The Cayley-Hilbert Metric and Positive Operators

P. J. Bushell*
University of Sussex
Falmer, Brighton, Sussex, England

Submitted by H. Amann

Abstract

The Cayley-Hilbert metric is defined for a real Banach space containing a closed cone. By restricting the domain of a particular type of positive nonlinear operator, the Banach contraction-mapping theorem is used to prove the existence of a unique fixed point of the operator with explicit upper and lower bounds. Applications to quasilinear elliptic partial differential equations and to matrix theory are considered.

1. INTRODUCTION

The Cayley-Hilbert metric is particularly useful in proving the existence of a unique fixed point for a positive homogeneous operator defined in a Banach space. Elementary accounts of the general theory may be found in Krasnosel'skii, Vainikko, Zabreiko, Rutitskii, and Stetsenko [7] and in Bushell [2]. In [3] the author gave some applications of the theory to the solution of a class of Fredholm and Volterra integral equations. Closely related general theory and applications are given by Potter [12].

In Sections 2 and 3 of the present paper we consider further extensions of the theory. In particular, we do not assume that the cone has a nonempty interior, and we consider the case of a self-mapping of a subset of the

[^0]boundary of the cone. This allows us to study Volterra integral equations without using the rather unwieldy weighted norms used in [3]. Moreover, the method provides explicit upper and lower bounds for a fixed point of a class of nonlinear mappings and asserts that only one fixed point can satisfy such bounds.

The main result is given in Theorem 3.1. In Section 4 we illustrate the use of the projective metric by considering two simple quasilinear elliptic partial differential equations, and in Section 5 we give two results from matrix theory.

2. PROJECTIVE METRIC

Let X be a real Banach space, and let K be a closed cone in X. Let \leqslant denote the usual induced partial ordering in X defined by $x \leqslant y$ if and only if $y-x \in K$. If $x, y \in K^{+}=K \backslash\{0\}$, let

$$
M(x, y)=\inf \{\lambda \in \mathbb{R}: x \leqslant \lambda y\}, \text { or } \infty \text { if the set is empty }
$$

and

$$
m(x, y)=\sup \{\mu \in \mathbb{R}: \mu y \leqslant x\} .
$$

It is easy to see that

$$
\begin{equation*}
0 \leqslant m(x, y) \leqslant M(x, y) \leqslant \infty \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
m(x, y) y \leqslant x \leqslant M(x, y) y \tag{2.2}
\end{equation*}
$$

Definition. The Cayley-Hilbert projective metric is defined in K^{+}by

$$
d(x, y)=\log \frac{M(x, y)}{m(x, y)}
$$

If $g \in K$ and $\|g\|=1$ we define

$$
K_{g}=\{x \in K: d(x, g)<\infty\}
$$

and

$$
E_{g}=\left\{x \in K_{g}:\|x\|=1\right\}
$$

Theorem 2.1. $\left\{K_{g}, d\right\}$ is a pseudometric space, and $\left\{E_{g}, d\right\}$ is a metric space.

Proof. It follows from

$$
\frac{m(x, g)}{M(y, g)} y \leqslant m(x, g) g \leqslant x
$$

and

$$
x \leqslant M(x, g) g \leqslant \frac{M(x, g)}{m(y, g)} y
$$

that

$$
0 \leqslant d(x, y) \leqslant d(x, g)+d(y, g)<\infty .
$$

The remainder of the proof is straightforward (see Bushell [2]).

Theorem 2.2. Let the norm in X be monotonic, that is, $0 \leqslant x \leqslant y$ implies $\|x\| \leqslant\|y\|$. Then $\left\{E_{g}, d\right\}$ is a complete metric space.

Proof. We note that for $x, y \in E_{g}$,

$$
\begin{equation*}
0<m(x, y) \leqslant 1 \leqslant M(x, y)<\infty \tag{2.3}
\end{equation*}
$$

since $0 \leqslant m(x, y) y \leqslant x$ implies $m(x, y)\|y\| \leqslant\|x\|$, that is, $m(x, y) \leqslant 1$, and similarly $1 \leqslant M(x, y)$. Then

$$
x-y \leqslant\{M(x, y)-m(x, y)\} y
$$

and hence

$$
\begin{equation*}
\|x-y\| \leqslant|M(x, y)-m(x, y)| \leqslant \exp \{d(x, y)\}-1 \tag{2.4}
\end{equation*}
$$

