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ABSTRACT 

The Cayley-Hilbert metric is defined for a real Banach space containing a closed 
cone. By restricting the domain of a particular type of positive nonlinear operator, the 
Banach contraction-mapping theorem is used to prove the existence of a unique fixed 
point of the operator with explicit upper and lower bounds. Applications to quasi- 
linear elliptic partial differential equations and to matrix theory are considered. 

1. INTRODUCTION 

The Cayley-Hilbert metric is particularly useful in proving the existence 
of a unique fixed point for a positive homogeneous operator defined in a 
Banach space. Elementary accounts of the general theory may be found in 
Krasnosel’skii, Vainikko, Zabreiko, Rutitskii, and Stetsenko [7] and in Bushell 
[2]. In [3] the author gave some applications of the theory to the solution of a 
class of Fredholm and Volterra integral equations. Closely related general 
theory and applications are given by Potter [12]. 

In Sections 2 and 3 of the present paper we consider further extensions of 
the theory. In particular, we do not assume that the cone has a nonempty 
interior, and we consider the case of a self-mapping of a subset of the 
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boundary of the cone. This allows us to study Volterra integral equations 
without using the rather unwieldy weighted norms used in [3]. Moreover, the 
method provides explicit upper and lower bounds for a fixed point of a class 
of nonlinear mappings and asserts that only one fixed point can satisfy such 
bounds. 

The main result is given in Theorem 3.1. In Section 4 we illustrate the use 
of the projective metric by considering two simple quasilinear elliptic partial 
differential equations, and in Section 5 we give two results from matrix 
theory. 

2. PROJECTIVE METRIC 

Let X be a real Banach space, and let K be a closed cone in X. Let < 
denote the usual induced partial ordering in X defined by x G Y if and only if 
Y - x E K. If x, Y E K+ = K \ {0}, let 

M(x, y) = inf{ A E Iw : x~Xy},orcoifthesetisempty, 

and 

It is easy to see that 

O<m(x,y)~M(x~y)~~ (2.1) 

and 

m(x, y)y G x G M(x, Y)Y* (2.2) 

DEFINITION. The Cayley-Hilbert projective metric is defined in K+ by 

M(x, Y> 
d(x, y) = log- 

&, Y> . 

If g E K and ]]g]] = 1 we define 

Kg= {xEK:d(x,g)<co} 
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and 

E,= {xEK~:JJxJJ=~}. 

THEOREM 2.1. { K,,d} is a pseudometric space, and { E,,d} is a 
metric space. 

Proof It follows from 

and 

Mb, g> 
xd+,g)ge----- 

4YA) y 

that 

The remainder of the proof is straightforward (see Bushell [2j>. 

THEOREM 2.2. Let the rwrm in X be monotonic, that is, 0 Q x < y 

implies llxll G 11 yI/. Then {E,, d } is a complete metric space. 

proof. We note that for xx Y E E,, 

O<m(x,y)<l<M(x,y)<w, (2.3) 

since 0 & m(x, y)y < x implies m(x, Y)llYll d IIXIL that is, m(x, Y) G ‘1 and 
similarly 1~ M(x, Y>. Then 

X-YQ {M(x,Y)-~(~,Y))Y~ 

and hence 

~lx-ylldIM(x,y)-m(r,y)lgexP(d(x,Y)}-~. (2.4) 
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Let {x”} be a Cauchy sequence in { E,,d}. From (2.4) {x,,} is a 
Cauchy sequence in X and hence converges in norm to x E K with ]/xl] = 1. 
Now 

implies that 

for n > m, and hence 

C-l ~m(x,,g)gl~M(x,,g)~C. 

Therefore, for n > m, 

c-lg<x,GCg, 

and letting n + co, we see that d(x, g) Q log c2 < 00. 
Similarly, d(x,, x,) < E gives d(x, x,) < 2s, and hence {r,} converges 

in {E,, d}.O 
If g E K, the interior of the cone, then K, coincides with k, the case 

considered at length in Bushell [2]. The definition of the projective metric in 
more general settings is discussed by Kohlberg and Pratt [6] and Turinici 

[131* 

3. NONLINEAR MAPPINGS 

In this section we consider the class 9 of nonlinear mappings T: K + K, 
which are such that 

(1) 0 < x < y implies TX < Ty, and 
(2) for some p, 0 < p < 1, if 0 < x and A is a positive real number, then 

T(Xx) = XpTx. 

Moreover, we assume throughout the section that the norm in X is mono- 
tonic. 
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THEOREM 3.1. IfthereexistsgEKwithllgII=lsuchthatd(g,Tg)<m, 
then T E .F has a unique fixed point z in K,, and 

Proof. Let x E E,. Then 

m(r, g)g =s x =s M(x, g)g 

and hence 

{m(x,g)}Pm(Tg,g)g~Txg {~b~d)P~(%g)g~ 

Therefore, 

d(Tx,g)fd(Tg,g)+pd(x,g)<oo; 

that is, 

T: E,-, K,. 

If x, y E E,, applying T to (2.2) gives 

d(TQy) < pdb, Y>. 

Let F(x) = Tx/llTxll; the F: E, + E, and F is the composition of a strict 
contraction and a normalizing isometry. By the Banach contraction-mapping 
theorem there is a unique x in E, such that F(x) = x, and if we set 

2 = IIW l/(l-p)x, the existence of the unique fixed point of T in K, follows 
easily. 

