
Theoretical Computer Science 82 (1991) 51-69
Elsevier

51

Department of Computer Science, Stare University of New York at Stony Brook, Stony Brook,

NY 11794, USA

Communicated by MS. Paterson

Received August 1987
Revised January 1989

Abstract

Ko, K.-I., On adaptive versus nonadaptive bounded query machines, Theoretical Computer
Science 82 (1991) 51-69.

The polynomial-time adaptive (Turing) and nonadaptive (truth-table) bounded query machines
are compared with respect to sparse oracles. A k-query adaptive machine has been found which,
relative to a sparse oracle, cannot be simulated by any (2’ - 2)-query nonadaptive machine, even
with a different sparse oracle. Conversely, there is a (3 - 2’-*)-query nonadaptive machine which,
relative to a sparse oracle, cannot be simulated by any k-query adaptive machine, with any sparse
oracle.

1. Introduction

The comparison of adaptive and nonadaptive computation has been investigated
in many different forms. It is often observed that adaptive computation is more
powerpal than nonadaptive computation, if certain restrictions are put on the
computational models. However, when we lift these restrictions, the comparison
becomes more difficult. Consider, for instance, the simple example of binary versus
linear search. Assume that we want to compute a function f(n) which has the
property that 1 “f(n) s n. Also assume that an oracle is available to answer questions
of the type “Is f(n) < c ?” for any constant c. Then, an adaptive binary search can
Gnd f(n) by making only [log n 1 queries but a nonadaptive search has to make
n - 1 queries to the oracle to findf(n). However, if the oracle 1s more powerful and

* Research supported in part by the NSF Grants CCR-8696135 and CCR-8801575.

0304-3975/92/$03.50 @ 1991-Elsevier Science Publishers B.V.

52 K.-I. Ko

can answer questions of the type “Is f(n) E S ?” then a more clever nonadaptive
search can also find f (n) in [log n 1 queries. (For instance, if n = 16, then a nonadap-
tive search can be done by the following four queries: “f(16) E { 1,2,. . . , W”,

“f(16)~{1,. . . ,4,9,. . . ,12}?“, “f(16) E { 1,2,5,6,9,10,13,14}?” and “j(16) E

{1,3,5,. . . , 15}?".)

In complexity theory, adaptive computation using a query type device is formally
modeled by polynomial-time Turing reducibility (<F-reducibility) and its counter-
part for nonadaptive computation is polynomial-time truth-table reducibility

(<&-reducibility). There have been extensive studies on these reducibilities. We
review some of the recent results. Ladner, Lynch and Selman [ll] first separated

6 F-reducibility from s & -reducibility in the simplest form: there exist sets A and B

such that A C: B but A 6 & B. In addition, sets A and B are constructed to run in
deterministic time 2O(“) (i.e., A, BE EXPTIME).

A more general comparison is to consider the reduction classes defined by sparse
sets under various reducibilities. Let r = T or tt, and Ce a class of sets. Define P,(%)
to be the class of sets A which are sr- reducible to sets in Ce. Let TALLY be the
class of all tally sets and SPARSE the class of all sparse sets. The class &(SPARSE),
which denotes the class of sets < ’ -Treducible to sparse sets, has played an important
role in recent studies of structural complexity theory. Among other results, Karp
and Lipton [8] provided an interesting characterization of &(SPARSE): it is
equivalent to the class of all sets which are computable by circuits of polynomially
many gates, or the class P/poly. Book and Ko [5] pointed out that this class is
equivalent to the class of sets s: -reducible to sparse sets: P/poly = PT(SPARSE) =
Ptt(SPA&E). Moreover, they are also equivalent to the classes &(TALLY) and
Ptt(TALLY). Therefore, s F-reducibility is no more powerful than G [-reducibility
as long as oracles are restricted to be sparse.

In a more recent paper, Tang and Book [12] considered the equivalence classes,
instead of reduction classes, defined by sparse sets. For r = T or tt, and any class
‘e, let Er(%‘) be the class of sets A for which there exists a set S E %’ such that
A s ,’ S and S s ,’ A. Tang and Book compared the classes EF(TALLY) with
E&(TMJJ’), and showed that Ei(TALLY)s EF(TALLY). (The question of
whether E #PARSE) = E F(SPARSE) remained open.) This result, together with
the result of Book and Ko [5], showed that the relative power of adaptive versus
nonadaptive query machines depends very much on the specific formulation of the
question.

In addition to the unbounded reducibilities cp - -,- and s &, the bounded versions of
these reducibilities have also been studied extensively. Let r be either T or tt. For
each integer k 2 1, we say that A is 6 &reducible to B, and write A G [., B, if A is

s%educible to B by an r-type query machine which, on any input, only makes k

queries- It is natural to compare the power of these reducibilities. First, for the
simple separation results, Ladner et al. [1 l] have shown that there exist sets A and

uch that A $‘,‘,+,l_tt Thus, in nona ptive oracle computation,
ing more queries yields more power of computation. is idea is further explored

Adaptive/ nonadaptive bounded query machines 53

by Amir and Gasarch [l], Beige1 [2] and Goldsmith et al. [6], who considered the
structure of sets relative to which a k-query machine is stronger than a (k - l)-query
machine (called terse sets), and sets relative to which a 2k-query machine can be
replaced by a k-query machine (called cheatable sets).

Regarding the relationship between s I_,,-reducibility and s &reducibility, it is
clear that for each k 2 ?, a k-query adaptive machine can be simulated by a
(2k - 1).query nonadaptive machine. Therefore, we have, for all sets A and B,

By straightforward diagonalizations, we can show that the above relations are
optimal. That is, for every k 2 1, (a) there exist sets A and B such that A < L_T B
but A s$-21_tt B, and (b) there exist sets C and D such that C G rk+l)_tt D but
C S E_T D (see Corollary 3.3 and Theorem 4.1). The result (b) above also implies
that the intuition that asking more queries yields more computation power is true
in adaptive oracle computation. (Similar results have been reported in [4] in the
recursion-theoretic setting.)

In addition to the simple separation results, many researchers have studied
reduction classes with respect to bounded reducibilities, in particular the reduction
classes defined by sparse oracles and oracles in NP. For any complexity class %,
we let &_r(%‘) be the class of sets which are s L-,-reducible to some set B E 55’. Kiibler
et al. [lo] have shown that the classes Pk_tt(NP), k > 0, define a truth-table hierarchy
in A: which is nicely interwined with the boolean hierarchy in A!. Kadin [7] showed
that this hierarchy is a properly infinite hierarchy unless the Meyer-Stockmeyer
pclynomial-time hierarchy collapses. Beige1 [3] has shown that for every k a 1,

P,-,(Np) = &k-l)-tr(NP)*

For the reduction classes defined by sparse oracles, Book and Ko [5] showed
that for each k 3 1, Pk_tt(spAR%) 5 &+l)_tt (SPARSE). In other words, there exists
a set which is computable by a polynomial-tine (k + 1)-query nonadaptive ma+ine
relative to a sparse oracle but it is not computable, relative to any sparse set, by
any po’lynomial-time k-query nonadaptive machine. This result indicates, in a
stronger form, that k+ 1 queries provide more information than k queries in
nonadaptive oracle computation. A natural question then asks whether this is true
if the queries are made in an adaptive form, and, in an even stronger sense, whether
this is true if k + 1 queries are made in a nonadaptive form but k queries are allowed
to be made in an adaptive form. These are t e questions to be investigated in the

current paper.
From the basic relations between < E_,,-reducibility and s F--r-reducibility men-

tioned above, it follows immediately that

RSE& Pk_T(SPARSE)C ~z~-,,_t,(SPA

The main results of t
inclusive relations are

ern with the questions of w
e second inclusive relatio

54 K.-l. Ko

optimal. That is, for every k 3 2,

Pk_T(SPARSE) SZ &Q_~~(SPARSE).

