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The task of identifying inhomogeneous (position-dependent) coefficients of 
linear dynamic partial differential equations on the basis of a finite collection 
of points of the solution has practical importance and is the subject of many 
published analyses, some of which are described herein. The purpose of the 
present paper is to present new developments on a simple yet appealing method 
due to the hydrologist B. Sagar. The technique exploits the viewpoint that the 
coefficient values of the partial differential equation at any point x are uniquely 
determined by the solution values in a small neighborhood of X. The identifica- 
tion algorithm which results from these considerations is extremely simple, 
and yet, in view of technical considerations and experimental evidence set 
forth here, it seems effective. In particular, we have been able to derive error 
bounds, which the authors believe is a new feature in the literature of identifica- 
tion of partial differential systems. 

1. INTRODUCTION 

The problem of parameter identification is of considerable interest and 
importance in engineering and hydrology and, in the case of ordinary dif- 
ferential equations and linear systems, a large body of literature (reviewed by 
Eykhoff [l] and Mendel [a]) is already available. In the case of partial dif- 
ferential equations, engineering needs exist; Phillipson [3] cites applications 
relevant to the problem of vibrations in a slender airframe and to seismic 
signals wherein the propagation of waves is used to detect anomalous under- 
ground objects. Bellman and Kalaba [4] study a problem of finding parameters 
in a radiative transfer phenomenon. The largest body of literature to come to 
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our attention on the subject of identification of parameters of partial dif- 
ferential equations of an aquifer on the basis of piezometric head measure- 
ments (e.g., [5-81). 

The purpose of the present paper is to set forth an inclusive method 
based on an idea of Sagar (see Sagar [9] or Sagar et al. [IO]) for performing 
parameteric identification. The chief advantages of the Sagar method, in 
comparison to its published alternatives, is that it is extremely easy to imple- 
ment, the computational burden is relatively light, and error bounds are 
available. 

As background and by way of contrast, we provide here a brief review of 
some of the main avenues of attack on the PDE parameter identification 
problem. The first avenue we discuss is inspired by the technique called, 
“quasilinearization,” developed mainly by Bellman and Kabala (see espe- 
cially [4]). Basically, quasilinearization is a successive approximation techni- 
que for solving nonlinear differential equations by means of iterative solution 
of simpler linear differential equations. But, as proposed in [4, Chapter 61, 
quasilinearization may be made to serve as an important step in parametric 
identification, as follows: Let us suppose that a finite set {u(xi , tJ} of observa- 
tions of the solution u of a PDE parameterized by an unknown vector K 
is available. A criterion function ~(T(u, uK,) is chosen to measure, in some 
sense, how well the function uK ’ agrees with the known values of u. uK’ is a 
solution (or approximation thereof) of the PDE having parameter K’. Now 
variational techniques are used to convert the minimization problem to a 
PDE problem. Quasilinearization is then employed to simultaneously obtain 
a new estimate, K”, of K, and a solution of a linearized version of the PDE 
with parameter K”. K” now plays the role of K’, and the above steps are 
repeated. Further illustrations of this technique include Bellman et al. [II] 
and, for the aquifer problem, Yeh and Tauxe [5]. A technique that is closely 
related to the preceding is one wherein the gradient of J with respect to K’ 
is computed and K” is chosen by a steepest descent technique. Seinfeld [I21 
applies this method to the problem of finding a parameter of a parabolic 
PDE describing a chemical reaction. Quasilinearization (and, to a lesser 
extent, the steepest descent method) h as the desirable property that con- 
vergence is fast in a neighborhood of the unknown parameter, but in general, 
convergence is not guaranteed at all. Bellman and Kalaba assert [4, p. 1561: 
“The principal difficulty in the application of the theory of quasilinearization 
lies in the restrictive conditions required to ensure convergence of the 
sequence of successive approximations.” 

An additional drawback in the application of the above methods to the 
aquifer identification problem is that we are interested in the case of perhaps 
several hundred coordinates in the unknown parameter. In this circumstance, 
the quasilinearization and gradient methods become unwieldy, and computa- 



IDENTIFICATION FOR PDE 523 

tions which we have found reported have been applied only to the case in 
which the parameter is homogeneous in space and of low dimension. 

