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Tomatidine inhibits iNOS and COX-2 through suppression of NF-jB and
JNK pathways in LPS-stimulated mouse macrophages
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Abstract We use the LPS-stimulated macrophage as a model
of inflammation to investigate the anti-inflammatory effects of
tomatidine and solasodine, whose structures resemble glucocorti-
coids. We found that tomatidine exhibited a more potent anti-
inflammatory effect than solasodine. Tomatidine could decrease
inducible nitric oxide synthase and cyclooxygenase-2 expression
through suppression of I-jBa phosphorylation, NF-jB nuclear
translocation and JNK activation, which in turn inhibits c-jun
phosphorylation and Oct-2 expression. Here, we demonstrate
that tomatidine acts as an anti-inflammatory agent by blocking
NF-jB and JNK signaling, and may possibly be developed as
a useful agent for the chemoprevention of cancer or inflamma-
tory diseases.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Inflammation is involved in numerous diseases, such as

chronic inflammatory disease and the development of cancer

[1–3]. Many stimuli can activate inflammatory leukocytes, such

as macrophages, resulting in the induction and synthesis of

proinflammatory proteins and enzymes. The release of large

amounts of proinflammatory and cytotoxic nitric oxide (NO)

and prostaglandins (PGs) has been associated with many

inflammatory conditions, through the activity of their induc-

ible enzymes, inducible nitric oxide synthase (iNOS) and cyclo-

oxygenase-2 (COX-2) [1–4]. The macrophage inflammatory

response induced by the bacterial endotoxin lipopolysaccha-

ride (LPS) activates several intracellular signaling pathways

including the Ij-B kinase (IKK)–NF-jB pathway and three

mitogen-activated protein kinase (MAP kinase) pathways:

extracellular signal-regulated kinase (ERK) 1 and 2, c-jun N-

terminal kinase (JNK) and p38 [5]. In addition, octamer

(Oct) factors are another class of transcription factors that

play a central role in the immune system [6]. In a recent study,

it was shown that the transcription factor Oct-2 binds to the

octamer motif in the iNOS promoter [7].

Many plants in the Solanaceae family, such as tomatoes,

potatoes and eggplant, possess steroidal alkaloids based on a
*Corresponding author. Fax: +886 2 2391 8944.
E-mail address: jklin@ha.mc.ntu.edu.tw (J.-K. Lin).

0014-5793/$34.00 � 2008 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2008.05.049
C27 cholestane skeleton, such as tomatidine and solasodine.

These compounds are essentially nitrogen analogues of steroid

saponins such as diosgenin, which is a precursor of steroidal

hormones and anti-inflammatory steroids [8]. Steroidal alka-

loids and their glycosides are known to possess a variety of bio-

logical activities, including antifungal and antibacterial actions

[9,10]. However, understanding of the anti-inflammatory effects

of steroidal alkaloids is very limited. The structure of steroidal

alkaloids is similar to that of glucocorticoids. In addition, cor-

ticoids mainly inhibit inflammatory responses requiring iNOS-

mediated NO production and COX-2 expression. Here, we have

investigated whether the steroidal alkaloids tomatidine and sol-

asodine could also inhibit expression of the inflammatory en-

zymes iNOS and COX-2 in LPS-stimulated macrophages, and

we have examined the underlying mechanism of action.
2. Materials and methods

2.1. Agents
Fig. 1 illustrates the chemical structures of tomatidine, solasodine

and diosgenin, all of which were purchased from Sigma–Aldrich
Chemical Co. (St. Louis, MO, USA). Tomatidine was dissolved in
DMSO, and the concentration was adjusted to 50 mmol/L. Solasodine
and diosgenin were dissolved in 100% ethanol, and the concentration
was adjusted to 25 mmol/L, as stock solutions.

2.2. Cell culture
RAW 264.7 cells, derived from murine macrophages, were obtained

from the American Type Culture Collection (Rockville, MD, USA)
and cultured in DMEM supplemented with 10% endotoxin-free,
heat-inactivated fetal calf serum (Gibco, Grand Island, NY, USA),
penicillin (100 units/mL), and streptomycin (100 lg/mL; Gibco) in a
5% CO2 atmosphere at 37 �C in a humidified incubator. For all assay,
cell was plated at 2 · 105 cells/cm2 in culture dishes or plates. Treat-
ment with vehicle (0.1% DMSO or 0.1% ethanol), test compounds
and/or LPS was carried out under serum-free conditions.

2.3. Nitrite assay
The nitrite concentration in the RAW 264.7 cell culture medium was

measured as an indicator of NO production, according to the Griess
reaction [11]. Briefly, the cells were treated with the test compounds
for 1 h before the addition of LPS, and the cells were further incubated
for 24 h. The isolated supernatants were mixed with an equal volume
of Griess reagent and incubated at room temperature for 10 min;
absorbance of the mixture at 550 nm was determined with a Dynatech
MR-7000 enzyme-linked immunosorbant assay plate reader (Dynatech
Labs, Chantilly, VA).

2.4. PGE2 assay
The medium from cultured RAW 264.7 cells was collected for the

determination of prostaglandin E2 (PGE2) concentrations by en-
zyme-linked immunosorbent assay (ELISA; R&D Systems, Minneap-
olis, MN, USA), according to the manufacturer�s protocol. Briefly, the
blished by Elsevier B.V. All rights reserved.



