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Abstract 

Ko, K.-I., On adaptive versus nonadaptive bounded query machines, Theoretical Computer 
Science 82 (1991) 51-69. 

The polynomial-time adaptive (Turing) and nonadaptive (truth-table) bounded query machines 
are compared with respect to sparse oracles. A k-query adaptive machine has been found which, 
relative to a sparse oracle, cannot be simulated by any (2’ - 2)-query nonadaptive machine, even 
with a different sparse oracle. Conversely, there is a (3 - 2’-*)-query nonadaptive machine which, 
relative to a sparse oracle, cannot be simulated by any k-query adaptive machine, with any sparse 
oracle. 

1. Introduction 

The comparison of adaptive and nonadaptive computation has been investigated 
in many different forms. It is often observed that adaptive computation is more 
powerpal than nonadaptive computation, if certain restrictions are put on the 
computational models. However, when we lift these restrictions, the comparison 
becomes more difficult. Consider, for instance, the simple example of binary versus 
linear search. Assume that we want to compute a function f(n) which has the 
property that 1 “f(n) s n. Also assume that an oracle is available to answer questions 
of the type “Is f(n) < c ?” for any constant c. Then, an adaptive binary search can 
Gnd f(n) by making only [log n 1 queries but a nonadaptive search has to make 
n - 1 queries to the oracle to findf(n). However, if the oracle 1s more powerful and 
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can answer questions of the type “Is f(n) E S ?” then a more clever nonadaptive 
search can also find f (n) in [log n 1 queries. (For instance, if n = 16, then a nonadap- 
tive search can be done by the following four queries: “f(16) E { 1,2,. . . , W”, 

“f(16)~{1,. . . ,4,9,. . . ,12}?“, “f( 16) E { 1,2,5,6,9,10,13,14}?” and “j( 16) E 

{1,3,5,. . . , 15}?".) 

In complexity theory, adaptive computation using a query type device is formally 
modeled by polynomial-time Turing reducibility ( <F-reducibility) and its counter- 
part for nonadaptive computation is polynomial-time truth-table reducibility 

( <&-reducibility). There have been extensive studies on these reducibilities. We 
review some of the recent results. Ladner, Lynch and Selman [ll] first separated 

6 F-reducibility from s & -reducibility in the simplest form: there exist sets A and B 

such that A C: B but A 6 & B. In addition, sets A and B are constructed to run in 
deterministic time 2O(“) (i.e., A, BE EXPTIME). 

A more general comparison is to consider the reduction classes defined by sparse 
sets under various reducibilities. Let r = T or tt, and Ce a class of sets. Define P,( %) 
to be the class of sets A which are sr- reducible to sets in Ce. Let TALLY be the 
class of all tally sets and SPARSE the class of all sparse sets. The class &( SPARSE ), 
which denotes the class of sets < ’ -Treducible to sparse sets, has played an important 
role in recent studies of structural complexity theory. Among other results, Karp 
and Lipton [8] provided an interesting characterization of &( SPARSE): it is 
equivalent to the class of all sets which are computable by circuits of polynomially 
many gates, or the class P/poly. Book and Ko [5] pointed out that this class is 
equivalent to the class of sets s: -reducible to sparse sets: P/poly = PT( SPARSE) = 
Ptt( SPA&E). Moreover, they are also equivalent to the classes &( TALLY) and 
Ptt( TALLY). Therefore, s F-reducibility is no more powerful than G [-reducibility 
as long as oracles are restricted to be sparse. 

In a more recent paper, Tang and Book [12] considered the equivalence classes, 
instead of reduction classes, defined by sparse sets. For r = T or tt, and any class 
‘e, let Er( %‘) be the class of sets A for which there exists a set S E %’ such that 
A s ,’ S and S s ,’ A. Tang and Book compared the classes EF( TALLY) with 
E&( TMJJ’), and showed that Ei( TALLY)s EF( TALLY). (The question of 
whether E #PARSE) = E F( SPARSE) remained open.) This result, together with 
the result of Book and Ko [5], showed that the relative power of adaptive versus 
nonadaptive query machines depends very much on the specific formulation of the 
question. 

In addition to the unbounded reducibilities cp - -,- and s &, the bounded versions of 
these reducibilities have also been studied extensively. Let r be either T or tt. For 
each integer k 2 1, we say that A is 6 &reducible to B, and write A G [., B, if A is 

s%educible to B by an r-type query machine which, on any input, only makes k 

queries- It is natural to compare the power of these reducibilities. First, for the 
simple separation results, Ladner et al. [ 1 l] have shown that there exist sets A and 

uch that A $‘,‘,+,l_tt Thus, in nona ptive oracle computation, 
ing more queries yields more power of computation. is idea is further explored 
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by Amir and Gasarch [l], Beige1 [2] and Goldsmith et al. [6], who considered the 
structure of sets relative to which a k-query machine is stronger than a (k - l)-query 
machine (called terse sets), and sets relative to which a 2k-query machine can be 
replaced by a k-query machine (called cheatable sets). 

Regarding the relationship between s I_,,-reducibility and s &reducibility, it is 
clear that for each k 2 ?, a k-query adaptive machine can be simulated by a 
(2k - 1).query nonadaptive machine. Therefore, we have, for all sets A and B, 

By straightforward diagonalizations, we can show that the above relations are 
optimal. That is, for every k 2 1, (a) there exist sets A and B such that A < L_T B 
but A s$-21_tt B, and (b) there exist sets C and D such that C G rk+l)_tt D but 
C S E_T D (see Corollary 3.3 and Theorem 4.1). The result (b) above also implies 
that the intuition that asking more queries yields more computation power is true 
in adaptive oracle computation. (Similar results have been reported in [4] in the 
recursion-theoretic setting.) 

In addition to the simple separation results, many researchers have studied 
reduction classes with respect to bounded reducibilities, in particular the reduction 
classes defined by sparse oracles and oracles in NP. For any complexity class %, 
we let &_r( %‘) be the class of sets which are s L-,-reducible to some set B E 55’. Kiibler 
et al. [lo] have shown that the classes Pk_tt( NP), k > 0, define a truth-table hierarchy 
in A: which is nicely interwined with the boolean hierarchy in A!. Kadin [7] showed 
that this hierarchy is a properly infinite hierarchy unless the Meyer-Stockmeyer 
pclynomial-time hierarchy collapses. Beige1 [3] has shown that for every k a 1, 

P,-,(Np) = &k-l)-tr(NP)* 

For the reduction classes defined by sparse oracles, Book and Ko [5] showed 
that for each k 3 1, Pk_tt(spAR%) 5 &+l)_tt (SPARSE). In other words, there exists 
a set which is computable by a polynomial-tine (k + 1)-query nonadaptive ma+ine 
relative to a sparse oracle but it is not computable, relative to any sparse set, by 
any po’lynomial-time k-query nonadaptive machine. This result indicates, in a 
stronger form, that k+ 1 queries provide more information than k queries in 
nonadaptive oracle computation. A natural question then asks whether this is true 
if the queries are made in an adaptive form, and, in an even stronger sense, whether 
this is true if k + 1 queries are made in a nonadaptive form but k queries are allowed 
to be made in an adaptive form. These are t e questions to be investigated in the 

current paper. 
From the basic relations between < E_,,-reducibility and s F--r-reducibility men- 

tioned above, it follows immediately that 

RSE& Pk_T(SPARSE)C ~z~-,,_t,(SPA 

The main results of t 
inclusive relations are 

ern with the questions of w 
e second inclusive relatio 



54 K.-l. Ko 

optimal. That is, for every k 3 2, 

Pk_T( SPARSE) SZ &Q_~~( SPARSE). 