Filtering theory inspires the techniques suggested by Phillipson [3, 
Appendix Al] and Chen and Seinfeld [13]. Let U(X, t) denote the state 
variable of the PDE and K(X) denote the unknown parameter. In the above 
references, one augments K(x) to 11(x, t) to form the new state variable, 
2(x, t) = (u(x, t), K(x)). It is clear how to convert the original linear dif- 
ferential equation and boundary and initial conditions to the new nonlinear 
PDE system for the variable z. An additional constraint is that the partial 
with respect to t of that portion of z corresponding to the K, must be 0. 
With the new differential equation system before us, the original parameter 
identification problem has been converted to a state identification problem 
with quadratic cost and a nonlinear system. Phillipson [3] recommends 
linearizing the resultant PDE and making successive approximations (and 
this avenue would lead to something akin to the quasilinearization approach), 
whereas Chen and Seinfeld [13] d erive an admittedly complicated solution 
to the nonlinear quadratic-cost filtering problem. 

Let .&’ denote a finite set of nonnegative integer n-tuples. Da is the operator 
aal+...+Onjax;l ... 3x2 where a! = (a1 ,..., a,) E $1. D, is the operator a/at. 

The idea (inspired by [9]) motivating the present parameter identification 
study is simple. Let x be fixed and observe that if in the PDE 

ZaOLEbdKa(x)DUu(x, t) = CL'Dt%(x, t) + q(x, t), (1) 

the partials D&u are known for J different times tj , 1 < j < J, where / is 
greater than or equal to the number of unknown parameters K, , a E d, 
then one can solve the resulting J simultaneous linear equations for the K, 
values (unless the system happens to be degenerate-a situation which one 
would not anticipate in physical applications). In the overdetermined case, a 
least-squares solution would probably be indicated, but other alternatives 
may be preferred in certain physical situations. For example (as in [IO]), one 
can find the least-squares fit among parameter values eonstrained to satisfy 
some property (e.g., nonnegativity of the coefficients K, and ellipticity of the 
operator on the left-hand side of (1)) which is known to hold in light of 
physical considerations. 

In general, one would anticipate that u is known at only finitely many space- 
time points {(x1 , tj), 1 < i < I, 1 < j < J}. Splines and/or numerical 
differentiation may be used to compute estimates D%'(x, t) of the requisite 
partials of Eq. (1). Elementary methods are available for computing a bound 
on the differences 1 K, - K,' 1 between the exact and computed parameter 
values on the basis of bound on the differences 1 D&(u(x, tj) - z/(x, tj))j 
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between the actual and interpolated values of u and its derivatives evaluated 
at x and tj . The method is described more fully and the above notions are 
substantiated in Section 2. 

The appeal of the Sagar method is that the computations for finding K=(x), 
01 E &, x fixed, requires solving a relatively loworder linear equation, and, 
therefore, calculations are inexpensive and do not require much computer 
memory. The fact that the identification scheme requires solution of a 
relatively low-order system and (when differencing is used, at least) only 
local samples of u near x accords with reason in that intuitively the parameter 
value K,(x) is uniquely determined by values of u in the neighborhood of x. 
There should be no need to solve global equations to find the values K,(X), 
as must be done in the other approaches cited. In fact, it is not clear that 
values of u at some distance from x are of value for determining K, at X. 

In summary, we feel that the two important features of the Sagar method 
are: (i) it reduces the identification problem for K,(X), x fixed, to one of 
relatively small degree; and (ii) it admits computation of meaningful error 
bounds. The advance in this paper over Sagar [9] is that we have generalized 
the approach from the unnecessarily restrictive aquifer setting and have 
provided error bounds. 

2. THE METHOD 

Let A? and Da be as described in the Introduction. The general format of 
an inhomogeneous (i.e., spatially variable), time-invariant linear PDE is 

L&&(x) D%(x, t) = q(x, t) + &,C,,DtBu(x, t). 

The parameter identification problem of concern to us is the following: 
Given the function u (or an approximation thereof) the constants C, , 
1 < w < V, and the forcing function q(x, t), compute K&X), all 01 E cd, for 
any given x. 

Let M denote the number of unknown parameters (i.e., the cardinality of 
AZ). Our generalization of Sagar’s method requires first computing D%(x, tJ 
and Dteu(x, ti) (or approximations denoted by D%‘(x, t,) and Dt%‘(x, tj) at J 
distinct time points tj , 1 <j < J, where J 3 ill. 

