)=
(Xyy+vnyXr_1sXrt1s- -5 Xm,). Then, the function f and set H,(z) satisfy the assump-
tions of Lemma 3.2. (Note that x, =z for all xe H,(z), and therefore, f must be
one-to-one on H,(z); otherwise, f\™’ would not be one-to-one on G.) So, we obtain
from Lemma 3.2 a set C satisfying conditions (3) and (4). We verify that for any
S e SPARSE, and any my-tt-condition ¢, there exists a string xe G such that
xe Li(C) © x¢ L(M,;, S). Let t, and ¢, be two (my, —1)-tt-conditions defined as
follows: t,(by,..., b1, br1se ey b)=t(by,..., b1, b, by, ..., by,). Then, let
b = xs(z), and consider t,. The set C satisfies condition (4) with respect to set S
and (m, —1)-tt-condition t,. It means that there exists a string x € H,(z) such that
xe Li(C) © ty(xs(x1), .-« Xs(X-1), Xs(Xr+1)s - - + s Xs(Xm,)) = 0. By the definition of
t,, we have x€ L,(C) & t(xs(x)),..., xs(xm,)) =0 & xg L(M,;, S).

Let A,=A._,uC.

Subcase 2.2. The condition specifying Subcase 2.1 does not hold.

Then, for every set S € SPARSE,, there are at most

L I IH(2) < mpu(g(myn))-2m00 < ong(m2on = pimr
r=1 z€

strings in G having at least one x, in S. Therefore, at least one x in G has all x, in
S. Let 0" be in set B iff ¢(0,...,0)=0. Then, for any sparse set S SPARSE,, at
least one x € G has the property that xs(x,) = xs(x;) =" = xs(x,,) =0, and so
xe Li(B) & t(xs(xy),..., xs(xn,)) =0 xg L(M;;,S). Let A,=A,.,uB. This
completes stage e of the construction.

By the above discussion, it is clear that set A= Uf:l A, satisfies our requirement.
It remains 9 prove Lemma 3.2.

Proof of Lemma 3.2. The lemma will be proved by induction on j=1,..., m—1.

First assume that j = 1. Then f() outputs only one string x;. For any S € SPARSE,,,
since f is one-to-one on G, there are at most p,(a(mn)) <2 strings x in G having

Adaptive / nonadaptive bounded query machines 59

x, € S. Therefore, there exist strings xe G V, and ye G W, such that x, ¢ S and
»1 € S. Hence, for any 1-tt-condition ¢, we have t(xs(x,)) =1(0) = t(xs(»,)).

Recall that a string in V, must have the form v;...v,, _,v,,_,0" for some v'€ 3",
and a string in W, must have the form v,...0,, _2W,,_ W' for some w'e 2". For
convenience, let us rename each string v, as v,;, (and hence a string in V, has the
form wvov, V... 05205200 for some v'eX”). We assign strings 0", 1v,,
11v,,,..., 15 *px-3 and 1°7200,4-2 to set C (but let 1* ?p,x-2 and 1¥720w,+-2, be in
C). The above assignments force G V,< L,(C) and G W, L, (C) if k is even,
and Gn V,c L,(C) and Gn W, < L,(C) if k is odd. Therefore, xe L,(C) & y¢
L, (C). Together with the property that for every S € SPARSE, and every 1-tt-
condition ¢, t(xs(x;)) = t(xs(»:)), we see that either x or y is a witness for condition
(4). This completes the proof for the iniiial case of j=1.

For the inductive step, let j> 1. We consider two cases. (These two cases are
similar to Subcases 2.1 and 2.2 in the proof of Theorem 3.1.).

Case 1. There exist an integer r, 1<r<j, and a string z such that the set
H,(z)={xe G|x, = z} satisfying |H,(z) " V;|| =2V "™ 222" or | H,(z2) n W;|| =
2U=(2m =2j+2)8)n

Without loss of generality, assume that || H,(z) 0 V|| =2V~ 2m 2%] et f'(x) =
(XpyenesXe—1s Xps15--.,%) and G'= H,(z) N V. Then, similarly to Subcase 1.1 in
the proof of Theorem 3.1, there exist two Strings U, _j+1, Wm, —j+1€ 2" such that
|G V}—l" > QU—1-2m=2j+3)8)n g IG A “’j_.” =1 -Cm=2+3Em where V.=
{01« OO} 2" and Wy ={0,. . . Oy j Wi, e} V7

Thus, function f’ and G’ satisfy the assumptions of the inductive hypothesis. Bv
induction, we can find a set C satisfying conditions (3) and (4) (with parameterj —1).