This result immediately implies that for every k b 1,

P(k+,,_T(SPARSE) # P&SPARSE).

For the first inclusive relation, we can only give a weak result that for every k 3 2,

p,_,,(SPARSE) sz P&SPARSE),

where /k = 3 l 2’-*. In other words, the relations between P,_,(SPARSE) and
P,,_,,(SPARSE) for h, k > 1 (they are obviously equal when h = k = 1) are as follows:

(I) PkJSPARSE) s: P,,_,,(SPARSE) for all h 2 2k - 1; and PkJSPARSE) SZ

P,,_,((SPARSE *I for all h s 2& - 3.
(2) P,,_,,(SPARSE) 5 Pk_T(SPARSE) for all h d k; and P,,_,,(SPARSE) SZ

Pk_T(SPARSE) for all h 3 a - zk.

(3) Ph_JSPARSE) and Pk_T(SPARSE) are incomparable for all h and k such
that $2ksh<2k-2.

(4) Whether or not P,&SPARSE) is a subclass of Pk_,(sPARSE) is unknown
for h such that k<h<&2k.

The proofs for these results are by diagonalization. The main technique is an
inductive construction together with a careful use of the pigeonhole principle. This
technique has been used in [S] and 193 to obtain similar separation results. All of
the sets witnessing these separation results can be constructed to be in EXPTM4E.
The inductive construction for the result (2) involves a complicated case analysis.
It seems that any big improvement over result (2) on the bound of i-2& would
require a different proof technique.

Finally we remark that it has been proved in [S] that for every ka 2,
P& TALLY) = P,.,,(TALLY), because for any tally set T we can embed all
necessary information about a &,-reduction to set T in the following tally set
~1 = {O(i,. iA.“,) 1 w, is a 2&-bit string encoding a k-tt-condition t, and

t(XT.(Oil) , . . . ,,vT(Oi,)) = 1). Th ere f ore, the classes P&_tt(TALL Y) and P&_T(TALL Y)
are equivalent for all k 2 1. In fact, they are all equivalent to P,.tt(TALLY).

efinitisns

In this paper we will consider the alphabet C = (0, 1). We denote by 1x1 the length
of a string x and by 11X 11 the cardinality of a set X. For a set X, xx denotes the
characteristic function of X, and The empty string is denoted by h.

It is convenient to identify strin
define a function L: A!--+ C* by L

Adaptive/ nonadaptive bounded query machines 55

in C* under the lexicographic order. In particular, for every k 2 1, 42k - 2) = 1 k-1.
We will often drop the function name L-’ and write s to denote the number L-~(S),
and s+ 1 to denote either the number L-‘(S)+ I or the string C(L-l(s)+ 1).

We assume that the reader is familiar with Turing machines, oracle Turing

machines and their time complexity. In the following, we define polynomial-time

k-tt-reducibility and k-T-reducibility. For any integer k 2 1, we say that set A is
polynomial-time k-&reducible to set B, and write A s r+ B, if there exist polynmnkd-

time computable functions J and g such that for all X, f(x) is a list oc k strings,

g(x) is a truth-table with k variables (i.e., a table specifying a boolean function on
k inputs), and x E A iff the truth-table g(x) evaluates to true on the k-tuple

(X&I)9 . . . , X&Q)) where f(x) =(x1, . . . , xk).

To describe s kq+educibility, we first establish some new notation on binary trees

of height k. Let T be a complete binary tree of height k. For each s E C* of length
s k - 1, we write T(s) to denote the sth (or, more precisely, the ?(s)th) node
under the breadth-first ordering. In other words, T(h) is the root, and for each s
of length k - 1, T(s) is a leaf, and for each s of length < k - 1, T(s) has two children:
left child T(SO) and right child T(sl).

For any k 3 1, we say a function f on input x generates a tree of height k if f(x)
is a list of 2”~* strings(x,,x,,x,,x,,,. . ., xl~ -I). We will interpret the output off(x)
as a tree TX of height k such that T,(s) = x,~ for all s of length Sk - 1. For any
integer k 2 1, we say that set A is polynomial-time k-T-reducible to set B, and write
A s F_T B, if there exist polynomial-time computable functions f and g such that
for all X, f(x) generates a tree of height k, g(x) is a truth-table with k variables,
and XE A iff the truth-table g(x) evaluates to true on the k-tuple (x&x,),

Xe(&,), l l l 9 x&s, S/&-l)), where each bit Si, 1 s is k - 1, is defined by s1 = x~(x,)

and si =xs(Xs, s _,), for i> 1.
For any complexity class %, we let P,J CG‘) = {A 1 there exists a set C E % such that

A 6 kqr C}, where r is either tt or T. Recall that a set S is sparse if there is a polynomial
q such that for all n, /{x E SI 1x1 G n}lls q(n). Let SPARSE denote the class of all
sparse sets. We assume a fixed enumeration { ph}Tz 1 of polynomials with nonnegative
integer coefficients. For each h > 0, let SPARSE,, denote the class of sets S such
that for all n, ll{x E S 11x1 s n}ll< ph(n). A set A is a rally set if A c {O}*. Let TALLY

denote the class of all tally sets.
In the proof of the main results, we will need to enumerate all s&reduction

machines and all G E--r-reduction machines. Let (fi”‘} be an enumeration of all
polynomial-time computable functions that for each input x yield a list of k strinfr,
and {gi”‘} be an enumeration of all polynomial-time computable k-tt-truth-tables.

Then, we can enumerate all < F_t,-reduction machines as (l,;‘}, where each
is defined by the ith k-&condition ge ator f ik' and the jth k-tt-condition evaluator
gj” as described above. We write L(:‘f’, A) to denote the set of strings accepted

bY i:’ relative to oracle can also enumerate all < L_-,--reduction machines
;‘k) as { Ni,i }, where each NJ ith k-T-tree generator (i.e., the ith

(2”-‘)-&condition generator) f (2h-') a e k-&co ition evaluator gi”’ as

56 K.-f. Ko

described above. We write L(Ni,j , (‘I A) to denote the set of strings accepted by Ni,;’

relative to oracle A.

3. A strong adaptive bounded query machine

In this section, we show that there exists an adaptive query machine which ma
only k queries to a sparse oracle A such that the set computed by this machine
relative to set A is not computable, relative to any sparse oracle S, by any nonadaptive
query machine which makes at most 2’ -2 queries. This result is optimal, as it is

easy to see that a (2’ - I)-query nonadaptive machine can simulate a k-query

adaptive machine.

Theorem 3.1. For every k 2 2, P,+,(SPARSE) g P,,.,,(SPARSE), where m& = 2& -2.