This result immediately implies that for every k b 1, 

P(k+,,_T(SPARSE) # P&SPARSE). 

For the first inclusive relation, we can only give a weak result that for every k 3 2, 

p,_,,(SPARSE) sz P&SPARSE), 

where /k = 3 l 2’-*. In other words, the relations between P,_,(SPARSE) and 
P,,_,,( SPARSE) for h, k > 1 (they are obviously equal when h = k = 1) are as follows: 

(I) PkJSPARSE) s: P,,_,,(SPARSE) for all h 2 2k - 1; and PkJSPARSE) SZ 

P,,_,(( SPARSE *I for all h s 2& - 3. 
(2) P,,_,,(SPARSE) 5 Pk_T( SPARSE ) for all h d k; and P,,_,,( SPARSE ) SZ 

Pk_T( SPARSE) for all h 3 a - zk. 

(3) Ph_JSPARSE) and Pk_T( SPARSE) are incomparable for all h and k such 
that $2ksh<2k-2. 

(4) Whether or not P,&SPARSE) is a subclass of Pk_,(sPARSE) is unknown 
for h such that k<h<&2k. 

The proofs for these results are by diagonalization. The main technique is an 
inductive construction together with a careful use of the pigeonhole principle. This 
technique has been used in [S] and 193 to obtain similar separation results. All of 
the sets witnessing these separation results can be constructed to be in EXPTM4E. 
The inductive construction for the result (2) involves a complicated case analysis. 
It seems that any big improvement over result (2) on the bound of i-2& would 
require a different proof technique. 

Finally we remark that it has been proved in [S] that for every ka 2, 
P& TALLY) = P,.,,( TALLY), because for any tally set T we can embed all 
necessary information about a &,-reduction to set T in the following tally set 
~1 = {O(i,. . . . . iA.“,) 1 w, is a 2&-bit string encoding a k-tt-condition t, and 

t(XT.(Oil) , . . . ,,vT(Oi,)) = 1). Th ere f ore, the classes P&_tt( TALL Y) and P&_T( TALL Y) 
are equivalent for all k 2 1. In fact, they are all equivalent to P,.tt( TALLY). 

efinitisns 

In this paper we will consider the alphabet C = (0, 1). We denote by 1x1 the length 
of a string x and by 11X 11 the cardinality of a set X. For a set X, xx denotes the 
characteristic function of X, and The empty string is denoted by h. 

It is convenient to identify strin 
define a function L: A!--+ C* by L 
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in C* under the lexicographic order. In particular, for every k 2 1, 42k - 2) = 1 k-1. 
We will often drop the function name L-’ and write s to denote the number L-~(S), 
and s+ 1 to denote either the number L-‘(S)+ I or the string C(L-l(s)+ 1). 

We assume that the reader is familiar with Turing machines, oracle Turing 

machines and their time complexity. In the following, we define polynomial-time 

k-tt-reducibility and k-T-reducibility. For any integer k 2 1, we say that set A is 
polynomial-time k-&reducible to set B, and write A s r+ B, if there exist polynmnkd- 

time computable functions J and g such that for all X, f(x) is a list oc k strings, 

g(x) is a truth-table with k variables (i.e., a table specifying a boolean function on 
k inputs), and x E A iff the truth-table g(x) evaluates to true on the k-tuple 

(X&I )9 . . . , X&Q)) where f(x) =(x1, . . . , xk). 

To describe s kq+educibility, we first establish some new notation on binary trees 

of height k. Let T be a complete binary tree of height k. For each s E C* of length 
s k - 1, we write T(s) to denote the sth (or, more precisely, the ?( s)th) node 
under the breadth-first ordering. In other words, T(h) is the root, and for each s 
of length k - 1, T(s) is a leaf, and for each s of length < k - 1, T(s) has two children: 
left child T( SO) and right child T( sl). 

For any k 3 1, we say a function f on input x generates a tree of height k if f(x) 
is a list of 2”~* strings(x,,x,,x,,x,,,. . ., xl~ -I). We will interpret the output off(x) 
as a tree TX of height k such that T,(s) = x,~ for all s of length Sk - 1. For any 
integer k 2 1, we say that set A is polynomial-time k-T-reducible to set B, and write 
A s F_T B, if there exist polynomial-time computable functions f and g such that 
for all X, f(x) generates a tree of height k, g(x) is a truth-table with k variables, 
and XE A iff the truth-table g(x) evaluates to true on the k-tuple (x&x,), 

Xe(&,), l l l 9 x&s, S/&-l )), where each bit Si, 1 s is k - 1, is defined by s1 = x~(x,) 

and si =xs(Xs, s _,), for i> 1. 
For any complexity class %, we let P,J CG‘) = {A 1 there exists a set C E % such that 

A 6 kqr C}, where r is either tt or T. Recall that a set S is sparse if there is a polynomial 
q such that for all n, /{x E SI 1x1 G n}lls q(n). Let SPARSE denote the class of all 
sparse sets. We assume a fixed enumeration { ph}Tz 1 of polynomials with nonnegative 
integer coefficients. For each h > 0, let SPARSE,, denote the class of sets S such 
that for all n, ll{x E S 11x1 s n}ll< ph( n). A set A is a rally set if A c {O}*. Let TALLY 

denote the class of all tally sets. 
In the proof of the main results, we will need to enumerate all s&reduction 

machines and all G E--r-reduction machines. Let (fi”‘} be an enumeration of all 
polynomial-time computable functions that for each input x yield a list of k strinfr, 
and {gi”‘} be an enumeration of all polynomial-time computable k-tt-truth-tables. 

Then, we can enumerate all < F_t,-reduction machines as ( l,;‘}, where each 
is defined by the ith k-&condition ge ator f ik' and the jth k-tt-condition evaluator 
gj” as described above. We write L( :‘f’, A) to denote the set of strings accepted 

bY i:’ relative to oracle can also enumerate all < L_-,--reduction machines 
;‘k) as { Ni,i }, where each NJ ith k-T-tree generator (i.e., the ith 

(2”-‘)-&condition generator) f (2h-') a e k-&co ition evaluator gi”’ as 
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described above. We write L( Ni,j , (‘I A) to denote the set of strings accepted by Ni,;’ 

relative to oracle A. 

3. A strong adaptive bounded query machine 

In this section, we show that there exists an adaptive query machine which ma 
only k queries to a sparse oracle A such that the set computed by this machine 
relative to set A is not computable, relative to any sparse oracle S, by any nonadaptive 
query machine which makes at most 2’ -2 queries. This result is optimal, as it is 

easy to see that a (2’ - I)-query nonadaptive machine can simulate a k-query 

adaptive machine. 

Theorem 3.1. For every k 2 2, P,+,(SPARSE) g P,,.,,(SPARSE), where m& = 2& -2. 