Now consider a j-tt-condition t. We note that x, = z for all xe H,(z), and so for
any set S, t(xs(x)),...,xs(x;)) is equal to t'(xs(x)),...,xs(x-1),
Xs¢%_1), ..., xs(x;)), where ' is defined by t'(by,...,b_1,b41,..., b;) =
t(by,...,b,_y, xs(2), by1,,...,b). By condition (4}, for any S € SPARSE, and any
j-tt-condition t, there exists an x € H,(z) 0V, such that

x€ Li(C) © t'(xs(x)),...5 xs(x-1), xs(Xr41), - - -, Xs(%)) =0
& txs(xy), ..., xs(x))=0.

This completes the proof for Case 1.

Case 2. The condition specifying Case 1 does not hold.

For every string z and every r, 1 < r<j, | H,(z) n V;|| <2V ~?™~%*22" Therefore,
for any S € SPARSE,, there.are at most

i z "H (Z) A V” <2(j—(2m‘—-2j+2D8)n _28n — 2(j—'(2mk—2j+l)5)n
r J
r=1 zeS
strings x in V; having at least one x, in S. It follows that there exists at least one
xe GnV, having t(xs(x,),...,xs(x;))=1(0,...,0) for any j-tt-condition ¢
Similarly, there exists a string y € G n W, having t(xs(»1), .-, xs(3;)) = 1(0,...,0).

60 K.-1. Ko

Reczll that V,={v,...v,, 32" Let s = «(my —j) and write s =s,5,....5, where
each s; is a bit ¢ or 1. We assign 0" to C iff s,=1,and s,....50, , to Ciff 5,,; =1,
for i=1, ..,i- 1. Finally, we assign s,...s0,, , to C (but s,...s5w, , to C). It
follows that V,< L,(C) iff W, < L,(C) (both are true if s contains an even number
of 1’s, and both are false if s contains an odd number of 1's).

Ncw, for any Se SPARSE,, and any j-tt-condition 1, consider strings xe GN 'V,
and ye Gn W, with t(xs(x,),..., xs(x;))=1(0,...,0)=t(xs(y1), ..., xs(;)). We
have constructed set C such that xe L,(C) © y£ L, (C). Thus either x or y is a
witness for condition (4). This completes the proof of Lemma 3.2. [

Corollary 3.3. For every k=2, there exist sets A and B such that A<} B but
A%}, . B, where m,=2"-2.

Corollary 34. For every k=1, P .,,.1(SPARSE) & P, +(SPARSE).

4. A strong nonadaptive bounded query machine

To study the ability of adaptive bounded query machines to simulate nonadaptive
bounded query machines, we first prove that there exist sets A and B such that A
is < j-reducible to B by a (k + 1)-query i:onadaptive machine but is not <-reducible
to B by any k-query adaptive machine.

Theorem 4.1. For any k=1, there exist scts A and B such that A<},.,,.. B but
A%} ;B

Proof. Let k=1 be fixed, and tor each pair (i, j), let N,;= N {'}'. For any set B, let
L(B)={0"|the number of strings in the following list that are in B is odd:
(0",0"1,0"1°,...,0"1%)}. Then, it is cbvious that L(B) <[.,,.. B. We will construct
a set B such that for ever; <} ;-reduction machine N, there exists an integer n
such that 0"e L(B) & ¢"¢ L(N,;, B). This will allow us to conclude that
L(B) %} 1 B.

We construct set B by stages. Assume that the runtime of machine N, is bounded
by a polyr.omial q., wheie e =(i, j). Let B,=0, and n,=1.

In stage e = (i, j), we choose an integer n such that n>gq,_,(n._,) and n> kn,_,
(so that the conditions established in earlier stages are not affected by the construction
of the current stage). Let n, = n. Then, we simulate N,, on input 0" using oracle
B, ,. Note that among the k + 1 strings 0",0"1, ..., 0"1*, there are at most k strings
being queried in this computation. Let 0"1' be the shortest string in this list which
is not queried, and let B, = B, ,u{0"1'} if the computation of Nf;-"‘(O") rejects,
and let B, = B, _, if the comutation of N,-'"; (0") accepts. Since 0"1' is not queried
by N.: ' on 0", the computation of N:(0") is the same as that of N0, It
follows that N5(0") accepts iff B, n{0",0"1,...,0"1*}=¢ iff 0" ¢ L(B,).

