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ABSTRACT

The Cayley-Hilbert metric is defined for a real Banach space containing a closed
cone. By restricting the domain of a particular type of positive nonlinear operator, the
Banach contraction-mapping theorem is used to prove the existence of a unique fixed
point of the operator with explicit upper and lower bounds. Applications to quasi-
linear elliptic partial differential equations and to matrix theory are considered.

1. INTRODUCTION

The Cayley-Hilbert metric is particularly useful in proving the existence
of a unique fixed point for a positive homogeneous operator defined in a
Banach space. Elementary accounts of the general theory may be found in
Krasnosel’skii, Vainikko, Zabreiko, Rutitskii, and Stetsenko [7] and in Bushell
[2]. In [3] the author gave some applications of the theory to the solution of a
class of Fredholm and Volterra integral equations. Closely related general
theory and applications are given by Potter [12].

In Sections 2 and 3 of the present paper we consider further extensions of
the theory. In particular, we do not assume that the cone has a nonempty
interior, and we consider the case of a self-mapping of a subset of the
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boundary of the cone. This allows us to study Volterra integral equations
without using the rather unwieldy weighted norms used in [3]. Moreover, the
method provides explicit upper and lower bounds for a fixed point of a class
of nonlinear mappings and asserts that only one fixed point can satisfy such
bounds.

The main result is given in Theorem 3.1. In Section 4 we illustrate the use
of the projective metric by considering two simple quasilinear elliptic partial
differential equations, and in Section 5 we give two results from matrix
theory.

2. PROJECTIVE METRIC

Let X be a real Banach space, and let K be a closed cone in X. Let <
denote the usual induced partial ordering in X defined by x < y if and only if
y—x€K If x,ye K* =K\ {0}, let

M(x,y)=inf{ A €R:x < Ay}, or oo if the set is empty,
and
m(x,y)=sup{pER: py<x}.
It is easy to see that
0<m(x,y)<M(x,y) <o (2.1)
and

m(x,y)y <x<M(x,y)y. (2.2)

DeriniTioN. The Cayley-Hilbert projective metric is defined in K* by

M(x,y)

d(x,y) = logm.

If g K and ||g|| =1 we define

K,={x€K:d(x,g) <}
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and

E, = {x€K:|x||=1}.

Treorem 2.1. {K,,d} is a pseudometric space, and {E,d} is a
‘metric space.

Proof. It follows from

m(x,g)
——y<m(x,g)g <
M(y,g)
and
M(x,
x<M(x,g)g < —(—i)y
m(y, g)
that
0<d(x,y)<d(x,g)+d(y,g) <oo.
The remainder of the proof is straightforward (see Bushell [2]). [ ]

THEOREM 2.2. Let the norm in X be monotonic, that is, 0 <x <y
implies ||x|| <{ly|l. Then {E,,d} is a complete metric space.

Proof. We note that for x,y € E,
0<m(x,y)<1<M(x,y)<oo, (2.3)

since 0 < m(x, y)y < x implies m(x, y)l|ly)| <|x}|l, that is, m(x,y) <1, and
similarly 1 < M(x, y). Then

x—y< {M(x,y)—m(x,y)}y,

and hence

lx —yll <|M(x,y) —m(x,y)|<exp{d(x,y)} — 1. (2.4)
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Let {x,} be a Cauchy sequence in {E,d}. From (24), {x,} is a
Cauchy sequence in X and hence converges in norm to x € K with |jx|| = 1.
Now

d(x,.g) <d(x,,x,)+d(x,.8)
implies that

M(x,,g)

< £c<oo
m(x,,8)

for n > m, and hence
ct<m(x,, g) <1< M(x,,g)<c.

Therefore, for n > m,

-1
clg<x, <cg,

and letting n — o0, we see that d(x, g) < logc2 < o0.

Similarly, d(x,,x,,) <e gives d(x,x,)<2¢, and hence {x,} converges
in {E,d}. .

If g € K, the interior of the cone, then K, coincides with K, the case
considered at length in Bushell [2]. The definition of the projective metric in
more general settings is discussed by Kohlberg and Pratt [6] and Turinici
[13].

3. NONLINEAR MAPPINGS

In this section we consider the class % of nonlinear mappings 7: K — K,
which are such that

(1) 0 <x <y implies Tx < Ty, and
(2) for some p, 0 <p<1,if 0<x and A is a positive real number, then
T(Ax)=APTx.