Proof. We let k 3 2 be fixed and let m& = 2& -2. Recall that a k-query adaptive
machine is defined by two polynomial-time functions f and g, where for each JC,
f(x) generates a binary tree of height k and g(x) outputs a k-tt-condition. We define
a specific k-query adaptive machine N as follows. For any string x of length m&n
for some n 3 1, write x as uouluoo. . . ull. . . up-l, where each u,, 1 s 1~1 s k - 1, is of
length n. The machine N on input x produces a tree TX of height k, in which each
node T;(s), I d IsIs k - 1, is attached with the string su,, and the node T,(h) is
attached with the string 0”. We write T,(s) = su, and T,(h) = 0”. The machine N
on input x evaluates the tree TX, relative to an oracle B, as follows: first N recursively
computes the sequence (s, , s2,. . . , sd by s1 =xdT,W =xN’), and si+l =

XS(T,(Sl l l OS,)) =XS(S~ l l l SPsl...s,), 1 s is k- I; and JVB(x) accepts iff the number
of I’s in the sequence (s,, . . . , Sk) is odd. In other words, if N queries oracle B
about string T,(s) and receives an answer “no” then the next query is T,(sO),
otherwise the next query is T_J s 1); and N accepts x iff the number of “yes” answers
is odd.

For each set A, let Lk(A) be the set of all strings of length m&n for some n which
are accepted by machine N relative to set A. It is obvious that Lk(A) s kq,- A. We
will construct a sparse set A such that for all sparse sets S, it is not the case that

Lk(A) s :,.tt S. This will allow us to conclude that Pk_T(SPARSE) G &,.,,(SPARSE).
The construction is done by stages. For each pair (i, j), let Mi,j = Mi,J’k’. Recall

that { ,j} is an enumeration of all G ,P,,.tt- reduction machines, where each Mi,j is
defined by the ith polynomial-time mk-tt-condition generator fi’“~’ and the jth
polynomial-time mk-tt-condition evaluator gimC Also recall that {P,,} is an enumer-

mial functions (i, j, h), we will find an integer n = n,
e such that L,(mA”, for all SE S

rior to stage 1, we let 6 = 1

Adaptive/ nonadaptive bounded query machines 57

Stage e = (i, j, h). Let n be an integer satisfying n > r&?&l (so that the conditions
established in earlier stages are not affected by the construction of the current stage),
&I>2mk and mk’p&(?nkn))<26”, where q is a polynomial bounding the runtime
of machine 1Mi.i (SO that the number of strings in SE SPARSE, which are queried

by Mi,j on some string of length mkn is bounded by 2”“/?&). J,et n, = n. For each
x, assume that fimk)(x) = (x,, . . . , X,,)m Consider the mk-tt-conditions gjmk)(X), for
all x E Cm&“. Since there are only 22mk different mk-&conditions, there exists an
m&t-conditioil t such that G, = {x E Cmkn 1 gjmk)(x) = t} has size ~2mk”-2”‘k. Fix such
an mk-tt-condition t and let G = G,. Note that 11 Gil > 2(mk-S? Now we consider
two cases.

Case 1. The function firnk) is not one-to-one on G.
Let x and y be two strings in G such that fi”k’(x) =fi”k’(y). Write x =

UoU&+ . . up-1 and y = vovlvoo. . . ~~k-1, with each u, and each V~ of length n. Then,
x # y implies that there exists s s 1 k-1 such that u, # v,. Let s be the smallest such
index s, and assume that s = sls2. . . sI, where each s, is a bit 0 or 1. We assign
‘T;(A) = 0” to B iff s1 = 1, and T,(s, . . . s,) = sl. . . s,u, ,... s, to B iff s,,, = 1, for all r
such that 16 r s I - 1. Then we assign T,(s) = su, to B (and leave T,,(s) = SV~ to I?).
Note that y agrees with x on the first (s - 1)n bits, and so the computation of M*(y)
is exactly the same as that of M*(X) until it asks the query T,(s), for which it
receives a different answer from the query 7”(s). (Note that we have assigned values
to B in such a way that 7J s) will be the (I + 1)st query to B.) Since all later queries
T,(d) and T,(f) with s’> s and s”> s receive answer “no”, we have x E
&(B) c-4 ye &(B). However,fi”k’ (x) =fi”k’(y) implies that for any set S, x and
y are both in L(Mi,j, S) or both in L(Mi,j, S). Thus, Gither z = x or z =Y satisfies
the requirement z E &(B) @ Z& L(Mi,j, S). Let A, = A,_, u B.

Case 2. The function j’irnk) is one-to-one on G.
We consider two more subcases.
Subcase 2.1. There exist an integer r, 1 < r < mk, and a string z, such that the set

H,(z)={xE GIx,=z} has size IIH,(z)~(~~(~~-*~)“.
Then, there exist two strings v, w E C” such that IIH,(z) n { ~}~(~k-*“‘ll~

2(mk-I-36)n
and llHr(z) n { w}Z(~~-‘)~II > 2(m~-1-3S)n. (Let v be the string in C” such

that II &(z) n { v}~(~~~‘~” II is maximized, and w be the string such that llHr(z) r)
{ W}Z(V’)” II is the second largest. Then,

II H,(z) n { v}Pm~-‘)” 113 11 H,(Z) 11 l 2-” = 2(m~-1-261”,

and

-4 , 2(mk-26)n _2(m,-I)n)*2-“32 (mk-l-36In l)

We will prove the theorem in this case
little stronger than the intended result. state it in a separate lemma as follows.

58 K-1. Ko

Lemma 3.2. The following holds for all j, 1 s j s mk - 1. Assume that there exist a
function f which yields, on input x, a list of j strings (x,, . . . , Xj), and a set G C_

(VI.. . V,k_j_l}E(j+“” for some strings vl , . . . , v,,,,.+~ E 2”, satisfying the following

properties :
(1) f is one-to-one on G, and for all x E G and all r, 1 s r 6 j, 1~~1 s q(m&; and
(2) there exist strings II,,,,+ and wmr,-j such that 11 G n 4113 2(j-(Zm~-2j+1 ISIn and

IIGn WI122 (j-(Zmk-2j+l)S)n .
9 where 6 = {?I,. . . V,nk -j- 1 Vmr -j}Z j” and Wj=

{ 01.. . tl,lk -j- 1 W,n, _i}Zj”a

Then, there exists a set C such that
(3) for each i, n sisn+k-1,)lCnZ’Jlal, and for each i, i<n or n+ksi,

Cd?=@, and

(4) for all SE SPARSE,,, and all j-&conditions t, there exists an x E G such that

x E Lk(C) r-5 t(XS(xI), l l l 9 X,(xi)) =O*

To apply Lemma 3.2 to Subcase 2.1, let j = trr.< - 1 and f(x) =

(x, 9 l l 9 9 G-1 9 -‘Cr+lv ’ ’ l 9 x,,,~). Then, the function f and set H,(z) satisfy the assump-
tions of Lemma 3.2. (Note that x, = z for all x E H,(z), and therefore, f must be
one-to-one on H,(z); otherwise, f i (md would not be one-to-one on G.) So, we obtain
from Lemma 3.2 a set C satisfying conditions (3) and (4). We verify that for any
S E SPARSE,, and any m&t-condition t, there exists a string x E G such that
x E L,,(C) e x ti L(Mi,j, S). Let to and t, be two (mk - I)-tt-conditions defined as
follows: tb(bl,. . . , b,_,, b,+l,. l l 9 bm,)= t(b,, l l l , II,_,, 6, b,+l,. . . , bm,). Then, let
6 = x&z), and consider t h. The set C satisfies condition (4) with respect to set S
and (mk - I)-&condition th. It means that there exists a string x E H,(z) such that
x E Lk(C) e t&(x,), . . . , xs(x,_,), ,ys(xr+,), . . . , xs(xm,)) = 0. By the definition of
tb, we have x E Lk(C) @ t(xs(xI), . . . , x~(x,,,,)) =O e x E L(Mi,j, S).