Proof. We let k 3 2 be fixed and let m& = 2& -2. Recall that a k-query adaptive 
machine is defined by two polynomial-time functions f and g, where for each JC, 
f(x) generates a binary tree of height k and g(x) outputs a k-tt-condition. We define 
a specific k-query adaptive machine N as follows. For any string x of length m&n 
for some n 3 1, write x as uouluoo. . . ull. . . up-l, where each u,, 1 s 1~1 s k - 1, is of 
length n. The machine N on input x produces a tree TX of height k, in which each 
node T;(s), I d IsIs k - 1, is attached with the string su,, and the node T,(h) is 
attached with the string 0”. We write T,(s) = su, and T,(h) = 0”. The machine N 
on input x evaluates the tree TX, relative to an oracle B, as follows: first N recursively 
computes the sequence (s, , s2,. . . , sd by s1 =xdT,W =xN’), and si+l = 

XS( T,(Sl l l OS,)) =XS(S~ l l l SPsl...s,), 1 s is k- I; and JVB(x) accepts iff the number 
of I’s in the sequence (s,, . . . , Sk) is odd. In other words, if N queries oracle B 
about string T,(s) and receives an answer “no” then the next query is T,(sO), 
otherwise the next query is T_J s 1); and N accepts x iff the number of “yes” answers 
is odd. 

For each set A, let Lk( A) be the set of all strings of length m&n for some n which 
are accepted by machine N relative to set A. It is obvious that Lk( A) s kq,- A. We 
will construct a sparse set A such that for all sparse sets S, it is not the case that 

Lk(A) s :,.tt S. This will allow us to conclude that Pk_T( SPARSE) G &,.,,( SPARSE). 
The construction is done by stages. For each pair (i, j), let Mi,j = Mi,J’k’. Recall 

that { ,j} is an enumeration of all G ,P,,.tt- reduction machines, where each Mi,j is 
defined by the ith polynomial-time mk-tt-condition generator fi’“~’ and the jth 
polynomial-time mk-tt-condition evaluator gimC Also recall that {P,,} is an enumer- 

mial functions (i, j, h), we will find an integer n = n, 
e such that L,( mA”, for all SE S 

rior to stage 1, we let 6 = 1 
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Stage e = (i, j, h). Let n be an integer satisfying n > r&?&l (so that the conditions 
established in earlier stages are not affected by the construction of the current stage), 
&I>2mk and mk’p&(?nkn))<26”, where q is a polynomial bounding the runtime 
of machine 1Mi.i (SO that the number of strings in SE SPARSE, which are queried 

by Mi,j on some string of length mkn is bounded by 2”“/?&). J,et n, = n. For each 
x, assume that fimk)(x) = (x,, . . . , X,,)m Consider the mk-tt-conditions gjmk)(X), for 
all x E Cm&“. Since there are only 22mk different mk-&conditions, there exists an 
m&t-conditioil t such that G, = {x E Cmkn 1 gjmk)(x) = t} has size ~2mk”-2”‘k. Fix such 
an mk-tt-condition t and let G = G,. Note that 11 Gil > 2(mk-S? Now we consider 
two cases. 

Case 1. The function firnk) is not one-to-one on G. 
Let x and y be two strings in G such that fi”k’(x) =fi”k’(y). Write x = 

UoU&+ . . up-1 and y = vovlvoo. . . ~~k-1, with each u, and each V~ of length n. Then, 
x # y implies that there exists s s 1 k-1 such that u, # v,. Let s be the smallest such 
index s, and assume that s = sls2. . . sI, where each s, is a bit 0 or 1. We assign 
‘T;(A) = 0” to B iff s1 = 1, and T,(s, . . . s,) = sl. . . s,u, ,... s, to B iff s,,, = 1, for all r 
such that 16 r s I - 1. Then we assign T,(s) = su, to B (and leave T,,(s) = SV~ to I?). 
Note that y agrees with x on the first (s - 1)n bits, and so the computation of M*(y) 
is exactly the same as that of M*(X) until it asks the query T,(s), for which it 
receives a different answer from the query 7”(s). (Note that we have assigned values 
to B in such a way that 7J s) will be the (I + 1)st query to B.) Since all later queries 
T,(d) and T,(f) with s’> s and s”> s receive answer “no”, we have x E 
&(B) c-4 ye &(B). However,fi”k’ (x) =fi”k’(y) implies that for any set S, x and 
y are both in L(Mi,j, S) or both in L(Mi,j, S). Thus, Gither z = x or z =Y satisfies 
the requirement z E &(B) @ Z& L( Mi,j, S). Let A, = A,_, u B. 

Case 2. The function j’irnk) is one-to-one on G. 
We consider two more subcases. 
Subcase 2.1. There exist an integer r, 1 < r < mk, and a string z, such that the set 

H,(z)={xE GIx,=z} has size IIH,(z)~(~~(~~-*~)“. 
Then, there exist two strings v, w E C” such that IIH,(z) n { ~}~(~k-*“‘ll~ 

2(mk-I-36)n 
and llHr(z) n { w}Z(~~-‘)~II > 2(m~-1-3S)n. (Let v be the string in C” such 

that II &(z) n { v}~(~~~‘~” II is maximized, and w be the string such that llHr(z) r) 
{ W}Z(V’)” II is the second largest. Then, 

II H,(z) n { v}Pm~-‘)” 113 11 H,(Z) 11 l 2-” = 2(m~-1-261”, 

and 

-4 , 2(mk-26)n _2(m,-I)n )*2-“32 (mk-l-36In l ) 

We will prove the theorem in this case 
little stronger than the intended result. state it in a separate lemma as follows. 
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Lemma 3.2. The following holds for all j, 1 s j s mk - 1. Assume that there exist a 
function f which yields, on input x, a list of j strings (x,, . . . , Xj), and a set G C_ 

( VI.. . V,k_j_l}E(j+“” for some strings vl , . . . , v,,,,.+~ E 2”, satisfying the following 

properties : 
(1) f is one-to-one on G, and for all x E G and all r, 1 s r 6 j, 1~~1 s q( m&; and 
(2) there exist strings II,,,,+ and wmr,-j such that 11 G n 4113 2(j-(Zm~-2j+1 ISIn and 

IIGn WI122 (j-(Zmk-2j+l)S)n . 
9 where 6 = {?I,. . . V,nk -j- 1 Vmr -j}Z j” and Wj= 

{ 01.. . tl,lk -j- 1 W,n, _i}Zj”a 

Then, there exists a set C such that 
(3) for each i, n sisn+k-1, )lCnZ’Jlal, and for each i, i<n or n+ksi, 

Cd?=@, and 

(4) for all SE SPARSE,,, and all j-&conditions t, there exists an x E G such that 

x E Lk(C) r-5 t(XS(xI), l l l 9 X,(xi)) =O* 

To apply Lemma 3.2 to Subcase 2.1, let j = trr.< - 1 and f(x) = 

(x, 9 l l 9 9 G-1 9 -‘Cr+lv ’ ’ l 9 x,,,~). Then, the function f and set H,(z) satisfy the assump- 
tions of Lemma 3.2. (Note that x, = z for all x E H,(z), and therefore, f must be 
one-to-one on H,(z); otherwise, f i (md would not be one-to-one on G.) So, we obtain 
from Lemma 3.2 a set C satisfying conditions (3) and (4). We verify that for any 
S E SPARSE,, and any m&t-condition t, there exists a string x E G such that 
x E L,,(C) e x ti L( Mi,j, S). Let to and t, be two (mk - I)-tt-conditions defined as 
follows: tb(bl,. . . , b,_,, b,+l,. l l 9 bm,)= t(b,, l l l , II,_,, 6, b,+l,. . . , bm,). Then, let 
6 = x&z), and consider t h. The set C satisfies condition (4) with respect to set S 
and ( mk - I)-&condition th. It means that there exists a string x E H,(z) such that 
x E Lk( C) e t&(x,), . . . , xs(x,_,), ,ys(xr+,), . . . , xs(xm,)) = 0. By the definition of 
tb, we have x E Lk(C) @ t(xs(xI), . . . , x~(x,,,,)) =O e x E L(Mi,j, S). 