Adaptive/ nonadaptive bounded query machines 61

Let B=J,_, B.. By the choice of the integer n,, it is clear that L(B) # L(N,,, B)
for all < ;-reduction machine N,;. 0O

Next we compare the reduction classes defined by sparse sets. For every integer
k=2, let [, =3-2"72 We will prove that there exist a polynomial-time nonadaptive
query machine which makes I, queries to oracles, and a sparse oracle A, so that
the set computed by this machine relative to A is not computable, relative to any
sparse oracle, by any polynomial-time adaptive query machine which makes only
k queries.

Theorem 4.2. For any k=2, P, ,(SPARSE)Z P, «(SPARSE).

Proof. For each set A and each m=1, let

L,..(A)={u,...u,||lu)="-+=|u,|=n; the number of strings in the
following list that are in A is odd:
0D g, 0N uy U)

Then it is clear that L,,(A) <%, A. For each k=2, we will construct a sparse set
A such that for every sparse set S, it is not the case that L, (A) =i+ S This will
prove the theorem.

The proof proceeds by stages. Recall that the (i, j’th <} ;-reduction machine
{N*'} is defined by the ith polynomial-time height-k tree generator f*° "' and the
jth polynomial-time k-tt-condition evaluator g{*’. We fix the integer k =2, and let
N,;= N{%’. In stage (i, j, h), we will find an integer n such that L, (A)~ 34 """
L(N;;,S)nX""""" for all sparse sets Se SPARSE,. We choose a constant
6=1/(8l,), and let A;=0, n,=1.

Stage e = (i, j, h). Assume that the runtime of the machine N,, is bounded by a
polynomial p’. We choose an integer n such that n> ;n,_, (so that the conditions
established in earlier stages are not affected by the construction in the current stage),
én>2l,, and p,(p'((I, —1)n)) <2?" (so that the number of strings y in S € SPARSE,
which are queried by N,; on some input of length In is at most 2°"). Let n, =n.

Consider the k-tt-conditions g*’(x) forall xe """ There are only 2°" different
k-tt-conditions. So there must be at least one k-tt-condition ¢ such that G, =
{xe X 1" | g (x) =1} has size =2'% """ =2'4"1""" We fix such a k-tt-condi-
tion t, and let G = G,. Next, we will construct set A, by an inductive construction
which involves some complicated case analysis. We state this inductive construction
in a separate lemma.

For each j=2, define B, recursively as follows: B,=8, B,.,=28;+3; that is,
B;=11-2"""-3, Note that § =1/(81,) <1/(2B,).

Lemma 4.3. The following holds for all j, 2<j<k. Assume that there exist a
<[r-reduction machine N,,, defined by a height-j tree generator f and a fixed j-tt-
conditiont,and a set G < {u,...u,}='" """ for semeu,, ..., u,inT" (0sm=<I|, -
1), such that

(1) the runtime ¢f machine Ny, is bounded by polynomial p’, and

62 K.-1. Ko

(2) |G|=2"% 77" for some y =0 and some a, 0< a <, —B;+1.
Then there exists a set C such that

(3) strings in C are of the form u,. . .Uy ... 0y 0" "where 0< i<
L-m—1and v,.\,...,0n:+€2",

@) [Cl<2', and

(5) for every set S SPARSE,, the set D={we G|we L(N,,,S) © we L, (C)}
has size |D||=2"""'**P?" if y >0, and has size |D||>0 if y=0.

Let f=/""", and r the k-tt-condition with ||G,|=2""""*". We observe that
machine N, and set G satisfy the assumptions of Lemma 4.3. Note that here we
have m=0, y=0 and a =1. So, we may apply Lemma 4.3 to obtain a set C of
strings of the form v,...0,0'%7"""*" such that ||C||<2" and such that for every
set S € SPARSE,, there exists a string we G such that we L, (C) & we L(N,,, S).
Since w € G implies that we L(Nj,, S) & we L(N,;, S) for every set S € SPARSE,,
w is a witness to the requirement L, (C)# L(N,;, S). We let A,=A,_,u C. This
completes Stage e.

It is quite clear from the choice of n. that if we let A =Uf:, A, then for every
<}rreduction machine N,;, and every ScSPARSE,, L,(A)n3'Vnx
L(N,;,S)n3'""""_So the theorem is proven. It remains to prove Lemma 4.3.

Proof of Lemma 4.3. We prove the lemma by inductionon j=2, ..., k. First assume
that j = 2. Then, I;=3. For each xe 3'*""""_ assume that the tree T, generated by
f(x) has nodes T,(A\)=x,, T.(0)=x,, and T, (1)=x,. For each z and each string
s=X,0,1,let H(z)={xe G|x,=z}. Let U, ={u,...u,}X% ™" Then, G U,
and |G|/ =2°"""*™"_ Now consider the following three cases.