From these values, we obtain the simultaneous linear equations 

JLdG(x) D=u(x, tj) = q(x, ti> + -=~V’U(X, tj), l<<j<J. (lb) 

which for notational convenience is restated in matrix form: 

U,K=Q+Ut. 
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Here K is a tuple of the K,(X) terms, 01 E J&‘, and U, is the matrix whose 
coordinate at the jth row and column corresponding to 01 is D%(x, ti). The 
columns are ordered to correspond with the correct rows of K. Q is the vector 
(4(“, tl)~.-.~ !l(x9 tj)>T and U, is the vector whose jth coordinate equals 
zu C”Dt%(X, tj). 

It is evident that if U, and U, are determined by exact values of u then 
one may as well set ] = M (M being the cardinality of LY’), and provided U, 
is nonsingular, we have 

K = U;‘(Q + U,). (3) 

Of course, in all but rare instances it will be necessary to work with 
approximations II’ of u. (Presently, we will review plausible candidates for 
constructing these requisite approximations from finite sets of physical 
measurements.) Under this circumstance, the matrix U,’ and vector Ut’ 
constructed from the approximating function u’ differs from U, and Ut. 
The estimate K’ of the parameter K got by solving the linear equation 

U,‘K’=Q+Ut (4) 

is, consequently, in error. The discussion to follow applies to any vector 
norm. Elementary numerical analysis considerations lead to a bound on the 
norm of K’ - K in terms of a bound for I/ Ut’ - Ut [I and a bound for 
11 U,’ - U, j/ , the matrix norm being the norm generated by the vector norm. 
It is clear how bounds are readily established from the following result. 

PROPOSITION 1. Let SU = U, - U,’ satisfy @J,‘)-lI1 11 SU (1 < 1. Then 

11 K’ - K II < Il(U,‘)-1 II2 (1 - Il(Wc’-l II II XJ III-’ II XJ II (II Q + Ut’ II 

+ II Ut’ - ut II) + Il(uzY II II Ut’ - ut II * 

Proof. For brevity of exposition, for this proof only we define 
A=U,‘, B=U,‘,y=Q+Ut, y’=Q+Ui, and A=A-B. Then 

/I K - K’ 11 = // B-ly’ - A-ly II 

~IIB-l---lIIII~‘II +11~-11111~ --‘II 
~IIB-l---lIIII~‘II +(IIB-lll +IIB-l---lII)ll~ -y’II. 

But 

I/ B-l - A-l II = /I B-l - (B + A)-1 jl < I\ B-l II II I - (I + AB-l)-l 11 

= 11 B-l II ll(I + AB-l)-l AB-l II 

< II B-l II II m-l II IIV + AB-l)-l II . 
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If /I A I/ I] B-1 11 < 1, as hypothesized, 

ll(I + AB-l)-lII < (1 - 11 AB-l II)-’ < (1 - Ii A 11 I/ B-l 11)~‘. 

Thus, in summary, 

;I K - K’ I! < II B-l II2 II A II (1 - II A I! II B-l II)-’ (II Y’ I’ + II Y -Y’ II) 

+ II B--l I/ II Y -Y’ II 7 

which yields the proposition when the correct substitutions are made for 
A, B, y, etc. 

In the usual case of inexact values u’, it would seem a sensible procedure 
to use as large a value J as possible, consistent with reasonable cost of 
measurement and computation. Whenever J > Al, the error bounding 
problem can be cast into a regression analysis framework. For 1 <j ,< J, 
let us define 

vi = ,ZC,Jlt’(U(X, tj) - U'(X, tj)) - zK,Jx) (D"(u(N, tf) - "Cx* tj>). (4) 

If it is supposed that the above differences vi are independent random 
variables which are bounded by 9, or more generally, have a known variance 
~9, then error bounds on /I K’ - K 11 are afforded by the Gauss-Markov 
theorem, which we restate in the terminology of our problem. 