Moreover, we assume throughout the section that the norm in X is mono-
tonic.
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Tueorem 3.1.  If there exists g € K with ||g|| = 1 such that d(g, Tg) < o,
then T € % has a unique fixed point z in K, and

(m(Tg,g)}"" Pg<a< (M(Te, )} e
Proof. Let x € E,. Then

m(x,g)g<x<M(x,g)g

and hence

{m(x,g)} ' m(Tg,g)g <Tx < {M(x,g)) "M(Tg, g)g.
Therefore,
d(Tx,g) <d(Tg,g)+ pd(x,g) <oo;
that is,
T:E,—K,.
If x,y € E,, applying T to (2.2) gives
d(Tx, Ty) < pd(x,y).

Let F(x)=Tx/||Tx|; the F: E, > E, and F is the composition of a strict
contraction and a normalizing isometry. By the Banach contraction-mapping
theorem there is a unique x in E, such that F(x)=x, and if we set
z = ||Tx||'/~ "X, the existence of the unique fixed point of T in K, follows

easily.
Finally,

z=Tz<T{M(z,g)g} < {M(z,2)}"M(Tg.g)e,

and hence

M(z,g)< {M(z,g)}"M(Tg, g).

the remainder of the proof is clear. | |
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4. EXAMPLES

We illustrate the use of the results of Section 3 by considering two
nonlinear elliptic partial differential equations and related boundary value
problems.

ExamprLE 1. Kawano, Kusano, and Naito [5] consider the two-dimen-
" sional elliptic equation

Au = ¢(x)u?, (4.1)

where x €R? and A= 3%/3x?+ 3%/8x2. They prove the existence of
positive solutions with logarithmic growth at infinity for certain types of
functions ¢:R?— R. Assuming solutions to be functions of r=yx2+xZ,
they reduce the partial differential equation to the ordinary differential
equation

1
Yy Ty'= G(t)y? (4.2)

and then to the integral equation
¢ t
y(t)=c+fslog(;)G(s)[y(s)]"ds, t>0. (4.3)
0
We take ¢ = 0, and we assume that

(1) G is continuous in [0, 0), and
2)0<agsG)gsB<owfor0<t <co.

Let X =CJ[0, R], with R>0, and let K be the cone of nonnegative
functions in X. Let

Ty(o) - | ’slog( t)c(s)[yu)l"ds, (4.4)

s
and suppose that 0 < p < 1.
Let g(t)=(t/R)>"~P); then

1-p

2 l—p 2
R"‘a( ) gsTgsﬂ?‘B(—z ) g



THE CAYLEY-HILBERT METRIC 277

From Theorem 3.1, Equation (4.1) has a unique solution such that

12/4-p»

2/ -p)
IRV ) 1-p
2

1—p\¥/0-P)
£2/0-7) < y(t) <31/<1—p>(__)

for 0 <t < oo.
Thus, if 0 < p <1 and if ¢ is a positive bounded continuous function in
R2, then Equation (4.1) has a solution that grows like |x|%/@~7) as |x| = cc.
The existence of the solutions with logarithmic growth is proved in [5] by
appeals to the Schauder-Tychonoff fixed-point theorem, but if 0 <p <1,
these results follow more readily from Theorem 2.3 of Bushell [3].

ExampLE 2. Let © be a bounded domain in R". Many authors have
studied special cases of the boundary-value problem

~Au=f(u) inQ, u>0 inQ, u=0 onJQ.

(See the review article by Lions [8] and the more recent papers by Brézis and
Nirenberg [1] and Ni and Sacks [11], as well as the many references therein.)

Let f(u)=uP with 0 <p <1, and let © be the open ball with center the
origin and radius unity. Assuming solutions to be functions of r, the radial
distance from the origin, the boundary-value problem reduces to

n—

1
w(r)={u(r)}?, O0<r<i,

— —_
u(r) -

and u(1) = 0. We suppose that n > 3.
The Green’s function for this problem is

1 syn—2
s(—) -s"2|, O<s<r,
n—2 r

1
n—2

G(r,s)=

[s—s"72], r<s<l.