Finally, 

and hence 

M(z,g)< {M(u)}PwTgA). 

the remainder of the proof is clear. 
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4. EXAMPLES 

We illustrate the use of the results of Section 3 by considering two 
nonlinear elliptic partial differential equations and related boundary value 
problems. 

EXAMPLE 1. Kawano, Kusano, and Naito [5] consider the twodimen- 
sional elliptic equation 

where x E IRs and A = a2/&r~ + a2/&ri. They prove the existence of 
positive solutions with logarithmic growth at infinity for certain types of 
functions + : R 2 + R. Assuming sohrtions to be functions of r = x: + x !7> 
they reduce the partial differential equation to the ordinary differential 
equation 

y”+ fy’= G(t)yp (4.2) 

and then to the integral equation 

y(t)=c+/$og G(s)[y(~)]~ds, t 20. (4.3) 

We take c = 0, and we assume that 

(1) G is continuous in [0, co), and 
(2) O<cu<G(t)<j3<cc forO<t<cc. 

Let X = CIO, R], with R > 0, and let K be the cone of nonnegative 
functions in X. Let 

and suppose that 0 < p -c 1. 
Let g(t) = ( t/R)2’(’ -P); then 
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From Theorem 3.1, Equation (4.1) has a unique solution such that 

l- p 

i 1 
2/(1-p) 

&(1-P) - 2’(1pp)t2/(l-P) 

2 
t2/(l-p) < &) .&4-P, l-p 

i 1 2 

forO<t<co. 
Thus, if 0 < p < 1 and if up is a positive bounded continuous function in 

lR2, then Equation (4.1) has a solution that grows like ]x]~/(~-P) as Ix]+ 00. 
The existence of the solutions with logarithmic growth is proved in [5] by 

appeals to the Schauder-Tychonoff fixed-point theorem, but if 0 < p < 1, 
these results follow more readily from Theorem 2.3 of Bushell [3]. 

EXAMPLE 2. Let ii! be a bounded domain in R”. Many authors have 
studied special cases of the boundary-value problem 

-Au=f(u) inti, u>O inQ, u=O on ati. 

(See the review article by Lions [8] and the more recent papers by Brezis and 
Nirenberg [l] and Ni and Sacks [ll], as well as the many references therein.) 

Let f(u) = up with 0 < p < 1, and let Q be the open ball with center the 
origin and radius unity. Assuming solutions to be functions of T, the radial 
distance from the origin, the boundary-value problem reduces to 

n-l 
- u”( r ) - -y’(r) = {U(T)} p> O<r<l, 

and u(1) = 0. We suppose that n > 3. 
The Green’s function for this problem is 

G(T, s) = 

i 
-+sn-2], r<s<l. 

We seek a fixed point of the map 

i%(r) = L'c(r, s)[u(s)] ‘ds 
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in the cone of nonnegative functions in CIO, 11. Let 

AU(T) = l’G(r, s)u(s)d.s, 

and let 

g(r) = 1- r2. 

Then 

Tg(r)=A(l-r’)Ydil(l)=g 

and 

Tg(r) = A(1 - r2)’ > A(1 - r2) 

= (1- r2)(4+ n(l- r”)} 

4n(n+2) * 

ThUS 

g(r) g(r) 
fl(n +2) 

Q Tg( T) G - 
2n ’ 

From Theorem 3.1, if 0 < p < 1, there is a unique solution of - Au = up 
in B(0, l), u > 0 in B(0, l), u = 0 when r = 1, such that 

1 ( 1 
1/(1-p) 

n(n +2) 
(1- r”) Q u(r) Q (1/2n)1’(1-P)(1 - r2). 

In such special problems involving monotonic homogeneous mappings in 
a cone, perhaps a projective metric technique is to be preferred to more 
general methods such as Leray-Schauder theory or Krasnosel’ski’s concave- 
operator theory. The technique yields bounds for the solution and the 
certainty of uniqueness within a given set of possible functions. 

Applications to the porous-media equation, involving more lengthy analy- 
sis, will appear elsewhere. 
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5. RESULTS FROM MATRIX THEORY 

In this section X denotes the real Banach space of real n x n symmetric 
matrices, and K the cone of positive semidefinite matrices in K. The 8, the 
interior of K, is the set of positive definite matrices in X. It was shown 
in Bushell [4] that for A, B E Z?, 

d(A, B) = log 
&@-‘A) 

&@-‘A) ’ 

where AM(C) and X,(C) denote the maximum and minimum eigenvalues of 
C, respectively. 

EXAMPLE 1. Let T be a real nonsingolar n x n matrix, and let (Y E Iw, 
(Y # + 1. A straightfonvard extension of the argument given in [4] shows that 
there is a unique positive definite matrix A such that T’AT = A”. The cases 
0 < LY < 1 and 1 < a < co must be considered separately, making use of 
Loewner’s theorem [9] to observe that A < B implies A” < B* when 0 < (Y < 1. 
The case of negative (Y cap be dealt with by noting that the map A e A _ l is 
a projective isometry in K. 

EXAMPLE 2. Let T be a real nonsingular n X n matrix. For A E 2 let A” 
denote the (n - 1)th compound of A as defined in Marshall and Olkin [lo, 
Chapter 161. Let m >, no and let F(A) = (T’AT)l/m. Then F: Z? + k, F is 
monotone increasing in K, and F(AA) = )(cnpl)/mF(A) (see [lo] for proofs of 
these assertions). 

Thus, for each m >, n, there exists a unique positive definite n x n matrix 
A such that T ‘AT = A”. 
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