Case 1. There exists a string z, such that | H,(z,)|| =27y (e+28m,

Then, we claim that there exist Strings U, 1, ..., Uneg-1s Umigs Un+g €2, 1S g <
I, —m— vy -2, such that

Y latDdin "H,\(ZA)F\ E" < 2(2+ y-la+2)8)n-2

holds for both E=U,., and E=V,., where Un+g =

(L -m-qg-in _ (L, -m—-g-1)n
{“I"-unnq Ium'q}s * 4 and Vnnq_{u!---um+q—lvm+q}2 - 4 .

Proof of Claim. For convenience, let H = H,(z,). Fori=1,..., 1, —m—y-2, recur-
sively define strings u,,,,, v,,., and sets U,,,, and V,,,, as follows: let u,,.,; be the

string in 3" such that [|H n{u,. ...t e 32771 is the largest among
all choices of u,,,, in X", and let v,.; be the string in 3" such that |H
lugocouy, g0, J3 % ™" is the second largest. Let U, =

{“l e unnr l!l,,,,,}:”“ Tt and Vm+i = {ul .- 'um+|~lUm+i}2”k_m-‘—lm'
Now let g be the smallest i, 1 <i< [, —m—y -2, such that

20 IS H A Vi | < H AU [230,

Then, the strings u,,,,,..., vy 15 Um gy Ums g @re what we want.

Adaptive/ nonadaptive bounded query machines 63

We need to show that such a g must exist. First note thatif i =, —m —y -2, then
1H A U | < [Uy | = 20777 0m = gt10in < iz,

So, we can let g’ be the smallest i such that |H N U,,,|<2*"" “"*""2 Note
that |H A Uiy]| >277771**22" 2 Next assume, by way of contradiction, that

"Hﬁ vV +" <2“+‘Y—(u+3)5m
m+i

for all i, g'sisl-m-y-2. Then, we claim that ||HAU,.,|=
2rymlaxD®m=ti=a™*3) for all i, q¢'<i<l—-m—y-2. In particular, when i=
Lk-m-y-2, we have |H U, ||=2@""er22n=th+3 520+ " which contra-
dicts with the fact that ||U,,.;|| =2"""""". This proves the existence of such a g.

It remains to check the claim, which can be done by a simple induction. We
observe that if |[[HN U, [|=2@"7"*"2Pn-0=4%2 and |HA V.. <
2Mrytaxi®in = then for all velX", v#u,., we have |Hn
(.. i 0} ZhTmITNN < QY@ and hence

“I'Ih Um+i” = "H N Um+i—l” —2". 2ty tashdin

Ity—) —(i—a'+2 Ity
22(..+7 (a+2)6n~i q+-)_2(..+y (a+3)d)n

?2(2+y—(u+2)ﬁ)"—li—q'+3)
This completes the proof of the claim. [

Nocw we consider the following subcases.

Subcase 1.1. There exists a string z, such that |H,(z,)n Hy(z,)nE|=
2y eI for E=Upyy or E=V,,.,.

Without loss of generality, assume that the above holds with E = U, ,. We further
consider two sub-subcases.

Subcase 1.1.1. There exists a string z, such that [|H,\(z,) n Hy(z,) N Hi(z)) N
Um+q" ?2(l+y—»(u+7)6)n.

To define set C, we separate the case of y >0 from the case of y =0. First assume
that y> 0. Then, similarly to the argument in Case 1 above, we can find strings
Upsgets---s Umsgrr—1s Umsgirs Umiger €2, With m+q+r<Il —y—1, such that
QUrter8In |HAE|| <27 **7?" "2 holds for both E=U,.,., and E=
Vimsq+rs Where H = H\(2,) N Hy(2o) " H\(2)), Upsgur ={thi. . Ui gor 1 Umagert 2,
Vinrger ={Use o Umsgir1Umsg+rt 2" and ¢ =l —m—q—r—1. We assign the strin_g
Uy Upsgsr—1Umeg+, 07" to set C and the string u, .. g r1Omiger0°" 10 C

If y=0, then we can find Strings U, qc10+ -5 Umsgr-1s Umsgrs Um+g+r € 3" with
r=h—-m-q—1, such that both w, =u ... Uniyir1Umigsr and wr=
Uy Upsger—1Umeger are in Hy(z,) " Hy(zy) 0 Hy(z,). We assign w, to C and w-
to C.