PROPOSITION 2. Suppose E[qj] = 0 and the variance (OY bound) of rlj is 02. 
Then provided the columns of Liz are linearly independent, the vector 

K’ = [(U,‘)r U,‘]-l U;T(Q + U,‘) 

is the minimum variance linear unbiased estimator of K, and the covariance 
matrix of K’ - K is [(UX’)rU2’]- l cr2. In particular, for the Euclidean norm, 

E[ll K’ - K II”] = trace(((U,‘)r U,‘)-l) u2. 

K’ is also the least square estimator of K. 

Proof. See Wilks [14, p. 2831. 
If by virtue of physical reasons or experience, one has some bound for the 

vector K as well as bounds for the interpolation error [u(x, tj) - u’(x, tj)] 
and its derivatives, then Eq. (4) yields directly a bound for qj, and hence, 
from the proposition, a bound on the estimation error 11 K’ - K 11 . On the 
other hand, if no bound on K is available, the estimate itself can be used in (4) 
to approximate the requisite bound of rlj. The size of the resultant error 
bound will suggest the accuracy of the approximate “bound” for 7j. 
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In most engineering applications, the solution u is not available, but must 
be approximated by a function u’ computed from a finite collection of 
observations {u(x~ , tj)}, 1 < i < I, 1 < j < J. In order for the identification 
procedure to be effective, it is necessary not only that u’ approximate u, but 
also that Dad and DtVu’ approximate D&u and Dtvu, respectively. Additionally, 
in order to avail ourselves of the error bounds of Propositions 1 and 2, it is 
necessary to be able to bound the differences 1 D&(u - u’)j , 1 D,“(u - u’)] . 

We catalog below the techniques known to us for achieving convergence 
of the needed derivatives, with error bounds. At this point, we note that in 
the aquifer problem as well as other applications, it may be possible to obtain 
measurements of the time derivatives of u(x, t) at given locations X, and 
consequently, in some cases, interpolation with respect to time can be avoided. 

Spline approximations were recommended and employed by Sagar [9]. 
Splines have appeal over numerical differentiation in that under reasonable 
regularity conditions the rate convergence is faster and the approximation 
takes advantage of points other than those in the immediate vicinity of the 
point in question. However, a serious drawback of the spline approach to our 
interpolation problem is that (with the exception of a preliminary study by 
Shah [5]) the properties of multivariate interpolation splines on non 
rectangular meshes have not been derived. Thus, to achieve bounds, it is 
necessary to make the measurements at regularly spaced points so that for 
fixed coordinates xi ,..., xi-i , .xi+i ,..., x,, one has a sequence of points in the 
xi direction from which to construct the one-dimensional spline 
s x1 *..., 5i--l.*i+l . ...* x, (x). From this family of splines indexed by 

x1 Y-.-Y xi-l 3 xi+l ,‘.*7 xn T 1 < i < N, the one-dimensional spline theory 
yields error bounds on partial derivatives of u’ with respect to xi , 
the partials being of all orders up to one less than the degree of the spline 
polynomials. To evaluate mixed partials or partials at points not along one of 
the spline lines, it is necessary to use numerical differentiation. But error 
bounds are available for this operation also. The text by Nilson, Ahlberg, and 
Walsh [16] has been useful for our studies, and, in particular, from [16, 
Theorem 4.4.11 we have the asymptotic result that if the spline is composed 
of polynomials of order 2w - 1, under lengthy but reasonable conditions on 
the function u to be approximated, uniformly 

& (4% ,..*1 xi-1 > x, xi+1 ,...r.%) - SX1....,5i--1,Xi+l,... r&N 

= O(ll Ai ~~2”-2--p) 

where I] Ai I] is a bound on the partition length and p ranges from 0 to 2v - 2. 
The following general result [16, p. 1421 holds. 
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PROPOSITION 3. If an interval [a, b] is partitioned by a mesh A, and Sd 
is a 2n - 1 degree spline interpolation off E Vn-2[a, b], then for p < 2n - 2, 

I Sii%) - f (%)I < df (‘); p/2 II A Ill + PL[S~); pi.2 II A Ill. 

In the above, 11 A /j refers to the maximum distance between gridpoints and for g a 
real function on [a, b] and c > 0, 

To determine a spline interpolation uniquely, it is necessary to prescribe 
additional “end conditions,” which are not always available from the data 
of a given physical problem. Theorem 2.9.3 of [16] shows, however, that 
even if incorrect end conditions are prescribed, the second derivatives of a 
cubic spline will converge uniformly in closed subintervals. 