Let A, = A,_, u C.
Subcase 2.2. The condition specifying Subcase 2.1 does not hold.
Then, for every set S E SPARSE,,, there are at most

3 c IIH,(z)II <mk.ph(q(rnkn)).2(ml-*S)n< _.jn.2(mli_ts)n=2(m,-s)n

r=l ZES

strings in G having at least one X~ in S. Therefore, at least one x in G has all x,. in
S. Let 0” be in set B iff t(0 , . . . ,0) = 0. Then, for any sparse set SE SPARSE,,, at
least one x E G has the property that xs(x,) = xs(x2) = l l l = xs(xm,) = 0, and so

XE L,(B) e t(x&), . . . , x~(x,,)) = 0 r-3 x E L(Mi,j, S). Let A, = A,__* u B. This
completes stage e of the construction.

By the above discussion, it is clear that set A = U:=, A, satisfies our requirement.
It remains ro prove Lemma 3.2.

. The lemma will be proved by induction on j - 1,. .

irst assume that j = 1. Then f(v) outputs only one string xi. For any S E S
since f is one-to-one on 6, there are at most p,,(q(mkn)) < 2”” strings x in G having

Adaptive/ mmadaptive bounded query machines 59

xl E S. Therefore, there exist strings x E G n V, and y E G n W, such that X, e S and
y, ti S. Hence, for any M-condition t, we have t(~~(x,)) = t(0) = t(yy&,)).

Recall that a string in V, must have the form v, . . . v,,~ _2vnil, _, v’ for some z.7’ E C “,

and a string in W, must have the form v, . . . v,,,~-~w~,,-~ w’ for some W’E .G”. For
convenience, let us rename each string v1 as v,(/, (and hence a string in V, has the
form vovl voo. . . v,~-w,~-~~v’ for some 21’ E 2”). We assign strings On, 1 v, ,
NV,,, . . . , lk-3v,~-~ and lk-“() v,A-*~ to set C (but let lk%,~-~ and 1’-20~,~-~0 be in
C). The above assignments force G n V, c Lk(C) and G n W, E Lk(C) if k is even,
and GnV,GLk(C)and Gn W,~L~(C)ifkisodd.Therefore,x~L,(C)ey&
Lk(C). Together with the property that for every SE SPARSE,, and every l-tt-

condition t, t(x&,)) = HXS(YA we see that either x or y is a witness for condition
(4). This completes the proof for the initial case of j = 1.

For the inductive step, let j > 1. We consider two cases. (These two cases are
similar to Subcases 2.1 and 2.2 in the proof of Theorem 3.1.).

Case 1. There exist an integer r, 1 s rs j, and a string z such that the set
H,(z)={xE Glx,= 2) satisfying 11 H,(z) n 4 11 a 2(i-‘2f11~-2’ “)‘)” or II H,(z) n Wj II 2
2(j-(2m,-2j+2)S)n

Without loss of generality, assume that II H,(z) n b$ II 3 2(j-(2m~-2j+Z,.S’n . Letf’(x) =

(Xl 9 * . -9 h-1 9 %+I)Xj) and G’= H,(z) n l$. Then, similarly to Subcase 1.1 in
the proof of Theorem 3.1, there exist two strings vmA -j+ 1, Wm,, -j+l E C * such that
/G n t&II 22 (j-l-(2mA-2j+3)fi)n and IIG n Wj_,II 3 2’j-, -(2’nA-2j+3)S)n, where V;;_, =

{ v,. . . ~~~-~~~~~-~+~}~‘i-“n and Us_, = { ~1. . l v,I-jW,~-j+~}~“-l’n.

Thus, function f’ and G’ satisfy the assumptions of the inductive hypothesis. R:’
induction, we can find a set C satisfying conditions (3) and (4) (with parameter j - 1).

Now consider a j-tt-condition t. We note that x, = z for all x E If’(z), and SO for

any set S, t(XsCXI)9 l - l 9 XStxj)) is equal to r’(x.s(x,), l l -9 x&r-A

XdT--A l l l ? xdx,h where t’ is defined by t’(b,,. ..,6,_,,6,+,,. .., b,)=
t(b,, . . . , h-l 9 x&d, h+, 9 l l l 3 bj). By condition #, for any SE SPARSE,, and any
j-tt-condition t, there exists an x E H,(z) n y such that

xc L(C) ‘3 f(Xsb,), l l l , xs(x,-A x&+,), l - l , xs(x,)) = 0

e t(Xsb,), l l l , X&j)) = 0.

This completes the proof for Case 1.
Case 2. The condition specifying Case 1 does not hold.
For every string z and every r, 1s y s j, II H,(z) n Vi II < 2(J-(2m~-‘j+2)S)n. Therefore,

for any S E SPARSE,, , there .are at most

i c ll~~(~) n ~11 < 2(j-(2mL-2j+2)S)n. 2Sn = 2(j-(Zm,-2j+lM)n

r=l ZES

strings x in Vj having at least one x, in S. It follows that there exists at least one
x E G n V$ having Qs(x,), . . .) = r(0,. . . , 0) for any j-&con

Similarly, there exists a string y E having f(;y&+), . . . , xs(yj)) = t(o, - - l P 0).

60 K.-l. Ko

Recall that 4 = {v, . . . u,,,~ _,i}~j”. Let s = b(rnci -j) and write .c = slsz. . . o sI, where
each s; is a bit 8 or 1. We assign 0” to C iff sI = 1, and sl siu ,,_ %, to C iff S,+l = 1,

for i = 1, f - 1. Finally, we assign sl. . A/U, ,.,,,, to C (but sI. . .s+v ,,...,, to C). It ‘.,’

foVllows that V, E L,(C) iff Wj c f.,(C) (both are true if s contains an even number
of l’s, and both are false if s contains an odd number of l’s).

Now, for any SE SPARSE,, and any j&condition t, consider strings x E G n 4

and y E G n rWj with t(x.s(~,), . . . , xs(xj)) = t(0,. . . ,0) = ~(xs(yi), ‘ . . , x~(J>)). We
have constructed set C such that x E Lk(C) @ ye Lk(C). Thus either x or y is a
witness for condition (4). This completes the proof of Lemma 3.2. El

Corollary 3.3. For every k a 2, there exist sets A and B such that A s [_T B but

A 6 f”,,_,* B, where mh = 2” - 2.

3 1, P,I,+&SPARSE)z P,_,(SPARSE).

4. A strong nonadaptive bounded query machine

To study the ability of adaptive bounded query machines to simulate nonadaptive
bounded query machines, we first prove that there exist sets A and B such that A
is (-[-reducible to B by a (k + 1)-query aionadaptive machine but is not 6 T-reducible
to 13 by any k-query adaptive machine.