Subcase 1.1.2. The condition specifying Subcase 1.1.1 does not hold.

In this case, we will do the same thing as in Subcase 1.1.1 with respect to the set
H,(z,) n Hy(z,) (instead of the set H,(z,) » Hy(z,) ~ H\(z,)). In addition, we assign
the string u,...%,. 0% " """ Vo Cift 1(1,0)=0.

64 K.-I. Ko

Subcase 1.2. The condition specifying Subcase 1.1 does not hold, and there exists
a string z, such that

" H)\(Z)\)n H‘(Zl) N E" 22”*7-(04—5)8”:

for E= U,y 0r E=V,,.)

This case is symmetric to Subcase 1.1. We do similar assignments to C and to C.

Subcase 1.3. The conditions specifying Subcases 1.1 and 1.2 do not hold.

We assign the string #y...Upsq Upmsg0" " 797" 40 C and
Up. Ui Uneg0'h "7 0 &

The above completes the construction of C in Case 1. Before we continue the
construction for Cases 2 and 3, we first show that the set C constructed above
satisfies, when Case 1 holds, the requirements of the lemma.

It is clear that the strings in C have the specified form and that the size of C is
bounded by 2 <4 =2, To check condition (5), let z, be the string such that || H\(z,)| =
23 y-ter2dm we consider the subcases described above.

Lemma 4.4. If Subcase 1.1.1 holds, then set C satisfies condition (5).

Proof. Let S € SPARSE, be given. First let us assume that z, ¢ S and y>0. Let z,
and z; be strings such that |H U, }J|=2""""*""" " where H=H,(z,)n
Hy(zo) n H\(z,). Then, either HN U,.,< L(N;,, S) (if 1(0, xs(2,))=1), or Hn
Uni+q S L(N;y, S) (f 1(0, xs(20)) =0).

On the other hand, we have assigned string u;. . .Uy 1 s 1 Upsy+,0"""" to C and
SUING Uy« . Ui gir—1Um+q+.0°" " to C. As a consequence, H N U, 4+, < L, (C) and
HA V... L, (C). So, either HAU,,.q+, or HA'V,,,,., has the property that
all its strings x satisfy

xeL(Ny,S) © xe L, (C).

That is, || D|| =2y (88

Note that when y =0, the same argument proves that either x = w, or x = w, has
the property that xe L(N,., S)&x ¢ L, (C). Therefore, D #).

For the case when z, £ §, it is not hard to see that a symmetric argument can be
used because the condition specifies Subcase 1.1.1 is symmetric. O

Lemma 4.5. If Subcase 1.1.2 holds, then set C satisfies condition (5).

Proof. Let S SPARSE, be given. For Subcase i.1 2, v’= note that if z, £ S then the
situation is similar to Subcase 1.1.1 and a similur proof exists. We assume that z, € S.

We note that z,€ S implies that for all strings x € H,(z,), with x,28, xc
L(N;,S) & 1(1,0)=1. On the other hand, we assigned string
Uy g0V e C i 1(1,0)=0, and assigned one of strings
Ui Uy oraUeg e 07" and uy . tyys iy Uy, 09"V to C. Therefore, for each

Adaptive/ nonadapiive bounded query machines 65

string x € H,(z,) » Hy(zy) n U,,,.., with x,¢ S and xg Univq+rY Viigar, it has the
property that xe L(N,,, S) © x¢ L, (C). Note that we have

“{xe H,\(z,) N Hy(zy) N Unl+q|xl € S}“
< Y |H\(z)n Hy(zp) " H\(z) N Um+q”

zeS

(I+y=(a+78)n &n (I+y—(a+6)6)n
<Yt i _ ey (areipin

|H\(2)) 0 Ho(20) O Upyy g || <2117 918n=2
IH\(20) 0 Ho(20) A Vi g || <2047t w9802
So,
1D11= | Hu(2) 2 Ho(20) O (Unvg = Unmgr = Vineger) 0 x| x, 2 S}
= 1Ty (@xNdn _ g pUlrytarfidin=2_ilry-tar6)dn
= (I+y—ta+6)din

This completes the proof of Lemma 4.5. (Both cases of y >0 and y =0 are proved
by the same argument above.) O

Lemma 4.6. If Subcase 1.2 holds, then set C satisfies condition (5).
Proof. The proof is symmetric to that for Lemmas 4.4 and 4.5. O

Lemma 4.7. If Subcase 1.3 holds, then set C satisfies condition (5).