Let A, = A,_, u C. 
Subcase 2.2. The condition specifying Subcase 2.1 does not hold. 
Then, for every set S E SPARSE,,, there are at most 

3 c IIH,(z)II <mk.ph(q(rnkn)).2(ml-*S)n< _.jn.2(mli_ts)n=2(m,-s)n 

r=l ZES 

strings in G having at least one X~ in S. Therefore, at least one x in G has all x,. in 
S. Let 0” be in set B iff t(0 , . . . ,0) = 0. Then, for any sparse set SE SPARSE,,, at 
least one x E G has the property that xs(x,) = xs(x2) = l l l = xs(xm,) = 0, and so 

XE L,(B) e t(x&), . . . , x~(x,,)) = 0 r-3 x E L( Mi,j, S). Let A, = A,__* u B. This 
completes stage e of the construction. 

By the above discussion, it is clear that set A = U:=, A, satisfies our requirement. 
It remains ro prove Lemma 3.2. 

. The lemma will be proved by induction on j - 1,. . 

irst assume that j = 1. Then f(v) outputs only one string xi. For any S E S 
since f is one-to-one on 6, there are at most p,,( q( mkn)) < 2”” strings x in G having 
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xl E S. Therefore, there exist strings x E G n V, and y E G n W, such that X, e S and 
y, ti S. Hence, for any M-condition t, we have t(~~(x,)) = t(0) = t(yy&,)). 

Recall that a string in V, must have the form v, . . . v,,~ _2vnil, _, v’ for some z.7’ E C “, 

and a string in W, must have the form v, . . . v,,,~-~w~,,-~ w’ for some W’E .G”. For 
convenience, let us rename each string v1 as v,(/, (and hence a string in V, has the 
form vovl voo. . . v,~-w,~-~~v’ for some 21’ E 2”). We assign strings On, 1 v, , 
NV,,, . . . , lk-3v,~-~ and lk-“() v,A-*~ to set C (but let lk%,~-~ and 1’-20~,~-~0 be in 
C). The above assignments force G n V, c Lk( C) and G n W, E Lk( C) if k is even, 
and GnV,GLk(C)and Gn W,~L~(C)ifkisodd.Therefore,x~L,(C)ey& 
Lk( C). Together with the property that for every SE SPARSE,, and every l-tt- 

condition t, t(x&,)) = HXS(YA we see that either x or y is a witness for condition 
(4). This completes the proof for the initial case of j = 1. 

For the inductive step, let j > 1. We consider two cases. (These two cases are 
similar to Subcases 2.1 and 2.2 in the proof of Theorem 3.1.). 

Case 1. There exist an integer r, 1 s rs j, and a string z such that the set 
H,(z)={xE Glx,= 2) satisfying 11 H,(z) n 4 11 a 2(i-‘2f11~-2’ “)‘)” or II H,(z) n Wj II 2 
2(j-(2m,-2j+2)S)n 

Without loss of generality, assume that II H,(z) n b$ II 3 2(j-(2m~-2j+Z,.S’n . Letf’( x) = 

( Xl 9 * . -9 h-1 9 %+I) . . ..Xj) and G’= H,(z) n l$. Then, similarly to Subcase 1.1 in 
the proof of Theorem 3.1, there exist two strings vmA -j+ 1, Wm,, -j+l E C * such that 
/G n t&II 22 (j-l-(2mA-2j+3)fi)n and IIG n Wj_,II 3 2’j-, -(2’nA-2j+3)S)n, where V;;_, = 

{ v,. . . ~~~-~~~~~-~+~}~‘i-“n and Us_, = { ~1. . l v,I-jW,~-j+~}~“-l’n. 

Thus, function f’ and G’ satisfy the assumptions of the inductive hypothesis. R:’ 
induction, we can find a set C satisfying conditions (3) and (4) (with parameter j - 1). 

Now consider a j-tt-condition t. We note that x, = z for all x E If’(z), and SO for 

any set S, t(XsCXI )9 l - l 9 XStxj)) is equal to r’(x.s(x,), l l -9 x&r-A 

XdT--A l l l ? xdx,h where t’ is defined by t’(b,,. ..,6,_,,6,+,,. .., b,)= 
t(b,, . . . , h-l 9 x&d, h+, 9 l l l 3 bj). By condition #, for any SE SPARSE,, and any 
j-tt-condition t, there exists an x E H,(z) n y such that 

xc L(C) ‘3 f(Xsb,), l l l , xs(x,-A x&+,), l - l , xs(x,)) = 0 

e t(Xsb,), l l l , X&j)) = 0. 

This completes the proof for Case 1. 
Case 2. The condition specifying Case 1 does not hold. 
For every string z and every r, 1s y s j, II H,(z) n Vi II < 2(J-(2m~-‘j+2)S)n. Therefore, 

for any S E SPARSE,, , there .are at most 

i c ll~~(~) n ~11 < 2(j-(2mL-2j+2)S)n. 2Sn = 2(j-(Zm,-2j+lM)n 

r=l ZES 

strings x in Vj having at least one x, in S. It follows that there exists at least one 
x E G n V$ having Qs(x,), . . . ) = r(0,. . . , 0) for any j-&con 

Similarly, there exists a string y E having f(;y&+), . . . , xs(yj)) = t(o, - - l P 0). 



60 K.-l. Ko 

Recall that 4 = {v, . . . u,,,~ _,i}~j”. Let s = b( rnci -j) and write .c = slsz. . . o sI, where 
each s; is a bit 8 or 1. We assign 0” to C iff sI = 1, and sl . . . . siu ,,_ %, to C iff S,+l = 1, 

for i = 1, f - 1. Finally, we assign sl. . A/U, ,.,,,, to C (but sI. . .s+v ,,...,, to C). It ‘.,’ 

foVllows that V, E L,(C) iff Wj c f.,(C) (both are true if s contains an even number 
of l’s, and both are false if s contains an odd number of l’s). 

Now, for any SE SPARSE,, and any j&condition t, consider strings x E G n 4 

and y E G n rWj with t(x.s(~,), . . . , xs(xj)) = t(0,. . . ,0) = ~(xs(yi), ‘ . . , x~(J>)). We 
have constructed set C such that x E Lk( C) @ ye Lk( C). Thus either x or y is a 
witness for condition (4). This completes the proof of Lemma 3.2. El 

Corollary 3.3. For every k a 2, there exist sets A and B such that A s [_T B but 

A 6 f”,,_,* B, where mh = 2” - 2. 

3 1, P,I,+&SPARSE)z P,_,(SPARSE). 