Let $\left\{x_{n}\right\}$ be a Cauchy sequence in $\left\{E_{g}, d\right\}$. From (2.4), $\left\{x_{n}\right\}$ is a Cauchy sequence in X and hence converges in norm to $x \in K$ with $\|x\|=\mathbf{1}$. Now

$$
d\left(x_{n}, g\right) \leqslant d\left(x_{n}, x_{m}\right)+d\left(x_{m}, g\right)
$$

implies that

$$
1 \leqslant \frac{M\left(x_{n}, g\right)}{m\left(x_{n}, g\right)} \leqslant c<\infty
$$

for $n>m$, and hence

$$
c^{-1} \leqslant m\left(x_{n}, g\right) \leqslant 1 \leqslant M\left(x_{n}, g\right) \leqslant c .
$$

Therefore, for $n>m$,

$$
c^{-1} g \leqslant x_{n} \leqslant c g,
$$

and letting $n \rightarrow \infty$, we see that $d(x, g) \leqslant \log c^{2}<\infty$.
Similarly, $d\left(x_{n}, x_{m}\right)<\varepsilon$ gives $d\left(x, x_{n}\right) \leqslant 2 \varepsilon$, and hence $\left\{x_{n}\right\}$ converges in $\left\{E_{g}, d\right\}$.

If $g \in \dot{K}$, the interior of the cone, then K_{g} coincides with \dot{K}, the case considered at length in Bushell [2]. The definition of the projective metric in more general settings is discussed by Kohlberg and Pratt [6] and Turinici [13].

3. NONLINEAR MAPPINGS

In this section we consider the class \mathscr{F} of nonlinear mappings $T: K \rightarrow K$, which are such that
(1) $0 \leqslant x \leqslant y$ implies $T x \leqslant T y$, and
(2) for some $p, 0<p<1$, if $0 \leqslant x$ and λ is a positive real number, then $T(\lambda x)=\lambda^{p} T x$.

Moreover, we assume throughout the section that the norm in X is monotonic.

Theorem 3.1. If there exists $g \in K$ with $\|g\|=1$ such that $d(g, T g)<\infty$, then $T \in \mathscr{F}$ has a unique fixed point z in K_{g}, and

$$
\{m(T g, g)\}^{1 /(1-p)} g \leqslant z \leqslant\{M(T g, g)\}^{1 /(1-p)} g
$$

Proof. Let $x \in E_{g}$. Then

$$
m(x, g) g \leqslant x \leqslant M(x, g) g
$$

and hence

$$
\{m(x, g)\}^{p} m(T g, g) g \leqslant T x \leqslant\{M(x, g)\}^{p} M(T g, g) g
$$

Therefore,

$$
d(T x, g) \leqslant d(T g, g)+p d(x, g)<\infty
$$

that is,

$$
T: E_{g} \rightarrow K_{g}
$$

If $x, y \in E_{g}$, applying T to (2.2) gives

$$
d(T x, T y) \leqslant p d(x, y)
$$

Let $F(x)=T x /\|T x\| ;$ the $F: E_{g} \rightarrow E_{g}$ and F is the composition of a strict contraction and a normalizing isometry. By the Banach contraction-mapping theorem there is a unique x in E_{g} such that $F(x)=x$, and if we set $z=\|T x\|^{1 /(1-p)} x$, the existence of the unique fixed point of T in K_{g} follows easily.

Finally,

$$
z=T z \leqslant T\{M(z, g) g\} \leqslant\{M(z, g)\}^{p} M(T g, g) g
$$

and hence

$$
M(z, g) \leqslant\{M(z, g)\}^{p} M(T g, g)
$$

the remainder of the proof is clear.

4. EXAMPLES

We illustrate the use of the results of Section 3 by considering two nonlinear elliptic partial differential equations and related boundary value problems.

Example 1. Kawano, Kusano, and Naito [5] consider the two-dimensional elliptic equation

$$
\begin{equation*}
\Delta u=\phi(x) u^{p} \tag{4.1}
\end{equation*}
$$

where $x \in \mathbb{R}^{2}$ and $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}$. They prove the existence of positive solutions with logarithmic growth at infinity for certain types of functions $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Assuming solutions to be functions of $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$, they reduce the partial differential equation to the ordinary differential equation

$$
\begin{equation*}
y^{\prime \prime}+\frac{1}{t} y^{\prime}=G(t) y^{p} \tag{4.2}
\end{equation*}
$$

and then to the integral equation

$$
\begin{equation*}
y(t)=c+\int_{0}^{t} s \log \left(\frac{t}{s}\right) G(s)[y(s)]^{p} d s, \quad t \geqslant 0 . \tag{4.3}
\end{equation*}
$$

We take $c=0$, and we assume that
(1) G is continuous in $[0, \infty)$, and
(2) $0<\alpha \leqslant G(t) \leqslant \beta<\infty$ for $0 \leqslant t<\infty$.