Theorem 4.1. For any k 3 1 h ihere exist .wts A and B such that A $“‘+, ,_ll B but
‘4 g ;_ r B.

roof. Let k 2 1 be fixed, and tar each pair (r’, j), let N,,j = N$‘. For any set B, let
L(B) = (0” [the number of strings in the following list that are in B is odd:
(O”, 0” 1,O” lZr . . e , 0" 1’)). Then, it is ebvious that t(B) 6 rk+,)_tt B. We will construct
a set B such that for every 6 r.T-reduction machine N,,j, there exists an integer n

such that 0” E L(B) @ 0” g L(N,,,, B). This will allow us to conclude that

t(B) & B.
We construct set B by stages. Assume that the runtime of machine !V,,j is bounded

by a polynomial 9t., where e = (i, j). Let B,, = 8, and n,, = 1.
In stage e = (i, j), we choose an integer n such that n > 9r_,(n,_,) and n > kn,_,

(so that the conditions established in earlier stages are not affected by the construction
of the current stage). Let n, = n. Then, we simulate N,,, on input 0” using oracle
B,.-, . Note that among the k + 1 strings O”, 0” 1, . . . , O”l’, there are at most k strings
being queried in this computation. Let 0” 1’ be the shortest string in this list which
is not eried, and let (._ I v (0” 1’) if the computation of N$-1(O”) rejects,
and le the com!x_ttation o

by f++J:; '

cepts. Since O’T’ is not queried

follows that NY; (0”) accepts
e as that of NY; -‘(O”‘).

i ,O”l’}=fl iff O”eL(B,):

U 3
z

C’ 2 I oice of the inte er RI,, it is clear that L(
for all s L_+=eduction machine Ni,j* Cl

Next we compare the reduction classes defined by sparse sets. For every int
k 2 2, let Ir(= 3 l 2”-“. We will prove that there exist a polynomial-time nonada
query machine which makes lr; queries to oracles, and a sparse oracle
the set computed by this machine relative to A is not computable, relative to any
sparse oracle, by any polynomial-time adaptive query machine which makes only
k queries.

Theorem 4.2. For any k 2 2, P,,.J SPARSE) g P,_,(SPARS

Proof. For each set A and each pn 3 1, let

Lt. ,(A) = b, l . l um 1 iu,l = l l l = [u,,,I = n; the number of strin
following list that are in is odd:
0 M (11 + 1)

9 40
(m - 1 H 18 + I)

****v up.. UnJ.

Then it is clear that L,,,(A) s p,_*, A. For each k 3 2, we will construct a sparse set
A such that for every sparse set S, it is not the case that LI,(A) s r_r S. TEAS will
prove the theorem.

The proof proceeds by stages. Recall that the (i, jlth < [_,--reduction machine
{ N$‘} is defined by the ith polynomial-time height-k tree generator ji2’ ” and the
jth polynomial-time k-tt-condition evaluator gj”‘. We fix the integer k 2 2, and let
Ni.j = N@‘. In stage (i, j, h), we will find an integer n such that L,,(A) n 2”~-“” f
L(Ni i, S)nZfr~-“n for alI sparse sets S E SPARSE,, . We choose a constant
S = l/(81,), and let Ao=O, n,= 1.

Stage e = (i, j, h). Assume that the runtime of the machine IV,., is bounded by a
polynomial p’. We choose an integer n such that n > lkn,_, (so that the conditions
established in earlier stages are not affected by the construction in the current stage),
Sn > 21,, and p,,(p’((lk - 1)n)) c 2’” (so that the number of strings y in S E SPARSE,,
which are queried by Ni,j on some input of length Zkn is at most 2”‘). Let n, = n.

Consider the k-tt-conditions g:“(x) for all x E 2”~ -’ “‘. There are only 2” different
k-tt-conditions. So there must be at least one k-tt-condition t such that G, =

I= PA-“‘, lg.;“‘(x) = t} has size 32”~-““-11 3 2”~-‘-‘? We fix such a k-tt-condi-

tion f, and let G = G,. Next, we will construct set A, by an inductive construction
which involves some complicated case analysis. We state this inductive construction
in a separate lemma.

For each j 2 2, define p, recursively as follows: /3? = 8, /3,+ 1 = L/3, + 3; that is,

P,=111*2’-‘-3. Note that S=1/(8/&1/(2&).

3. The ,foflo holds for all j, 2 s j 6 k. Assume that there exist a

+ reduction machine ,,, de$ned by Q height-j tree generator f and a fixed j-tt-

conditiont,andasetGc(u,...u,,,)~”~-”-””forsomeu,,...,ts,in
I), WCh that

(1 b the runtime &machine Nj., is bounded by pol>womial p’, and .

62 K.-l. Ko

(2) ~~G~~~2”~fy-‘-‘mIi”’ fotsome y~0 and some cy, Osa<&-pj+l.

‘971en there exists a set C such that
(3) strings in C are of theform u,. . .u,,,v,,,+~. . .v,,,+,O”h-“I-‘-““‘+“, where 0~ is

lk - m - I and v,,,+ , , . . . , v,,, + i E 2 “,

(4) 11 C 11s 2’, and
(5) foreverpet SESPARSE,,, theset D={wEG~~EL(N,;,,S)@ weL,,(C)}

has size II Dll 2 2’Y-‘Lr+~~‘ci”, ify>O, and has size IlOll> ify=O.

Let _f=fizA “, and I the M-condition with IIG,((a 2”~-I-“‘,. We observe that
machine IV,,, and set G satisfy the assumptions of Lemma 4.3. Note that here we
have m=O, y=O and cy= 1. So, we may apply Lemma 4.3 to obtain a set C of
strings of the form vl . . . v~O”~-~-““,+” such that IlCll s 2k and such that for every
set S E SPARSE,,, there exists a string w E G such that w E LIJ C) e w ti L(N,.,, S).
Since M’ E G implies that w E L(&,, S) @ w E L(Ni,j, S) for every set SE SPAkE,,,
w is a witness to the requirement L,,(C) Z L(Ni,j, S). We let A, = A,_, u C. This
completes Stage 4.

It is quite clear from the choice of n, that if we let A = Urz l A, then for every
6 [_,-reduction machine N,,j and every S E SPARSE,,, LI, (A) n Z”h-‘)” #
L(Ni,i, S) n Z”k-““. So the theorem is proven. It remains to prove Lemma 4.3.

roof of Lemma 4.3. We prove the lemma by induction on j = 2, . . . , k. First assume
that j=2. Then, l,=3. For each x~X”k-‘,“, assume that the tree TX generated by
.f(s) has nodes T,(h) = xh , T, (0) = x0, and 7;-(1) = x, . For each z and each string
s=h,O, 1, let H,(z)={xEG~x,=z}. Let U,,,={u ,... u,,,}Z”A-“I-I)“. Then, GE U,,,
and 11 G 11 2 2”+y-‘,““. Now consider the following three cases.

Case 1. There exists a string zh such that II HA(z 2 2”+y-‘tr+2”)‘, .

Then, we claim that there exist strings u,,,+~, . . . , u,,,+~,_~, u,,,+~, v,,,+~ E Z”, 1 s 4 s
I,-m-y-2, such that

holds for both E = U,,,+y and E = Vn,+y, where u m+y =

{u,. . .lI ,,,+‘(I~~,,,+q)~“~~,“~‘l~“” and V,,,+4 =(u,. . .u,,,+,,-,v,,,+~}~~‘~~“‘~~~““.

For convenience, let H = H,(z,). For i = 1,. . . , /A - m - y -2, recur-
ne strings u,,,+,, v,,,+, and sets U,,,_, and V,,,., as follows: let u,,,+, be the

string in Y such that 11 H n {u, u,,,+ ,_, u,,,+,}lW”,-‘--I “, II is the largest among
all choices of II,,!., in Y, and let v,,,,, be the string in 2” such that IIH n

1 14, . . . u,,, + , t o,,, * ,):! ‘I “’ ’ ’ “I II is the second largest. Let U,,,+, =
1 11,. . .u,,,+, ~I~,,,+,)~“~-“,-‘-“‘~ and V”‘+i={ul.. .u”‘+‘_~v’~+i}~“~-“‘-i-““.