4. A strong nonadaptive bounded query machine 

To study the ability of adaptive bounded query machines to simulate nonadaptive 
bounded query machines, we first prove that there exist sets A and B such that A 
is (-[ -reducible to B by a (k + 1 )-query aionadaptive machine but is not 6 T-reducible 
to 13 by any k-query adaptive machine. 

Theorem 4.1. For any k 3 1 h ihere exist .wts A and B such that A $“‘+, ,_ll B but 
‘4 g ;_ r B. 

roof. Let k 2 1 be fixed, and tar each pair (r’, j), let N,,j = N$‘. For any set B, let 
L(B) = (0” [the number of strings in the following list that are in B is odd: 
(O”, 0” 1,O” lZr . . e , 0" 1’)). Then, it is ebvious that t( B) 6 rk+, )_tt B. We will construct 
a set B such that for every 6 r.T-reduction machine N,,j, there exists an integer n 

such that 0” E L(B) @ 0” g L( N,,,, B). This will allow us to conclude that 

t(B) & B. 
We construct set B by stages. Assume that the runtime of machine !V,,j is bounded 

by a polynomial 9t., where e = (i, j). Let B,, = 8, and n,, = 1. 
In stage e = (i, j), we choose an integer n such that n > 9r_,(n,_,) and n > kn,_, 

(so that the conditions established in earlier stages are not affected by the construction 
of the current stage). Let n, = n. Then, we simulate N,,, on input 0” using oracle 
B,.-, . Note that among the k + 1 strings O”, 0” 1, . . . , O”l’, there are at most k strings 
being queried in this computation. Let 0” 1’ be the shortest string in this list which 
is not eried, and let (._ I v (0” 1’) if the computation of N$-1(O”) rejects, 
and le the com!x_ttation o 

by f++J:; ' 

cepts. Since O’T’ is not queried 

follows that NY; (0”) accepts 
e as that of NY; -‘(O”‘). 

i ,O”l’}=fl iff O”eL(B,): 
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C’ 2 I oice of the inte er RI,, it is clear that L( 
for all s L_+=eduction machine Ni,j* Cl 

Next we compare the reduction classes defined by sparse sets. For every int 
k 2 2, let Ir( = 3 l 2”-“. We will prove that there exist a polynomial-time nonada 
query machine which makes lr; queries to oracles, and a sparse oracle 
the set computed by this machine relative to A is not computable, relative to any 
sparse oracle, by any polynomial-time adaptive query machine which makes only 
k queries. 

Theorem 4.2. For any k 2 2, P,,.J SPARSE) g P,_,( SPARS 

Proof. For each set A and each pn 3 1, let 

Lt. ,(A) = b, l . l um 1 iu,l = l l l = [u,,,I = n; the number of strin 
following list that are in is odd: 
0 M ( 11 + 1 ) 

9 40 
( m - 1 H 18 + I ) 

****v up.. UnJ. 

Then it is clear that L,,,(A) s p,_*, A. For each k 3 2, we will construct a sparse set 
A such that for every sparse set S, it is not the case that LI,(A) s r_r S. TEAS will 
prove the theorem. 

The proof proceeds by stages. Recall that the (i, jlth < [_,--reduction machine 
{ N$‘} is defined by the ith polynomial-time height-k tree generator ji2’ ” and the 
jth polynomial-time k-tt-condition evaluator gj”‘. We fix the integer k 2 2, and let 
Ni.j = N@‘. In stage (i, j, h), we will find an integer n such that L,,(A) n 2”~-“” f 
L( Ni i, S)nZfr~-“n for alI sparse sets S E SPARSE,, . We choose a constant 
S = l/(81,), and let Ao=O, n,= 1. 

Stage e = (i, j, h). Assume that the runtime of the machine IV,., is bounded by a 
polynomial p’. We choose an integer n such that n > lkn,_, (so that the conditions 
established in earlier stages are not affected by the construction in the current stage), 
Sn > 21,, and p,,( p’( ( lk - 1)n)) c 2’” (so that the number of strings y in S E SPARSE,, 
which are queried by Ni,j on some input of length Zkn is at most 2”‘). Let n, = n. 

Consider the k-tt-conditions g:“(x) for all x E 2”~ -’ “‘. There are only 2” different 
k-tt-conditions. So there must be at least one k-tt-condition t such that G, = 

I= PA-“‘, lg.;“‘(x) = t} has size 32”~-““-11 3 2”~-‘-‘? We fix such a k-tt-condi- 

tion f, and let G = G,. Next, we will construct set A, by an inductive construction 
which involves some complicated case analysis. We state this inductive construction 
in a separate lemma. 

For each j 2 2, define p, recursively as follows: /3? = 8, /3,+ 1 = L/3, + 3; that is, 

P,=111*2’-‘-3. Note that S=1/(8/&1/(2&). 

3. The ,foflo holds for all j, 2 s j 6 k. Assume that there exist a 

+ reduction machine ,,, de$ned by Q height-j tree generator f and a fixed j-tt- 

conditiont,andasetGc(u,...u,,,)~”~-”-””forsomeu,,...,ts,in 
I), WCh that 

(1 b the runtime &machine Nj., is bounded by pol>womial p’, and . 
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(2) ~~G~~~2”~fy-‘-‘mIi”’ fotsome y~0 and some cy, Osa<&-pj+l. 

‘971en there exists a set C such that 
(3) strings in C are of theform u,. . .u,,,v,,,+~. . .v,,,+,O”h-“I-‘-““‘+“, where 0~ is 

lk - m - I and v,,,+ , , . . . , v,,, + i E 2 “, 

(4) 11 C 11s 2’, and 
(5) foreverpet SESPARSE,,, theset D={wEG~~EL(N,;,,S)@ weL,,(C)} 

has size II Dll 2 2’Y-‘Lr+~~‘ci”, ify>O, and has size IlOll> ify=O. 

Let _f=fizA “, and I the M-condition with IIG,(( a 2”~-I-“‘,. We observe that 
machine IV,,, and set G satisfy the assumptions of Lemma 4.3. Note that here we 
have m=O, y=O and cy= 1. So, we may apply Lemma 4.3 to obtain a set C of 
strings of the form vl . . . v~O”~-~-““,+” such that IlCll s 2k and such that for every 
set S E SPARSE,,, there exists a string w E G such that w E LIJ C) e w ti L( N,.,, S). 
Since M’ E G implies that w E L( &,, S) @ w E L( Ni,j, S) for every set SE SPAkE,,, 
w is a witness to the requirement L,,(C) Z L( Ni,j, S). We let A, = A,_, u C. This 
completes Stage 4. 

It is quite clear from the choice of n, that if we let A = Urz l A, then for every 
6 [_,-reduction machine N,,j and every S E SPARSE,,, LI, (A) n Z”h-‘)” # 
L( Ni,i, S) n Z”k-““. So the theorem is proven. It remains to prove Lemma 4.3. 

roof of Lemma 4.3. We prove the lemma by induction on j = 2, . . . , k. First assume 
that j=2. Then, l,=3. For each x~X”k-‘,“, assume that the tree TX generated by 
.f( s ) has nodes T,(h) = xh , T, (0) = x0, and 7;-( 1) = x, . For each z and each string 
s=h,O, 1, let H,(z)={xEG~x,=z}. Let U,,,={u ,... u,,,}Z”A-“I-I)“. Then, GE U,,, 
and 11 G 11 2 2”+y-‘,““. Now consider the following three cases. 