Some numerical differentiation theory is available for multivariate functions, 
but the situation is far less satisfactory than the one-dimensional theory. 
For the existing multivariate theory, there is no constraint on the measure- 
ment locations other than that the difference vectors about a point of interest 
span the space. Issacson and Keller [17, p. 2981 outline the theory and error 
bounds for multivariate numerical differentiation. 

In many engineering applications it may be anticipated that the measure- 
ments (u(x~ , tJ} are corrupted by additive noise. One of the present authors 
has devoted much consideration to the problem of interpolation from noisy 
measurements and on the basis of both study of available literature and 
computer simulation, has concluded that at present the method of potential 
functions (see [ 181 and references therein) appear to be the strongest weapon. 
Briefly, the method of potential functions yields an iterative sequence of 
approximations {zP}~ . UN is based on the noisy sample pairs 

{((xi , ti>, 4xi , ti) + rli): 1 < i < W 

where the sequence {Q} denotes an independent sequence of random variables 
whose variance is bounded but whose distribution is unknown. The approxi- 
mation uN of u turns out to be of the form 

uyx, t) = f CiN&(X, t) 
i=l 

(M possibly infinite), 

where the &‘s comprise a basis for some Hilbert space known to contain u. 
It has long been known that if M is finite, an error bound can be achieved. 
Recently, Fisher and Yakowitz [19] h ave derived an error bound for M = CD. 
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The problem of bounding the errors of the derivatives has not been investi- 
gated for M = 00, but for M < co, the bound is obvious. 

3. ILLUSTRATIVE COMPUTATIONS USING THE IDENTIFICATION ALGORITHM 

To test the effectiveness of the methodology proposed in the previous 
section, we chose to study a parabolic equation in one space variable of the 
form 

Kd.4 uz, + K,(x) u, + K,(.r) = ut . (5) 

The inhomogeneous parameters Kl , Kz , KS were selected in such a manner 
that one is able to derive a simple closed-form solution and thus avoid errors 
resulting from numerical solution of (5). Toward that end, it was decided 
that u should have the form 

u(x, t) = (x + 1/3x3) t’ + (1/3x3 + 7/309 + l/429) t + 3/10r5 + 1/2x3. 

(6) 
One may verify that the associated functions K,(x) are as below 

K,(x) = (1 + x*)-~ 

K,(x) = d/&(K,(s)) 

K3(x) = 1/3x3 + 7/30.v5. 

(7) 

In this section, several identification studies of the preceding PDE will be 
reported in which different interpolation schemes are employed and in which 
the interval length and gridpoint spacings are varied. To begin with, however, 
we will relate carefully the details and output of one particular program so that 
the reader may gain some acquaintance with how closely interpolation 
methods approximate the function u and additionally, the manner in which 
the estimates track the actual values of the functions Kl , K, , and K3 as the 
space variable changes. 

For the program about which we speak in detail, we chose as our set of 
positions the interval [-5, 51. Th e sample points were evenly spaced with a 
separation of 0.5 (i.e., there were 21 gridpoints). The samples U(X~ , tj) were 
obtained from each gridpoint xi at each of the times tj = 0, 1,2. For purposes 
of this particular run, (cubic) spline interpolation was employed. The end 
conditions were (incorrectly) taken to satisfy 

u; = _1_ 

[ 
6W3 

2 
- dc’(x3 - 4) - ((uz - d/(x, - xl))) _ u; 

(x3 - Xl) I 

(8) 

I/ 
1 Wu,, - ~zoY(xzl - xd - ((uzo - +J’(xm - 4)) 

.Zl = 2 [ (x21 - x19) 
- z&J 

I 
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where x1 ,..., xsr are the gridpoints of the space variable X, and for fixed t, 

uj == U(Xj , t), 1 <j < 21. 

u: denotes the approximation of (ae/&vP) u(xj, t). Equations (8) and the 
condition 

(Xi - .Yi-l) 2(%+1 - xi-11 
(xi+l _ xi) 4-l -t (.yi+l - Xi) 4 + 4+1 

6 
[ 

ui+1 - ui Zli - Ui-1 
Z - 

xi+1 - Xi Xj+l - xj “Yj - x-1 19 
i = 2,..., 20, give a complete set of estimates {u;}~~~ which, in turn, uniquely 
determine the cubic spline. 