Now let q be the small st i, 1didl~-m-y-2,suchthat

2
(I* y lIt+?K?s)rl(

-- II f-7 a/,,, + I II 5 II fi u,, + I II =G 2 (2ty-(cr+2~fi),l-‘,
.

Adaptive/ nonadaptive bounded query machines 6.3

We need to show that such a q must exist. First note that if i = lk - m - y - 2, then

11~ n u,+~II s II u,,+~II =2(/k-~~l-i-ll~~ ,2(I+~)n <2tl+y-(u+2)A)n-la

So, we can let q’ be the smallest i such that IiH n Uma+i(l< 2”+y ‘r’+2”)‘1-‘. Note
that IlHn U,+qe_,ll >2"+y-(u+2)')"-2. Next assume, by way of contradiction, that

II H n V,+i II < 2(‘+y-(u+3)‘)n

for all i, q’s i s IA - m - y - 2. Then, we claim that II H n U,,,, 112
2(2+y-(a+2)fi)rl-(i-y’+3) for all i, q’s is lk - m - y -2. In particular, when i =
Ir(-m- y- 2, we have IIH n U,,+illa 2~2~y~~u~~~~~'~~~'~~3~>2~'~~'n, which contra-

dicts with the fact that II &,+; II = 2(1+y)‘*. This proves the existence of such a q.
It remains to check the claim, which can be done by a simple induction. We

observe that if IlHn Unlti_,Il 32 (2+y-(tr+2)fi)n- fi-q’+2) and IlHn V,,,+JI <
p+y-(a+3b5)n

3 then for all v E Y’, V f Um+iv we have IW n

i up.. wn+i-I 0 P
(IA-m-i-l)n II 2 < (I+y-(cr+3)b)tI

, and hence

IIHn U,tilla IIHn ~~~+i_,I~-2’1~2”+y-‘“+3’g’”

This completes the

32 (2+y-(a+Z)b!t1-(r-y’+2) -2 tZ+y-(u+3)Ci)n

32 (2+y-(~r+t)S)n-(i-y’+.3) .

proof of the claim. Cl

NCW we consider the following subcases.

Subcase 1.1. There exists a string z. such that I[f&(zh) n I-&,(zo) n E 113
2(l+y-(n+mn for E = Urn+++ or E = Vm_,.

Without loss of generality, assume that the above holds with E = Um+y. We further
consider two sub-subcases.

Subcase 1.1 .l. There exists a string z, $uch that !I Hh(z,) n H,,(ZJ n W,(z,) (-I
url+crII 3 2

(l+y--(u+7)s)n
.

To define set C, we separate the case of y > 0 from the case of y = 0. First assume
that y> 0. Then, similarly to the argument in Case 1 above, we can find strings

Um+q+l,*=*, Um+y+r-I 9 U tn+y+r 9 V m+q+r E Z”, with m+q+rsl, -y-l, such that
~(y-~a+xml

S /H n E 11~ 2(1+y-(*+7’AJ”-2 holds for both E = Umiy+r and E =

V m+q+r, where H = K(h) n H,,(h) f-7 Wz,), Un,+y+r = h.. . ~,,,+~+r-,~m+~+r)~(“‘,

V m+q+r = { ui...u m+y+r-IVm+y+r 12 (“’ and c = IA - m - q - r - 1. We assign the string

UI...U m+y+r-I U m+y+r 0 ““‘+” to set C and the string u?. . . Um+y+r_Ivm+y+rO
c.(t1+ 1) to c_

If y = 0, then we can find strings u,,,+~+, , u,,,+~+~- 1, u~+~+~, v~+~+~ E Z”, with
r = /k -m -q - 1, such that both w, = u,. . . u,~+,,+~_~u~+~+~ and wz =

U,...U V m+y+r-I m+y+r are in ,(z,). We assign M?, to C and +

to C.

Subcase 1 J.2. The condition specifying Subcase 1 .I .l does not hold.
In this case, Jve will do the same thing ubcase 1.1.1 wit

A(%) n (G) (ins

64 K.-I. Ko

Subcase 1.2. The condition specifying Subcase 1.1 does not hold, and there exists
a string zl such that

for E = U,,,+q or E = V,‘l+y.
This case is symmetric to Subcase 1.1. We do similar assignments to C and to C.
Subcase 1.3. The conditions specifying Subcases 1.1 and 1.2 do not hold.
We assign the string ul. . . u,,,+(~_ ,u,,,+yO”~-“‘-4~““‘+” to C and

Ul l . l ~4,,+y- i h+q
(yI~-“‘-q-lu’l+l) to (y

The above completes the construclion of C in Case 1. Before we continue the
construction for Cases 2 and 3, we first show that the set C constructed above
satisfies, when Case 1 holds, the requirements of the lemma.

It is clear that the strings in C have the specified form and that the size of C is
bounded by 2 < 4 = 2’. To check condition (5), let z, be the string such that 11 HJ z,) II 3
2 t:! + y-(n+‘bbbn

l We consider the subcases described above.

If Subcme 1.1.1 holds, then set C satisfies condition (5).

roof. Let SE SPARSE,, be given. First let us assume that zh e S and y > 0. Let z.
and z1 be strings such that 11 H n U,,‘+q 11 a 2(‘+y-(6+7”)“, where H = Hh(zA) n

(zo) n Hl(zl). Then, either W n U,,,+y c U &,, S) (if W, XS(Z~)) = 0, or H n
u m+q c UN,,,, S) (if WA xs(zo)) = 0).

On fhe other hand, we have assigned string ul. . . u,,,+~+~_~u~‘+~+~O~(~+‘) to C and
string ui l m . u,,‘+q+r-l~,,,+q+rOc~‘~~” to C. As a consequence, H n U,,,+y+,. c L,,(C) and

JHn K+y+r - c Go. So, either Hn U,,,+q+c or Hn Vnl+q+,. has the property that
all its strings x satisfy

XE UN,,, 8 a xfz L,,(C).

That is, II Dlla 2’Y-(~+X’*“‘.
Note that when y = 0, the same argument proves that either x = wI or x = w2 has

the property that x E t(N;;., S)ex E! L,,(C). Therefore, D # (b.
For the case when zh c S, it is not hard to see that a symmetric argument can be

used because the condition specifies Subcase 1.1 .I is symmetric. Cl

. If S&case 1.1.2 holds, then set C satisjies condition (5).

Let SE SPARSE,, b en. For Subcase i (1 2, P.‘-z note that if zh E S then the
is similar to Subc 1.1 and a similar proof exrsts. We assume that zh E S.

e note that zh E S im s that for all strings x E H,(z,), with xl E S, x E

other hand, we assigned string
I(1,O) = 0, and assigne one of strings

“1 + 1) t r -- I V ‘n+y+rO(‘O!+” herefore, for each

Adaptive/ nonaduptioe bounded query machines 65

String x E H&d n &h)n &,+(I with XI E s and XE U,,l+y+ru V,,l+4+r, it has the
property that x E U y,.,, S) w x IZ L,,(C). Note that we have

II{x E H*(&) n H&CJ) n U,*+q 1% E SIII

s c W&A) n &hJ n
ZES

< 2(l+y-hr+71fi)n . 26,’ = 2 (I+y-(a+6)fi)n
3

11 H&J n H&,,) n U,,l+4+rl(-c~(‘+Y-(~+~)~)~-~

IIH,(z,)n H,(z,)n V,n+q+rJI <2(i+y-(nrs)ii)n-2_

So,

IPII a IIHhWn H,W n (Un+y - Un+y+r - vn+q+r) n {x Ix, & S}ll

> 2(l+Y-(u+6)fi)n .