Case 1. There exists a string zh such that II HA(z 2 2”+y-‘tr+2”)‘, . 

Then, we claim that there exist strings u,,,+~, . . . , u,,,+~,_~, u,,,+~, v,,,+~ E Z”, 1 s 4 s 
I,-m-y-2, such that 

holds for both E = U,,,+y and E = Vn,+y, where u m+y = 

{u,. . .lI ,,,+‘( I~~,,,+q)~“~~,“~‘l~“” and V,,,+4 =(u,. . .u,,,+,,-,v,,,+~}~~‘~~“‘~~~““. 

For convenience, let H = H,( z,). For i = 1,. . . , /A - m - y -2, recur- 
ne strings u,,,+,, v,,,+, and sets U,,,_, and V,,,., as follows: let u,,,+, be the 

string in Y such that 11 H n {u, . . . . u,,,+ ,_, u,,,+,}lW”,-‘--I “, II is the largest among 
all choices of II,,!., in Y, and let v,,,,, be the string in 2” such that IIH n 

1 14, . . . u,,, + , t o,,, * , ):! ‘I “’ ’ ’ “I II is the second largest. Let U,,,+, = 
1 11,. . .u,,,+, ~I~,,,+,)~“~-“,-‘-“‘~ and V”‘+i={ul.. .u”‘+‘_~v’~+i}~“~-“‘-i-““. 

Now let q be the small st i, 1didl~-m-y-2,suchthat 

2 
(I* y lIt+?K?s)rl( 

-- II f-7 a/,,, + I II 5 II fi u,, + I II =G 2 (2ty-(cr+2~fi),l-‘, 
. 
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We need to show that such a q must exist. First note that if i = lk - m - y - 2, then 

11~ n u,+~II s II u,,+~II =2(/k-~~l-i-ll~~ ,2(I+~)n <2tl+y-(u+2)A)n-la 

So, we can let q’ be the smallest i such that IiH n Uma+i(l< 2”+y ‘r’+2”)‘1-‘. Note 
that IlHn U,+qe_,ll >2"+y-(u+2)')"-2. Next assume, by way of contradiction, that 

II H n V,+i II < 2(‘+y-(u+3)‘)n 

for all i, q’s i s IA - m - y - 2. Then, we claim that II H n U,,,, 112 
2(2+y-(a+2)fi)rl-(i-y’+3) for all i, q’s is lk - m - y -2. In particular, when i = 
Ir( -m- y- 2, we have IIH n U,,+illa 2~2~y~~u~~~~~'~~~'~~3~>2~'~~'n, which contra- 

dicts with the fact that II &,+; II = 2(1+y)‘*. This proves the existence of such a q. 
It remains to check the claim, which can be done by a simple induction. We 

observe that if IlHn Unlti_,Il 32 (2+y-(tr+2)fi)n- fi-q’+2) and IlHn V,,,+JI < 
p+y-(a+3b5)n 

3 then for all v E Y’, V f Um+iv we have IW n 

i up.. wn+i-I 0 P 
(IA-m-i-l)n II 2 < (I+y-(cr+3)b)tI 

, and hence 

IIHn U,tilla IIHn ~~~+i_,I~-2’1~2”+y-‘“+3’g’” 

This completes the 

32 (2+y-(a+Z)b!t1-(r-y’+2) -2 tZ+y-(u+3)Ci)n 

32 (2+y-(~r+t)S)n-(i-y’+.3) . 

proof of the claim. Cl 

NCW we consider the following subcases. 

Subcase 1.1. There exists a string z. such that I[ f&( zh) n I-&,( zo) n E 113 
2(l+y-(n+mn for E = Urn+++ or E = Vm_,. 

Without loss of generality, assume that the above holds with E = Um+y. We further 
consider two sub-subcases. 

Subcase 1.1 .l. There exists a string z, $uch that !I Hh( z,) n H,,( ZJ n W,( z, ) (-I 
url+crII 3 2 

(l+y--(u+7)s)n 
. 

To define set C, we separate the case of y > 0 from the case of y = 0. First assume 
that y> 0. Then, similarly to the argument in Case 1 above, we can find strings 

Um+q+l,*=*, Um+y+r-I 9 U tn+y+r 9 V m+q+r E Z”, with m+q+rsl, -y-l, such that 
~(y-~a+xml 

S /H n E 11~ 2(1+y-(*+7’AJ”-2 holds for both E = Umiy+r and E = 

V m+q+r, where H = K(h) n H,,(h) f-7 Wz,), Un,+y+r = h.. . ~,,,+~+r-,~m+~+r)~(“‘, 

V m+q+r = { ui...u m+y+r-IVm+y+r 12 (“’ and c = IA - m - q - r - 1. We assign the string 

UI...U m+y+r-I U m+y+r 0 ““‘+” to set C and the string u?. . . Um+y+r_Ivm+y+rO 
c.( t1+ 1 ) to c_ 

If y = 0, then we can find strings u,,,+~+, . . . . , u,,,+~+~- 1, u~+~+~, v~+~+~ E Z”, with 
r = /k -m -q - 1, such that both w, = u,. . . u,~+,,+~_~u~+~+~ and wz = 

U,...U V m+y+r-I m+y+r are in ,( z,). We assign M?, to C and + 

to C. 

Subcase 1 J.2. The condition specifying Subcase 1 .I .l does not hold. 
In this case, Jve will do the same thing ubcase 1.1.1 wit 

A(%) n (G) (ins 
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Subcase 1.2. The condition specifying Subcase 1.1 does not hold, and there exists 
a string zl such that 

for E = U,,,+q or E = V,‘l+y. 
This case is symmetric to Subcase 1.1. We do similar assignments to C and to C. 
Subcase 1.3. The conditions specifying Subcases 1.1 and 1.2 do not hold. 
We assign the string ul. . . u,,,+(~_ ,u,,,+yO”~-“‘-4~““‘+” to C and 

Ul l . l ~4,,+y- i h+q 
(yI~-“‘-q-lu’l+l) to (y 

The above completes the construclion of C in Case 1. Before we continue the 
construction for Cases 2 and 3, we first show that the set C constructed above 
satisfies, when Case 1 holds, the requirements of the lemma. 

It is clear that the strings in C have the specified form and that the size of C is 
bounded by 2 < 4 = 2’. To check condition (5), let z, be the string such that 11 HJ z,) II 3 
2 t:! + y-(n+‘bbbn 

l We consider the subcases described above. 

If Subcme 1.1.1 holds, then set C satisfies condition (5). 

roof. Let SE SPARSE,, be given. First let us assume that zh e S and y > 0. Let z. 
and z1 be strings such that 11 H n U,,‘+q 11 a 2(‘+y-(6+7”)“, where H = Hh(zA) n 

(zo) n Hl(zl). Then, either W n U,,,+y c U &,, S) (if W, XS(Z~)) = 0, or H n 
u m+q c UN,,,, S) (if WA xs(zo)) = 0). 

On fhe other hand, we have assigned string ul. . . u,,,+~+~_~u~‘+~+~O~(~+‘) to C and 
string ui l m . u,,‘+q+r-l~,,,+q+rOc~‘~~” to C. As a consequence, H n U,,,+y+,. c L,,(C) and 

JHn K+y+r - c Go. So, either Hn U,,,+q+c or Hn Vnl+q+,. has the property that 
all its strings x satisfy 

XE UN,,, 8 a xfz L,,(C). 