We seek a fixed point of the map

Tu(r) = folc(r, s)[u(s)]?ds
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in the cone of nonnegative functions in C[0,1]. Let

Au(r) = fOIC(r, s)u(s)ds,

and let
g(r)=1-1r2
Then
1-r2
Tg(r)=A(1-r*)P<AQ1) =
2n
and
Tg(r)=A(1-r2)"> A(1-1r?)
(1- rz){4+ n(l- r2)}
B 4n(n +2)

Thus

g(r) g(r)

—— < T <—.
n(n+2) <Telr) < 2n

From Theorem 3.1, if 0 < p <1, there is a unique solution of — Au = u?
in B(0,1), u > 0in B(0,1), u = 0 when r =1, such that

1 1/(1-p)
(n(n+z)‘) (1=r*) <u(r) <(1/20)77P(1-12).

In such special problems involving monotonic homogeneous mappings in
a cone, perhaps a projective metric technique is to be preferred to more
general methods such as Leray-Schauder theory or Krasnosel’ski’s concave-
operator theory. The technique yields bounds for the solution and the
certainty of uniqueness within a given set of possible functions.

Applications to the porous-media equation, involving more lengthy analy-
sis, will appear elsewhere.
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5. RESULTS FROM MATRIX THEORY

In this section X denotes the real Banach space of real n X n symmetric
matrices, and K the cone of positive semidefinite matrices in K. The Io(, the
interior of K, is the set of positive definite matrices in X. It was shown
in Bushell [4] that for A, BE K,

A(B~4)
d(A,B)=log ————,
B -loe 57)
where A,(C) and A, (C) denote the maximum and minimum eigenvalues of
C, respectively.

ExampLE 1. Let T be a real nonsingular n X n matrix, and let a €R,
a# 1+ 1. A straightforward extension of the argument given in [4] shows that
there is a unique positive definite matrix A such that T’AT = A® The cases
O0<a<]1 and 1<a<oc must be considered separately, making use of
Loewner’s theorem [9] to observe that A < B implies A*< B* when0 < a < 1.
The case of negative a can be dealt with by noting that the map A — A~ ! is
a projective isometry in K.

ExamprLe 2. Let T be a real nonsingular n X n matrix. For A € K let A
denote the (n — 1)th compound of A as defined in Marshall and Olkin [10,
Chapter 16]. Let m > n and let F(A)=(T'AT)"/™. Then F:K - K, F is
monotone increasing in K, and F(AA) = A"~ D/mF(A) (see [10] for proofs of
these assertions).

Thus, for each m > n, there exists a unique positive definite n X n matrix
A such that T’AT = A™,

REFERENCES

1. H. Brézis and L. Nirenberg, Positives solutions of nonlinear elliptic equations
involving critical Sobolev exponents, Comm. Pure Appl. Math. 36:437-477
(1983).

2. P. ]. Bushell, Hilbert’s metric and positive contraction mappings in a Banach
space, Arch. Rational Mech. Anal. 52:330-338 (1973).

3. P.J. Bushell, On a class of Volterra and Fredholm non-linear integral equations,
Math. Proc. Cambridge Philos. Soc. 79:329-335 (1976).

4. P. ]. Bushell, On solutions of the matrix equation T’AT = A%, Linear Algebra
Appl. 8:465-469 (1974).



280

5.

6.

7.

11.

12.

13.

P.J. BUSHELL

N. Kawano, T. Kusano, and M. Naito, On the elliptic equation Au = ¢(x)u? in
R2, Proc. Amer. Math. Soc. 93:73-78 (1985).

E. Kohlberg and J. W. Pratt, The contraction mapping approach to the Perron-
Frobenius theory: Why Hilbert’s metric? Math. Oper. Res. 7:198-210 (1982).
M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and V. Ya.
Stetsenko, Approximate Solution of Operator Equations, Wolters-Noordhoff,
Groningen, 1972, pp. 54-60.

P. L. Lions, On the existence of positive solutions of semilinear elliptic equations,
SIAM Rev. 24:441-467 (1982).

C. Loewner, Uber monotone Matrixfunktionen, Math. Z. 38:177-216.

A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its
Applications, Academic, New York, 1979.

W.M. Ni and P. Sacks, Singular behavior in nonlinear parabolic equations,
Trans. Amer. Math. Soc. 287:657-671 (1985).

A. ]. B. Potter, Hilbert’s projective metric applied to a class of positive operators
in Ordinary and Partial Differential Equations Springer Lecture Notes 564,
Dundee, 1976, pp. 377-382.

M. Turinici, Volterra functional equations via projective techniques, J. Math.
Anal. Appl. 103:211-229 (1984).

Received 1 November 1985; revised 31 January 1986