Let $X=C[0, R]$, with $R>0$, and let K be the cone of nonnegative functions in X. Let

$$
\begin{equation*}
T y(t)=\int_{0}^{t} s \log \left(\frac{t}{s}\right) G(s)[y(s)]^{p} d s \tag{4.4}
\end{equation*}
$$

and suppose that $0<p<1$.
Let $g(t)=(t / R)^{2 /(1-p)}$; then

$$
R^{2} \alpha\left(\frac{1-p}{2}\right)^{2} g \leqslant T g \leqslant R^{2} \beta\left(\frac{1-p}{2}\right)^{2} g
$$

From Theorem 3.1, Equation (4.1) has a unique solution such that

$$
\alpha^{1 /(1-p)}\left(\frac{1-p}{2}\right)^{2 /(1-p)} t^{2 /(1-p)} \leqslant y(t) \leqslant \beta^{1 /(1-p)}\left(\frac{1-p}{2}\right)^{2 /(1-p)} t^{2 /(1-p)}
$$

for $0 \leqslant t<\infty$.
Thus, if $0<p<1$ and if ϕ is a positive bounded continuous function in \mathbb{R}^{2}, then Equation (4.1) has a solution that grows like $|x|^{2 /(1-p)}$ as $|x| \rightarrow \infty$.

The existence of the solutions with logarithmic growth is proved in [5] by appeals to the Schauder-Tychonoff fixed-point theorem, but if $0<p<1$, these results follow more readily from Theorem 2.3 of Bushell [3].

Example 2. Let Ω be a bounded domain in \mathbb{R}^{n}. Many authors have studied special cases of the boundary-value problem

$$
-\Delta u=f(u) \quad \text { in } \Omega, \quad u>0 \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

(See the review article by Lions [8] and the more recent papers by Brézis and Nirenberg [1] and Ni and Sacks [11], as well as the many references therein.)

Let $f(u)=u^{p}$ with $0<p<1$, and let Ω be the open ball with center the origin and radius unity. Assuming solutions to be functions of r, the radial distance from the origin, the boundary-value problem reduces to

$$
-u^{\prime \prime}(r)-\frac{n-1}{r} u^{\prime}(r)=\{u(r)\}^{p}, \quad 0<r<1
$$

and $u(1)=0$. We suppose that $n \geqslant 3$.
The Green's function for this problem is

$$
G(r, s)= \begin{cases}\frac{1}{n-2}\left[s\left(\frac{s}{r}\right)^{n-2}-s^{n-2}\right], & 0<s \leqslant r \\ \frac{1}{n-2}\left[s-s^{n-2}\right], & r \leqslant s<1\end{cases}
$$

We seek a fixed point of the map

$$
T u(r)=\int_{0}^{1} G(r, s)[u(s)]^{p} d s
$$

in the cone of nonnegative functions in $C[0,1]$. Let

$$
A u(r)=\int_{0}^{1} G(r, s) u(s) d s
$$

and let

$$
g(r)=1-r^{2}
$$

Then

$$
\operatorname{Tg}(r)=A\left(1-r^{2}\right)^{p} \leqslant A(1)=\frac{1-r^{2}}{2 n}
$$

and

$$
\begin{aligned}
\operatorname{Tg}(r) & =A\left(1-r^{2}\right)^{p} \geqslant A\left(1-r^{2}\right) \\
& =\frac{\left(1-r^{2}\right)\left\{4+n\left(1-r^{2}\right)\right\}}{4 n(n+2)}
\end{aligned}
$$

Thus

$$
\frac{g(r)}{n(n+2)} \leqslant \operatorname{Tg}(r) \leqslant \frac{g(r)}{2 n}
$$

From Theorem 3.1, if $0<p<1$, there is a unique solution of $-\Delta u=u^{p}$ in $B(0,1), u>0$ in $B(0,1), u=0$ when $r=1$, such that

$$
\left(\frac{1}{n(n+2)}\right)^{1 /(1-p)}\left(1-r^{2}\right) \leqslant u(r) \leqslant(1 / 2 n)^{1 /(1-p)}\left(1-r^{2}\right)
$$

In such special problems involving monotonic homogeneous mappings in a cone, perhaps a projective metric technique is to be preferred to more general methods such as Leray-Schauder theory or Krasnosel'ski's concaveoperator theory. The technique yields bounds for the solution and the certainty of uniqueness within a given set of possible functions.