That is, II Dlla 2’Y-(~+X’*“‘. 
Note that when y = 0, the same argument proves that either x = wI or x = w2 has 

the property that x E t( N;;., S)ex E! L,,(C). Therefore, D # (b. 
For the case when zh c S, it is not hard to see that a symmetric argument can be 

used because the condition specifies Subcase 1.1 .I is symmetric. Cl 

. If S&case 1.1.2 holds, then set C satisjies condition (5). 

Let SE SPARSE,, b en. For Subcase i (1 2, P.‘-z note that if zh E S then the 
is similar to Subc 1.1 and a similar proof exrsts. We assume that zh E S. 

e note that zh E S im s that for all strings x E H,( z,), with xl E S, x E 

other hand, we assigned string 
I( 1,O) = 0, and assigne one of strings 

“1 + 1) t r -- I V ‘n+y+rO(‘O!+” herefore, for each 
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String x E H&d n &h)n &,+(I with XI E s and XE U,,l+y+ru V,,l+4+r, it has the 
property that x E U y,.,, S) w x IZ L,,(C). Note that we have 

II{x E H*(&) n H&CJ) n U,*+q 1% E SIII 

s c W&A) n &hJ n 
ZES 

< 2(l+y-hr+71fi)n . 26,’ = 2 (I+y-(a+6)fi)n 
3 

11 H&J n H&,,) n U,,l+4+rl( -c~(‘+Y-(~+~)~)~-~ 

IIH,(z,)n H,(z,)n V,n+q+rJI <2(i+y-(nrs)ii)n-2_ 

So, 

IPII a IIHhWn H,W n ( Un+y - Un+y+r - vn+q+r) n {x Ix, & S}ll 

> 2(l+Y-(u+6)fi)n . 

This completes the proof of Lemma 4.5. (Both cases of y > 0 and y = 0 are proved 
by the same argument above.) q 

Lemma 4.6. If Subcase 1.2 holds, then set C satisfies condition (5). 

Proof. The proof is symmetric to that for Lemmas 4.4 and 4.5. c! 

Lemma 4.7. If Subcase 1.3 holds, then set C satisjies condition (5). 

Proof. In Subcase 1.3, we have assigned strings u,. . . u,~+~_,u,,+~O(‘~-~~-~-““~+‘) 

and tll. . . u,~+~_~u~+~~~‘~~~*~~~‘~~“~” to C and c, respectively, so that U,,,+q c_ L,, ( C ) 
and Kn+q G Lt,(C). 
On the other hand, note that all strings x in HA(q) with x0@ S and x, E S must 

have the same membership in L( IV,:,, S), depending upon whether t(Xs(z,.j, 0) = 1 

ornot. Sinceforaqstringz,)) Hk(z,)nHo(z)n &+J and II HA(q) n H,(zjn U~l+qIj 
are bounded by 2’ ‘+y-‘u+5’b “*, there are at most 

.p+y-(“+Slmn .2”“.2~2 I I+y-(u+4)b)rr 

strings x in H&)n U,,,+q having either X,,E S or x, E S. The same property holds 
fo* set H*(q) n Vm+y. SQ, one of the sets H,(z,)n U,ll+y and H,(z,)n Vm+y has at 
leaa: 

2(l+y-(o+3mI _2~l+y-(n+4ml) (l+y-frr+4)fi),l :, 2 

strings x satisfying 

XE L(N,,,S) r-4 xe L,,(C). 
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The above four lemmas complete the proof for Case 1. Now we proceed to Cases 

2 and 3. 
Case 2. The condition for Case 1 does not hold, and there exists a string zO such 

that 11 HO( z,) 11 2 2” ’ y-(“+2)‘)“, 

Similarly to Case 1, we can find strings u~+~, . . . u~#+~_, , u,,#+~, u,~+~ E Y, 

lsq~I~-m-y-2, such that 
2’i+y-(U+3mn < _ 11 Ho( zo) n E 11 < 2(2+Y-‘a+2)fi)n-2 

holds for both E = U,,l+q and E = V,,l+y. Then, we consider the following subcases. 

Subcase 2.1. There exists a string z, such that II HJ z,) n Ho( zo) n E II 3 
2(1+y-h+5)h for E _ u - ,,,+y or E = V,,,+y. 

This case is exactly the same as Subcase 1.1. (Note that in the proofs of Lemmas 
4.4 and 4.5, we did not use the fact that II HJ z,) n U,,+J a 2(1+y-(at3)‘)n, which is 
the only difference between Subcase 1.1 and Subcase 2.1.) We construct C as in 
that case. 

Subcase 2.2. The condition specifying Subcase 2.1 does not hold. 
We assign the string ul.. . ~,+~-,u,,,+qOr”“+” to C and the string 

u,...u v oc’(“+” l,l+y-l m+q to c, where c’=lk-m-q-l. 

This completes the construction of C for Case 2. We check that, in this case, the 
set C constructed above satisfies the requirements of the lemma. Note that all strings 
in C have the specified form and that the size of C is bounded by 2 <4 = 2’. 
Furthermore, since Subcase 2.1 is exactly the same as Subcase 1.1, condition (5) is 
satisfied by C in that case. We need consider only Subcase 2.2. 

If Subcase 2.2 holds, then set C satisfies condition (5). 

This case is similar to Subcase 1.3. We have assigned strings 

UI l - ’ Unr+ y4Un,+y 0 (‘~-“‘-4-\)(~+l) and ul,. . umsq_, V ,,l+yO(ll-m-4-l)(‘l+l) to C and c, 

respectively, so that U,il+y c Li, (C) and V,,,+y c_ L,,(C). 
On the other hand, for every set SE SPARSE,,, note that all strings x in H,(z,) 

with x& S must have the same membership in L( IV,;,, S), depending upon whether 
t(O, x&J) = 1 or not. Since for any string z, II HJ z) n H,(z,) n &,+J is bounded 

bY 2 
(l+y-(tr+sh5~~l 

, there are at most 

strings x in having xh E S. The same property holds for set I-&,( r,J n 
V IPI + q * SO, one of the sets H&Z,,) n U,,,+q and If&,,) n V,pl+y contains more than 
+p+y-fa+JWr1 strings x such that 

--cE L(N,,,, S) a x6!! L,,(C). 

ows that [Idly 3 2”+Y-(‘k+4’R’r’, and the lemma is proven. 0 

Case 3. 
1.. . 

and 2 do not hold. e assign string 
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If Case 3 holds, then set C satisjes condition (5). 

roof. Note that in this case, all x in G but at most 2”+y-(n+“‘)n. 2”“*2 = 
2(2+y-(cY+l)I5)fl+l many have xh E S and x,lif S. For any x having this property, we 

observe that XE L,,(C) r U,. ..UmO(‘~-m-l)(“+l)E C e t(O,O)=O @ x$z 

u N,,, S). Thus, 

IID11 2 I~{xE Glx,@ S and x0@ S}ll 

22 (z+y-U6)n -2 (2+y-(u+I)s)n+l N& 2c+y-(R+l)is)n. 