This completes the proof of Lemma 4.5. (Both cases of y > 0 and y = 0 are proved
by the same argument above.) q

Lemma 4.6. If Subcase 1.2 holds, then set C satisfies condition (5).

Proof. The proof is symmetric to that for Lemmas 4.4 and 4.5. c!

Lemma 4.7. If Subcase 1.3 holds, then set C satisjies condition (5).

Proof. In Subcase 1.3, we have assigned strings u,. . . u,~+~_,u,,+~O(‘~-~~-~-““~+‘)

and tll. . . u,~+~_~u~+~~~‘~~~*~~~‘~~“~” to C and c, respectively, so that U,,,+q c_ L,, (C)
and Kn+q G Lt,(C).
On the other hand, note that all strings x in HA(q) with x0@ S and x, E S must

have the same membership in L(IV,:,, S), depending upon whether t(Xs(z,.j, 0) = 1

ornot. Sinceforaqstringz,)) Hk(z,)nHo(z)n &+J and II HA(q) n H,(zjn U~l+qIj
are bounded by 2’ ‘+y-‘u+5’b “*, there are at most

.p+y-(“+Slmn .2”“.2~2 I I+y-(u+4)b)rr

strings x in H&)n U,,,+q having either X,,E S or x, E S. The same property holds
fo* set H*(q) n Vm+y. SQ, one of the sets H,(z,)n U,ll+y and H,(z,)n Vm+y has at
leaa:

2(l+y-(o+3mI _2~l+y-(n+4ml) (l+y-frr+4)fi),l :, 2

strings x satisfying

XE L(N,,,S) r-4 xe L,,(C).

66 K.-l. Ko

The above four lemmas complete the proof for Case 1. Now we proceed to Cases

2 and 3.
Case 2. The condition for Case 1 does not hold, and there exists a string zO such

that 11 HO(z,) 11 2 2” ’ y-(“+2)‘)“,

Similarly to Case 1, we can find strings u~+~, . . . u~#+~_, , u,,#+~, u,~+~ E Y,

lsq~I~-m-y-2, such that
2’i+y-(U+3mn < _ 11 Ho(zo) n E 11 < 2(2+Y-‘a+2)fi)n-2

holds for both E = U,,l+q and E = V,,l+y. Then, we consider the following subcases.

Subcase 2.1. There exists a string z, such that II HJ z,) n Ho(zo) n E II 3
2(1+y-h+5)h for E _ u - ,,,+y or E = V,,,+y.

This case is exactly the same as Subcase 1.1. (Note that in the proofs of Lemmas
4.4 and 4.5, we did not use the fact that II HJ z,) n U,,+J a 2(1+y-(at3)‘)n, which is
the only difference between Subcase 1.1 and Subcase 2.1.) We construct C as in
that case.

Subcase 2.2. The condition specifying Subcase 2.1 does not hold.
We assign the string ul.. . ~,+~-,u,,,+qOr”“+” to C and the string

u,...u v oc’(“+” l,l+y-l m+q to c, where c’=lk-m-q-l.

This completes the construction of C for Case 2. We check that, in this case, the
set C constructed above satisfies the requirements of the lemma. Note that all strings
in C have the specified form and that the size of C is bounded by 2 <4 = 2’.
Furthermore, since Subcase 2.1 is exactly the same as Subcase 1.1, condition (5) is
satisfied by C in that case. We need consider only Subcase 2.2.

If Subcase 2.2 holds, then set C satisfies condition (5).

This case is similar to Subcase 1.3. We have assigned strings

UI l - ’ Unr+ y4Un,+y 0 (‘~-“‘-4-\)(~+l) and ul,. . umsq_, V ,,l+yO(ll-m-4-l)(‘l+l) to C and c,

respectively, so that U,il+y c Li, (C) and V,,,+y c_ L,,(C).
On the other hand, for every set SE SPARSE,,, note that all strings x in H,(z,)

with x& S must have the same membership in L(IV,;,, S), depending upon whether
t(O, x&J) = 1 or not. Since for any string z, II HJ z) n H,(z,) n &,+J is bounded

bY 2
(l+y-(tr+sh5~~l

, there are at most

strings x in having xh E S. The same property holds for set I-&,(r,J n
V IPI + q * SO, one of the sets H&Z,,) n U,,,+q and If&,,) n V,pl+y contains more than
+p+y-fa+JWr1 strings x such that

--cE L(N,,,, S) a x6!! L,,(C).

ows that [Idly 3 2”+Y-(‘k+4’R’r’, and the lemma is proven. 0

Case 3.
1.. .

and 2 do not hold. e assign string

Adaptive/ nonadaptive bounded query machines 67

If Case 3 holds, then set C satisjes condition (5).

roof. Note that in this case, all x in G but at most 2”+y-(n+“‘)n. 2”“*2 =
2(2+y-(cY+l)I5)fl+l many have xh E S and x,lif S. For any x having this property, we

observe that XE L,,(C) r U,. ..UmO(‘~-m-l)(“+l)E C e t(O,O)=O @ x$z

u N,,, S). Thus,

IID11 2 I~{xE Glx,@ S and x0@ S}ll

22 (z+y-U6)n -2 (2+y-(u+I)s)n+l N& 2c+y-(R+l)is)n.

This completes the proof of Lemma 4.9, as well as the initial step of the induction
proof. Cl

For the inductive step, we assume that k i 2 and 2 <j s k. Note that b_1 = b/2.

Again, we consider two cases.
Case 1 TheTc exists a sFring zh such that 11 k&(2,) 11 3 2(‘/‘2+y-([~+a,-l+~)fi)r’.
Similar to the argument in Case 1 of the initial step (when j = 3, we can find

strings u,+ 1 9 l l ’ 9 U m+q-19 Um+q9 Vm+q ~zn, l~q~I,-m-y-1,/2, such that
IIHk&&, El1 > 2(t,/2+Y-1-(cr+Pl_,+.l)fi)n

holds for both E = U,,, and E = Vm+q, where LTm+q =

{ u1 l * l Um+q-1Um+q 12
(IA-m-q-l)n and Vm+q = {u, . . . u~+~-, vm+q}~~‘~-n’-q-l’n.

Step A. Define f. to be the function which maps each string x to the left subtree
of f(x) and to to be the (j- l)-tt-condition defined by to(bl, . . -3 bj_1) =
t(0, 6,) . . .) bj-1). Without loss of generality, we assume that the machine A$;,,l,,,
defined by f. and to, has runtime bounded by p’ also. Also let G,, = H,(z,) A Unl+q.
Note that

Since (Y s flk -pi + 1 implies cy + pi-l + 3 s px: -pi- 1 + 1, we can apply the inductive
hypothesis to machine A$,,,, and set G. That is, we can find a set C, satisfying
conditions (3)-(5), with respect to strings u, , . . . , umtq and parameter j - 1. In
particular, conditio.1 (5) states that for each SE SPARSE,,, 11 Doll > 2’Y-‘a+p~)s)n if
y 3 1, and Do # Q) if y = 0, where Do = {w E G,,I w E L(y,; ,,,,,, S) @ w @ L,, (Co)}. (Note
that pi = 2flj_I+ 3.)