Proof. In Subcase 1.3, we have assigned strings u,. ..U, Uy, 0" "4 D
and u;. . . Up g 1Um+g0"* " 797" Vo C and C, respectively, so that U,,., < L, (C)
and V,,..,c L, (C).

On the other hand, note that all strings x in H,(z,) with x,& S and x,£ S inust
have the same membership in L(N,,, S), depending upon whether 1(xs(z,),0)=1
or not. Since for aiy string z, || Hy(z,) N Hy(z) N U,,.)l and || Hy(2,) 0 Hy(z) 0 Upiy ||
are bounded by 2''"Y 7' *¥?" “there are at most

2(I+y-(u+5b8]n _26}1 . 7<2(l+’y—(u+4|5m
L=

strings x in H,(z,)n U,., having either x,€ S or x, € S. The same property holds
for cet H,(z,) N V,,.,. So, one of the sets H,(z,) " U,,+, and H,(z,) " V,,., has at
leas:

2(1+y—(a+3)é)n __ 21]*7—10*4)5)" > 2(1*7—(u+4)5)ﬂ
strings x satisfying

xeL(N;,S) & xgL,(C).

That is, | D] =2 «*dm O

66 K.-1. Ko

The above four lemmas complete the proof for Case 1. Now we proceed to Cases
2 and 3.

Case 2. The condition for Case 1 does not hold, and there exists a string z, such
that || Ho(zo)|| =277t 2%,

Similarly to Case 1, we can find strings Up+i,.-. . Um+g—1s Um+q> Um+q€ "
1sgs<l,—m—-y-2, such that

2(l+y—(a+3)6)n = " HO(ZO) A E" < 2(2+7-(a+2)8)n—2

holds for both E = U,,., and E =V,,,,. Then, we consider the following subcases.

Subcase 2.1. There exists a string z, such that ||H,\(z\)n Hy(z)nE||=
Uy~ eaxROn for E = U,y OF E = Vg,

This case is exactly the same as Subcase 1.1. (Note that in the proofs of Lemmas
4.4 and 4.5, we did not use the fact that || Hy(2,) N U gf| =277 32" "which is
the only ditference between Subcase 1.1 and Subcase 2.1.) We construct C as in
that case.

Subcase 2.2. The condition specifying Subcase 2.1 does not hold.

We assign the string ..U, Un+g0°""" to C and the string
U Uiy 1 Omeg0 """ to C, where ¢’'=,—m—gq-1.

This completes the construction of C for Case 2. We check that, in this case, the
set C constructed above satisfies the requirements of the lemma. Note that all strings
in C have the specified form and that the size of C is bounded by 2<4=2’.
Furthermore, since Subcase 2.1 is exactly the same as Subcase 1.1, condition (5) is
satisfied by C in that case. We need consider only Subcase 2.2.

Lemma 4.8. If Subcase 2.2 holds, then set C satisfies condition (5).

Proof. This case is similar to Subcase 1.3. We have assigned strings
Upe o U qorlms g0 ™ Y and uy Lty O 0TIV Y o C and C,
respectively, so that U,,.,< L, (C) and V,,,,< L, (C).

On the other hand, for every set S € SPARSE,, note that all strings x in Hy(z,)
with x, € S must have the same membership in L(N;,, S), depending upon whether
1(0, xs(zy)) =1 or not. Since for any string z, || H\(z) n Hy(2o) " U4, || is bounded
by 211 Yt there are at most

2(l+'y-(u+5l5'yu . 25n. 2s 2(I+y—(u+4)8m

strings x in Hy(z,) N U, ., having x, € S. The same propersty holds for set Hy(z,) N
V'"_*"' So, one of the sets Hy(zy) N U,,., and Hy(z)) N V.u+q contains more than
U1y et H®n girings x such that

XeL(N,,S) & xgL,(C).

This shows that |[Df =2'"*Y"**®" "and the lemma is proven. [

Case 3. The 'conditions specifying Cases 1 and 2 do not hold. We assign string
ye . u, 0" Y 4o € iff £(0,0) = 0.

Adaptive / nonadaptive bounded query machines 67

Lemma 4.9. If Case 3 holds, then set C satisfies condition (5).

Proof. Note that in this case, all x in G but at most 227y (@+28in odn 5 _
20y (@r8ntl many have x,€ S and x,£S. For any x having this property, we
observe that xeL,(C) & uy...u, 0 e C o 1(0,0)=0 <> x¢g
L(N,,, S). Thus,

IDll=[l{xe G|x\2 S and x,¢ S}|

= 2(2+‘y—u5)n __2(2+‘y—(u+l)6)n+l - 2(2+y—(a+l)8)n
- -

This completes the proof of Lemma 4.9, as well as the initial step of the induction
proof. O

For the inductive step, we assume that k>2 and 2<j=<k. Note that /,_,=1/2.
Again, we consider two cases.