This completes the proof of Lemma 4.9, as well as the initial step of the induction 
proof. Cl 

For the inductive step, we assume that k i 2 and 2 <j s k. Note that b_1 = b/2. 

Again, we consider two cases. 
Case 1 TheTc exists a sFring zh such that 11 k&( 2,) 11 3 2(‘/‘2+y-([~+a,-l+~)fi)r’. 
Similar to the argument in Case 1 of the initial step (when j = 3, we can find 

strings u,+ 1 9 l l ’ 9 U m+q-19 Um+q9 Vm+q ~zn, l~q~I,-m-y-1,/2, such that 
IIHk&&, El1 > 2(t,/2+Y-1-(cr+Pl_,+.l)fi)n 

holds for both E = U,,, and E = Vm+q, where LTm+q = 

{ u1 l * l Um+q-1Um+q 12 
(IA-m-q-l)n and Vm+q = {u, . . . u~+~-, vm+q}~~‘~-n’-q-l’n. 

Step A. Define f. to be the function which maps each string x to the left subtree 
of f(x) and to to be the (j- l)-tt-condition defined by to(bl, . . -3 bj_1) = 
t(0, 6,) . . . ) bj-1). Without loss of generality, we assume that the machine A$;,,l,,, 
defined by f. and to, has runtime bounded by p’ also. Also let G,, = H,( z,) A Unl+q. 
Note that 

Since (Y s flk -pi + 1 implies cy + pi-l + 3 s px: -pi- 1 + 1, we can apply the inductive 
hypothesis to machine A$,,,, and set G. That is, we can find a set C, satisfying 
conditions (3)-(5), with respect to strings u, , . . . , umtq and parameter j - 1. In 
particular, conditio.1 (5) states that for each SE SPARSE,,, 11 Doll > 2’Y-‘a+p~)s)n if 
y 3 1, and Do # Q) if y = 0, where Do = {w E G,,I w E L( y,; ,,,,,, S) @ w @ L,, (Co)}. (Note 
that pi = 2flj_I+ 3.) 

Step B. Define f, , t, and G, similarly: fi(x) is the right subtree of f(x), 

t,(h, l m l 9 bj-l) = t(l, b* 9 . . . , 6j_,), and G, = N,( z,) n Vm+q. By the inductive 
hypothesis, we find a set C, satisfying conditions (3)-(5). In particular, condition 
(5) states that for each SE SPARSE,,, 11 D,II 3 2’y-“r+p/‘6’t’ if y 2 1, and 
y=O, where D,={w~G,/wcL(f++f ,,,,,, S) @ wtL,JC,)}. 

Let C = COu C, and clblm that C satisfies conditions (3)-(5) (with respect to 
strings ul,. . . , un, and pat dmeterj). First note that II C II s II CJ + II C, II s 2’-’ + 2’-’ = 
2’. Also note that all strings in Co begin wit refix u,. . . Um+q_1um+q and a 
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JO. If Case 1 holds, then set C constructed above satisjies condition (5). 

roof. Let S E SPARSE,, and recall that D = {w E G 1 w E L( IV,;,, S) e w e L,,(C)}, 

and &={wE GOiwe L(N&,, S) w w IZ L,, ( Co)}. First consider the case that y > 0 

and zh E S. Then, by the definition of Co, 11 Doll 2 2(y-(“+Pl)‘)‘1. Note that for all x 
in Go= HA) n U,l+‘l, x E L,,(C) e x E L,, ( CO) (because all strings in C, begin 

with different prefixes from those in C,), and x E L( A$,, S) t-4 x E L( IQ,,,,,, S) 
(because xh = z, E S). So, Do c D and II D II 2 2(y-‘n+P~)B”’ . Similar results can be 
proved for the cases when y = 0 and/or when zh E S. We leave the detail to the 

reader. Cl 

Case 2. The condition specifying Case 1 does not hold. 
Then, we define function f. and (j - 1 )-tt-condition to as in Case 1. Let ‘y. = y + b/2, 

and Go= G. Then, by the inductive hypothesis, there exists a set Co satisfying 
conditions (3)-(5) with respect to strings ul , . . . , u,~,+~ and parameter j - 1. In 
particular, condition (5) states that for each S E SPARSE,#, II DoI1 s 2(y~-(a+p~-~)S)n, 
where Do = ( w E Go 1 w E L( IV,,,,,,, S) H w g L,, ( Co)} (because yo> 0). 

Let C = Co. Clearly strings in C have the specified form and II C II < 2j-’ < 2’. 

emma 4.11. If Case 2 holds, then set C constructed above satisfies condition (5). 

Let SE SPARSE,,. Similar to Case 1, for those x E Go with x,E S, x E 

9 9 e x E UN,; ,.,,,, 9. That is, 

IlDllb llD,n{xIx,~ s>II 2 IPoll - IbE Golw s>ll 

> 2% +Y-(a+P,._,'wl -2(',_,+Y-(a+P,_,+2)6),, .p 

22 q_,+Y-(cb+p,ml 
. 

Therefore, II Dll> 2’y-(tr+fi~““1 if y>O, and 020 if y=O. 0 

This completes the proof for the inductive step, as wel! as the proof of Lemma 
4.3. c3 

To help the reader understand the role of parameters y and pi in 
the above proof, let us look at an example. Let k = 4. Then lk = 12, and assume that 
we begin with a set G c C”‘l having IlGII 22”‘-‘I” (i.e., y =0 and cy = 1). 

e first ask whether there is a string z, such that II Hh( zh)/J a 2(6-2’S)n (p3 = 19). 
me that the answer is “no”. Then, we ask whether there is a string z. such that 

to 6 and p2 = 8). Assume that th 
strings u,, . . . , uy+ u,, vq in C” such that II 

‘11 ,Z 2(x-“ii”’ and 11 )( q,) n {u, . . . u,_, ~y}~(“-~“‘lJ 3 2(N-12”n. 
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Let Go= H&,,) n {u,. . . u~_,u~}P-~)‘~, and consider the leftmost height-2 sub- 
tree of f(x). By a rather ad hoc procedure (i.e., the procedure for the initial step 

of the above induction proof), we find a set CO such that D= 
{x E GO 1 x E LIA (Co) e x E L( IV,;, ,o, S)} has size IIDlla 2’h-Z06)n, where P4j;I 1o is the 
s L-r_reduction machine defined by the leftmost height-2 subtree &(x) (i.e., the 
subtree with the root xOO) and the corresponding 2-tt-conditions to. 

Now observe that among all x in H&Z,), at most 2(6-22fi”* l 2’” = 2(6-‘t”‘* many 
may have rryh E S (this follows from the assumption that there is no z, such that 
11 HJ z,) II 3 2(h-72fi)n ). So, at least one string x in D has x,E S. If z,E S, then this x 
ktnesses that x E L,,( C,) e x e L( A$,, S). 

Next let G, = &(z,) n {u,. . . u~_,z+,}Z(~‘-~)~ and repeat the above construction 
on G, with respect to the second height-2 subtree of the tree f(x) (i.e., the subtree 
with the root x0,). This will show that if z(+ S then there exists a witness x such 
that x E L,, (C,) a x E! L( A$,, S). Since strings in CO and strings in C, have different 
prefixes, the above requirements do not conflict with each other. So, set C = C,u C, 
satisfies the requirements of the lemma. 
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