Applications to the porous-media equation, involving more lengthy analysis, will appear elsewhere.

5. RESULTS FROM MATRIX THEORY

In this section X denotes the real Banach space of real $n \times n$ symmetric matrices, and K the cone of positive semidefinite matrices in K. The $\stackrel{\circ}{K}$, the interior of K, is the set of positive definite matrices in X. It was shown in Bushell [4] that for $A, B \in \mathscr{K}$,

$$
d(A, B)=\log \frac{\lambda_{M}\left(B^{-1} A\right)}{\lambda_{m}\left(B^{-1} A\right)}
$$

where $\lambda_{M}(C)$ and $\lambda_{m}(C)$ denote the maximum and minimum eigenvalues of C, respectively.

Example 1. Let T be a real nonsingular $n \times n$ matrix, and let $\alpha \in \mathbb{R}$, $\alpha \neq \pm 1$. A straightforward extension of the argument given in [4] shows that there is a unique positive definite matrix A such that $T^{\prime} A T=A^{\alpha}$. The cases $0<\alpha<1$ and $1<\alpha<\infty$ must be considered separately, making use of Loewner's theorem [9] to observe that $A \leqslant B$ implies $A^{\alpha} \leqslant B^{\alpha}$ when $0<\alpha<1$. The case of negative α can be dealt with by noting that the map $A \mapsto A^{-1}$ is a projective isometry in \grave{K}.

Example 2. Let T be a real nonsingular $n \times n$ matrix. For $A \in \stackrel{\circ}{K}$ let \tilde{A} denote the $(n-1)$ th compound of A as defined in Marshall and Olkin [10, Chapter 16]. Let $m \geqslant n$ and let $F(A)=\left(T^{\prime} A T T\right)^{1 / m}$. Then $F: \stackrel{\circ}{K} \rightarrow \AA, F$ is monotone increasing in $\stackrel{\circ}{K}$, and $F(\lambda A)=\lambda^{(n-1) / m} F(A)$ (see [10] for proofs of these assertions).

Thus, for each $m \geqslant n$, there exists a unique positive definite $n \times n$ matrix A such that $T^{\prime} \tilde{A} T=A^{m}$.

REFERENCES

1. H. Brézis and L. Nirenberg, Positives solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36:437-477 (1983).
2. P. J. Bushell, Hilbert's metric and positive contraction mappings in a Banach space, Arch. Rational Mech. Anal. 52:330-338 (1973).
3. P. J. Bushell, On a class of Volterra and Fredholm non-linear integral equations, Math. Proc. Cambridge Philos. Soc. 79:329-335 (1976).
4. P. J. Bushell, On solutions of the matrix equation $T^{\prime} A T=A^{2}$, Linear Algebra Appl. 8:465-469 (1974).
5. N. Kawano, T. Kusano, and M. Naito, On the elliptic equation $\Delta u=\phi(x) u^{\gamma}$ in \mathbb{R}^{2}, Proc. Amer. Math. Soc. 93:73-78 (1985).
6. E. Kohlberg and J. W. Pratt, The contraction mapping approach to the PerronFröbenius theory: Why Hilbert's metric? Math. Oper. Res. 7:198-210 (1982).
7. M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and V. Ya. Stetsenko, Approximate Solution of Operator Equations, Wolters-Noordhoff, Groningen, 1972, pp. 54-60.
8. P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24:441-467 (1982).
9. C. Loewner, Über monotone Matrixfunktionen, Math. Z. 38:177-216.
10. A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic, New York, 1979.
11. W.-M. Ni and P. Sacks, Singular behavior in nonlinear parabolic equations, Trans. Amer. Math. Soc. 287:657-671 (1985).
12. A. J. B. Potter, Hilbert's projective metric applied to a class of positive operators in Ordinary and Partial Differential Equations Springer Lecture Notes 564, Dundee, 1976, pp. 377-382.
13. M. Turinici, Volterra functional equations via projective techniques, J. Math. Anal. Appl. 103:211-229 (1984).

[^0]: *The author's work was supported in part by a Leverhulme Research Fellowship and by the United Kingdom and Engineering Research Council Grant No. RQ84.