Case 1 There exists a string z, such that || H,(z,)|| =2/ Y~ (e*B .+

Similar to the argument in Case 1 of the initial step (when j=2), we can find
Strings Upi1s- -y Umig-1s Umsgs Umsg €2 ISgsh—m—y— ;/2, such that

|H\(z,) N E|| =20/ Y 1tath, +3)8)n

holds for both E=U,., and E=V,., where Unig=
{th . U g U 32T and Vi =t oty g Oy g} S9N,

Step A. Define f, to be the function which maps each string x to the left subtree
of f(x) and t, to be the (j—1)-tt-condition defined by t,(b,,..., b,_,)=
(0, by, ..., bj_,). Without loss of generality, we assume that the machine N, ,,
defined by f; and t,, has runtime bounided by p’ also. Also let G,= H,(z,) N Unisg-
Note that

| Goll = U ry-1-(atB _+3)din

Since a< B, —B;+1 implies a + B,_, +3=<p, — B,_, + 1, we can apply the inductive
hypothesis to machine N, and set G. That is, we can find a set C, satisfying
conditions (3)-(5), with respect to strings u,,..., u,,., and parameter j—1. In
particular, conditio. (5) states that for each S SPARSE,, | D,l|=2"‘**#%" if
y=1,and D, #0if y =0, where Dy={we G,|we L(N,,,,,S) © wg L, (Cy)}. (Note
that 8;=28,_,+3.)

Step B. Define f,, t, and G, similarly: fi(x) is the right subtree of f(x),
t(by,...,b_)=1t(1,b,,...,b_,), and G,=H,(z,)nV,,,,. By the inductive
hypothesis, we find a set C, satisfying conditions (3)-(5). In particular, condition
(5) states that for each Se SPARSE,, ||D,||=2"""""#"*" if y=1, and D, #0 if
y=0, wheie D,={we G,|wc L(N,,,,S) © we L, (C))}.

Let C=Cyu C, and claim that C satisfies conditions (3)-(5) (with respect to
strings u,, . .., u,, and par.meter j). First note that | C|| < || Co|| + | G| <2/ '+ 2 7' =
2’. Also note that all strings in C, begin with prefix u,. ..Uy, Um+, and all strings
in C, begin with prefix u,...u,.,_Un+,. This implies that all strings in C have the
specified form. Finally, we prove condition (5).

68 K.-1. Ko

Lemma 4.10. If Case 1 holds, then set C constructed above satisfies condition (5).

Proof. Let Se SPARSE, and recall that D={we G|we L(N,,, S) © we L, (C)},
and Dy={we Go|we L(N;,,,,S) © we L, (C,)}. First consider the case that y>0
and z, £ S. Then, by the definition of C,, ||Do|| =2""“*#"*" Note that for all x
in Go=H,\(z2,) " U1y, x€ L, (C) & xe L, (C,) (because all strings in C,; begin
with different prefixes from those in C,), and xe€ L(Ny,, S) & xe L(N,,, S)
(because x, =z, S). So, Doc D and ||D||=2""**#"*" Similar results can be
proved for the cases when y=0 and/or when z,€ S. We leave the detail to the
reader. [

Case 2. The condition specifying Case 1 does not hold.

Then, we define function f; and (j — 1)-tt-condition tyasin Case 1. Let yo =y +1;/2,
and G,= G. Then, by the inductive hypothesis, there exists a set C, satisfying
conditions (3)-(5) with respect to strings u,,..., u,., and parameter j—1. In
particular, condition (5) states that for each Se€ SPARSE,,, || D,| =2 (**#-02n
where Dy={we G,|we L(N,,,,,S) © wg L, (C,)} (because y,>0).

Let C = C,. Clearly strings in C have the specified form and ||C||<2'"'< 2/

Lemma 4.11. If Case 2 holds, then set C constructed above satisfies condition (5).