Table I compares the spline interpolated and estimated values of u and 
its derivatives with the exact value (Eq. (6)) over a portion of the space 
interval. We omitted inclusion of the spline values at the gridpoints because, 
of course, they are exact, as a consequence of the defining properties of 
splines. The approximations tabulated here are not exemplary; our experience 
is that Lagrange interpolation performs significantly better for the problem 
at hand. 

Using the approximate values of u given by the spline interpolation as 
described above, Eq. (3) was solved for K’ at a series of position values both at 
the gridpoints and between gridpoints. The results of these computations are 
given in their entirety in Table II. 

Notice that the parameter values are changing reasonably briskly with 
change in position. The parameter value at the position 0 cannot be calculated 
because the matrix U,’ in (3) is singular at this point. The error in estimation 
at the ends of the space interval (i.e., -5 and 5) are to be anticipated because 
we used incorrect end conditions in evaluating the spline. 

We tested spline interpolation with grid spacing 0.1 and 0.05 also. All 
these results will be summarized, along with error behavior arising in other 
interpolation schemes we invesitagted. First, however, we describe the details 
of these alternative interpolation methods, all of which surpassed the spline 
method in accuracy for the differential equation identification problem 
studied in this section. For future reference, we designate identification 
using spline interpolation as Method A. 

Method B (Finite dz#ewnce). This is the simplest possible technique; no 
interpolation is performed at all, and consequently, this technique can be 
used only for identification at measurement points. Let xi , 1 < i ,( 21, 
denote the positions at which measurements are made. Then the standard 
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equation for numerical differentiation (e.g., [20, p. 1911) is employed (assum- 
ing t is fixed and, therefore, suppressed) 

Method C (Lagrange interpolation). A Lagrange interpolation polynomial 
is passed through the 21 measurement values and, consequently, the degree 
of the polynomial is 20. Derivatives are calculated as in Method B to find the 
parameter at measurement points and to compute the values of the para- 
meters K,(x), j = 1, 2, 3, for s not a measurement point, derivatives of u are 
obtained by Eq. (9) using the Lagrange interpolation polynomial. A sensible 
variation, which we did not investigate, is to use the fact that the interpolation 
function is a polynomial to obtain derivatives “synthetically.” 

Method D (Lagrange interpolation of the function and its derivatives). 
First, a Lagrange interpolation polynomial P, is passed through the measured 
values u(xJ, 1 < i <I 21. Then, using the values U(XJ == ui , for xi’s being 
the measurement (or grid) positions, numerical differentiation is performed 
according to Eq. (9) to obtain derivatives a/& ui at the interior gridpoints 
xi , 2 < i 5: 20. Then an eighteenth degree polynomial Pz is used to inter- 
polate these values. An interpolation polynomial Ps is passed through the 
values P/M ~(.a$ also obtained by numerical differentiation. Then for any x, 
the values U(N), ii/ax U(X) and 82j&z U(X) needed for identification are 
evaluated directly from the rule 

u(x) = PI(X) 

a/ax u(x) = P&Y) 

ir2/&2 U(X) = P.&V). 

Table III tabulates the parameter estimates obtained using Method C for 
the same problem as reported in Table II. Table IV compares the accuracy 
of all the methods on various intervals and with different grid spacings. 

4. CLOSING COMMENTS 

The identification algorithm we have studied here is enormously less 
sophisticated than its alternatives in the published literature, and it is cor- 
respondingly easier to program and less demanding of computation and 
memory. Yet, it has some appealing properties (beyond its simplicity): 
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(a) Error bounds are available (although in the example, they turned 
out to be overly inflated). 

(b) No initial “guesses” are required (in contrast to the gradient and 
quasilinearization methods, for example.) 

(c) The technique utilizes the notion that the effect of the parameter 
value at a point x is uniquely determined by values of u is a neighborhood of X. 

Suppose we had wished to estimate the coefficients at 41 positions, as in 
Tables II and III, using the quasilinearization or gradient methods. It would 
have then been necessary to augment 123 coordinates to the 3-coordinate state 
variable and then repetitively solve boundary value differential equations of 
dimension 126. 
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