Step B. Define f, , t, and G, similarly: fi(x) is the right subtree of f(x),

t,(h, l m l 9 bj-l) = t(l, b* 9 . . . , 6j_,), and G, = N,(z,) n Vm+q. By the inductive
hypothesis, we find a set C, satisfying conditions (3)-(5). In particular, condition
(5) states that for each SE SPARSE,,, 11 D,II 3 2’y-“r+p/‘6’t’ if y 2 1, and
y=O, where D,={w~G,/wcL(f++f ,,,,,, S) @ wtL,JC,)}.

Let C = COu C, and clblm that C satisfies conditions (3)-(5) (with respect to
strings ul,. . . , un, and pat dmeterj). First note that II C II s II CJ + II C, II s 2’-’ + 2’-’ =
2’. Also note that all strings in Co begin wit refix u,. . . Um+q_1um+q and a

K.-l. Ko

JO. If Case 1 holds, then set C constructed above satisjies condition (5).

roof. Let S E SPARSE,, and recall that D = {w E G 1 w E L(IV,;,, S) e w e L,,(C)},

and &={wE GOiwe L(N&,, S) w w IZ L,, (Co)}. First consider the case that y > 0

and zh E S. Then, by the definition of Co, 11 Doll 2 2(y-(“+Pl)‘)‘1. Note that for all x
in Go= HA) n U,l+‘l, x E L,,(C) e x E L,, (CO) (because all strings in C, begin

with different prefixes from those in C,), and x E L(A$,, S) t-4 x E L(IQ,,,,,, S)
(because xh = z, E S). So, Do c D and II D II 2 2(y-‘n+P~)B”’ . Similar results can be
proved for the cases when y = 0 and/or when zh E S. We leave the detail to the

reader. Cl

Case 2. The condition specifying Case 1 does not hold.
Then, we define function f. and (j - 1)-tt-condition to as in Case 1. Let ‘y. = y + b/2,

and Go= G. Then, by the inductive hypothesis, there exists a set Co satisfying
conditions (3)-(5) with respect to strings ul , . . . , u,~,+~ and parameter j - 1. In
particular, condition (5) states that for each S E SPARSE,#, II DoI1 s 2(y~-(a+p~-~)S)n,
where Do = (w E Go 1 w E L(IV,,,,,,, S) H w g L,, (Co)} (because yo> 0).

Let C = Co. Clearly strings in C have the specified form and II C II < 2j-’ < 2’.

emma 4.11. If Case 2 holds, then set C constructed above satisfies condition (5).

Let SE SPARSE,,. Similar to Case 1, for those x E Go with x,E S, x E

9 9 e x E UN,; ,.,,,, 9. That is,

IlDllb llD,n{xIx,~ s>II 2 IPoll - IbE Golw s>ll

> 2% +Y-(a+P,._,'wl -2(',_,+Y-(a+P,_,+2)6),, .p

22 q_,+Y-(cb+p,ml
.

Therefore, II Dll> 2’y-(tr+fi~““1 if y>O, and 020 if y=O. 0

This completes the proof for the inductive step, as wel! as the proof of Lemma
4.3. c3

To help the reader understand the role of parameters y and pi in
the above proof, let us look at an example. Let k = 4. Then lk = 12, and assume that
we begin with a set G c C”‘l having IlGII 22”‘-‘I” (i.e., y =0 and cy = 1).

e first ask whether there is a string z, such that II Hh(zh)/J a 2(6-2’S)n (p3 = 19).
me that the answer is “no”. Then, we ask whether there is a string z. such that

to 6 and p2 = 8). Assume that th
strings u,, . . . , uy+ u,, vq in C” such that II

‘11 ,Z 2(x-“ii”’ and 11)(q,) n {u, . . . u,_, ~y}~(“-~“‘lJ 3 2(N-12”n.

Adaprirvl nonadaptive bounded query machines 69

Let Go= H&,,) n {u,. . . u~_,u~}P-~)‘~, and consider the leftmost height-2 sub-
tree of f(x). By a rather ad hoc procedure (i.e., the procedure for the initial step

of the above induction proof), we find a set CO such that D=
{x E GO 1 x E LIA (Co) e x E L(IV,;, ,o, S)} has size IIDlla 2’h-Z06)n, where P4j;I 1o is the
s L-r_reduction machine defined by the leftmost height-2 subtree &(x) (i.e., the
subtree with the root xOO) and the corresponding 2-tt-conditions to.

Now observe that among all x in H&Z,), at most 2(6-22fi”* l 2’” = 2(6-‘t”‘* many
may have rryh E S (this follows from the assumption that there is no z, such that
11 HJ z,) II 3 2(h-72fi)n). So, at least one string x in D has x,E S. If z,E S, then this x
ktnesses that x E L,,(C,) e x e L(A$,, S).

Next let G, = &(z,) n {u,. . . u~_,z+,}Z(~‘-~)~ and repeat the above construction
on G, with respect to the second height-2 subtree of the tree f(x) (i.e., the subtree
with the root x0,). This will show that if z(+ S then there exists a witness x such
that x E L,, (C,) a x E! L(A$,, S). Since strings in CO and strings in C, have different
prefixes, the above requirements do not conflict with each other. So, set C = C,u C,
satisfies the requirements of the lemma.

References

PI

121

[31
r41

PI
161

VI

PI

Ii91

WI

WI

WI

A. Amir and W. Gasarch, Polynomial terse sets, in: Proc. 2nd ConJ on Structure in Complexity
Theory (1987) 22-27.

R. Beige4 A structure theorem that depends quantitatively on the complexity of SAT, in: Proc. 2nd
Conj on Structure in Complexity Theory (1987) 28-32.

R. Beigel, Bounded queries to SAT and the boolean hierarchy, Theoret. Comput. Sci., to appear.
R. Beigel, W. Gasarch, J. Gill and J. Owings, Terse, superterse and verbose sets, Tech. Report
TR-1806, Department of Computer Science, University of Maryland, 1987.
R.V. Book and K. Ko,On sets truth-table reducible to sparse sets. SIAM_!. Compur. 17 (1988) 903-919.

J. Goldsmith, D. Joseph and P. Young, Self-reducible, p-selective, near-testable, and p-cheatable
sets: the effect of internal structure on the complexity of a set, in: Proc. 2nd IEEE ConJ on Srrucrure
in Complexity 77leory (1987) 50-59.

J. Kadin, The polynomial time hierarchy collapses if the boolean hierarchy collapses, in: Proc. 3rd

IEEE Conf: on Structure in Complexity 7Ieory (1988) 278-292.

R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity classes,
in: Proc. 12fh ACM Symp. 77leory qf Computing (1980) 302-309.

K. Ko, Distinguishing conjunctive and disjunctive reducibllities by sparse sets, Inform. and Compur.
81 (1989) 62-87.

J. KSbler, U. SchSning and K. Wagner The difference and truth-table hierarchies for NP, RAIRO

Theor. Inform. 21 (1987) 419-43.5.

R. Ladner, N. Lynch and A. Selman, A comparison of polynomial-time reducibilities, 7%eoref.
Compuf. Sci. 1 (1975) 10%123.

S. Tang and R. Book, Separating polynomial-time Turing and truth-table degrees of tally sets, in:
Proc. 15th Internat. Coil. on Automata, Languages and Programming, Lecture Notes in Computer

Science 317 (Springer, BerSin, 1988) 591-599.