Proof. Let S SPARSE,. Similar to Case 1, for those xe G, with x, ¢S, xe€
L(Ny,, S) © x€ L(Ny,,,, S). That is,

D)= || Do {x|x, 2 S}H = || Dol - ||{x € Go|x, e SH|

> 2(1’_l+y—(a+B,__|)5ln _2(Il_l+'y-—(a+[3,_l+2)6)n . 25"

?2(1'_|+y—(u+ﬁ,)5)n'

Therefore, ||D||>2Y" 8" if y>0, and D#0 if y=0. O

This completes the proof for the inductive step, as wel! as the proof of Lemma
43. O

Example 4.12. To help the reader understand the role of parameters y and B; in
the above proof, let us look at an example. Let k =4. Then I, = 12, and assume that
we begin with a set G 3" having ||G||=2""""®" (i.e.,, y=0 and a =1).

We first ask whether there is a string z, such that | H,(z,)|| =2°"%**'" (8,=19).
Assume that the answer is *‘no”. Then, we ask whether there is a string z, such that
| Ho(2o)[| =2°~"'*" (y has been changed to 6 and 8,=8). Assume that the answer
is “yes”. Then, we find strings u,,...,u, |, u,, v, in 2" such that ||Hy(z) N
{ug.ccuyu J 2T = 2% and | H(zo) A {u, . oy v} E O = 28

Adaptive/ nonadaptive bounded query machines 69

Let Go= Ho(zo) n{uy...u,_,u,}X""' """ and consider the lefimost height-2 sub-
tree of f(x). By a rather ad hoc procedure (i.e., the procedure for the initial step
of the above induction proof), we find a set C, such that D=
{xe Gy|xe L, (Cy) & x€ L(N,,,,, S)} has size | D||=2'“"°"" where N, is the
<? -reduction machine defined by the leftmost height-2 subtree Jo(x) (i.e., the
subtree with the root x,,) and the corresponding 2-tt-conditions f,.

Now observe that among all x in Ho(z,), at most 2¢™22%". 2% = 3(6=210m pqpy
may have x,€ S (this follows from the assumption that there is no z, such that
| H\(2,)[| =2°72*®"). So, at least one string x in D has x, £ S. If zo2 S, then this x
witnesses that xe L, (C,) © x ¢ L(Ny,, S).

Next let G, = Hy(zo) n{u,...u,_,v,}2"""*" and repeat the above construction
on G, with respect to the second height-2 subtree of the tree f(x) (i.e., the subtree
with the root x;,). This will show that if z,€ S then there exists a witness x such
that xe L, (C,) © x& L(Ny,, S). Since strings in C, and strings in C, have different
prefixes, the above requirements do not conflict with each other. So, set C = C,u C;
satisfies the requirements of the lemma.

References

[1] A. Amir and W. Gasarch, Polynomial terse sets, in: Proc. 2nd Conf. on Structure in Complexity
Theory (1987) 22-217.
[2] R. Beigel, A structure theorem that depends quantitatively on the complexity of SAT, in: Proc. 2nd
Conf. on Structure in Complexity Theory (1987) 28-32.
[3] R. Beigel, Bounded queries to SAT and the boolean hierarchy, Theoret. Comput. Sci., to appear.
(4] R. Beigel, W. Gasarch, J. Gill and J. Owings, Terse, superterse and verbose sets, Tech. Report
TR-1806, Department of Computer Science, University of Maryland, 1987.
[5] R.V.Book and K. Ko, On sets truth-table reducible to sparse sets. SIAM J. Comput. 17 (1988) 903-919.
[6] J. Goldsmith, D. Joseph and P. Young, Self-reducible, p-selective, near-testable, and p-cheatable
sets: the effect of internal structure cn the complexity of a set, in: Proc. 2nd IEEE Conf. on Structure
in Complexity Theory (1987) 50-59.
[7] J. Kadin, The polynomial time hierarchy collapses if the boolean hierarchy collapses, in: Proc. 3rd
IEEE Conf. on Structure in Complexity Theory (1988) 278-292.
[8] R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity classes,
in: Proc. 12th ACM Symp. Theory of Computing (1980) 302-309.
[9] K. Ko, Distinguishing conjunctive and disjunctive reducibilities by sparse sets, Inform. and Comput.
81 (1989) 62-87.
[10] J. Kobler, U. Schoning and K. Wagner The difference and truth-table hierarchies for NP, RAIRO
Théor. Inform. 21 (1987) 419-435.
[11] R. Ladner, N. Lynch and A. Selman, A comparison of polynomial-time reducibilities, Theoret.
Comput. Sci. 1 (1975) 103-123.
[12] S. Tang and R. Book, Separating polynomial-time Turing and truth-table degrees of tally sets, in:
Proc. 15th Internat. Coll. on Automata, Languages and Programming, Lecture Notes in Computer
Science 317 (Springer, Berlin, 1988) 591-599.