Fig. 1. The chemical structures of tomatidine, solasodine and
diosgenin.
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cells were treated with the test compounds for 1 h before the addition
of LPS, and the cells were further incubated for 16 h. Cultured medium
was incubated in goat anti-mouse microplate coated with a goat anti-
mouse PGE2 with PGE2-conjugated to horseradish peroxidase (HRP)
with red dye for 2 h at room temperature. The plate was emptied and
rinsed five times with wash buffer contained in the kit. And then,
200 lL of substrate reagent was added to each well and incubated
for 30 min at room temperature. The developed plate was read at
450 nm and the PGE2 concentration of each sample was determined
according to the standard curve.

2.5. Western blot analysis
Details of the procedure for immunoblotting have been described

previously [12]. Immunoreactive protein bands were visualized using
a chemiluminescent substrate and quantitated using the Bio-Rad (Her-
cules, CA, USA) PDQuest Image software and normalized against
bands for either b-actin or a-tubulin (Sigma Chemical Co.). The fol-
lowing antibodies were used: anti-iNOS, anti-NF-jB and anti-Oct-2
(Santa Cruz Biotechnology, CA, USA), anti-COX-2 (BD Transduc-
tion Laboratories, San Jose, CA, USA). Anti-I-jBa and anti-phos-
pho-I-jBa, and anti-MAPKs and anti-phospho-MAPKs antibodies
were purchased from Cell Signaling Technology Inc. (Danvers, MA,
USA).

2.6. Analysis of p65/DNA binding
Cells were serum-starved for 2 h, followed by incubation without

and with the indicated concentration of Td for 1 h and then LPS for
an additional 30 min. After treatment, nuclear extracts were prepared
[13] and DNA binding activity was quantified using the ELISA-based
Trans-AM� NF-jB p65 Kit (Active Motif, Carlsbad, CA, USA),
according to the manufacturer�s protocol. Briefly, nuclear extracts
(5 lg of protein per well) were incubated in 96-well plates coated with
immobilized oligonucleotide, containing a NF-jB consensus binding
site. NF-jB binding to target oligonucleotides was detected by incuba-
tion of samples with primary antibodies against the p65 subunit pro-
vided with the kit. For quantification of activity, optical densities
were measured at 450 nm with a microplate reader.
2.7. Statistics
Statistical analysis was based on the standard error of the mean, and

P values determined using an independent sample, two-tailed Student�s
t-test assuming equal variances.
3. Results

3.1. Effect of tomatidine, solasodine and diosgenin on nitric oxide

production and iNOS protein expression in LPS-stimulated

RAW 264.7 macrophage cells

To investigate the effect of tomatidine, solasodine and dios-

genin on NO production, we measured the accumulation of ni-

trite, the stable metabolite of NO, in culture media using

Griess reagent. We examined the inhibition of NO production

in treatment of RAW 264.7 cells with test compounds either

prior to stimulation with LPS (pretreatment) or with LPS at

the same time (co-treatment). The preliminary results indicated

that the pretreatment protocol was more effective on inhibiting

NO production. Therefore, in this study we used the pretreat-

ment of the cells with test compounds and then challenged

with LPS in all experiments. As shown in Fig. 2A, LPS evoked

an eight-fold increase of nitrite production compared with the

naı̈ve control, and this induction was inhibited in a dose-

dependent manner by treatment with the test compounds. In

similar treatments, tomatidine, solasodine and diosgenin

(40 lmol/L) showed 66%, 22% and 41% inhibition of nitrite

production, respectively. The iNOS protein was barely detect-

able in unstimulated cells but markedly increased after LPS

treatment, and tomatidine caused dose-dependent inhibition

of LPS-induced iNOS expression (Fig. 2B). These results indi-

cated that tomatidine have a more potent inhibitory effect than

diosgenin and solasodine.
3.2. Effect of tomatidine on PGE2 production and COX-2 protein

expression in LPS-stimulated RAW 264.7 cells

To characterize further the role of tomatidine in anti-inflam-

matory events, we studied the expression of another important

proinflammatory enzyme, COX-2. PGE2 is a major product of

the metabolism of arachidonic acid via the COX pathway in

macrophages exposed to stimuli that elicit immediate re-

sponses [14]. As shown in Fig. 3A and B, COX-2 and PGE2

were barely detectable in unstimulated cells, but markedly in-

creased after LPS treatment. Tomatidine suppressed the

COX-2 protein level in a dose-dependent manner (Fig. 3A),

and PGE2 production was decreased by tomatidine (Fig.

3B). These results indicated that tomatidine could modulate

inflammatory effects through inhibition of the COX pathway.

3.3. Effect of tomatidine on LPS-induced degradation of I-jBa
and activation of NF-jB

To clarify the mechanism of action of tomatidine in the inhi-

bition of the LPS-induced expression of iNOS and COX-2, the

effects of tomatidine on LPS-induced degradation of I-jBa
and activation of NF-jB were examined. Treatment of cells

with tomatidine for 1 h before the addition of LPS inhibited

the LPS-induced NF-jB nuclear translocation (Fig. 4A). Be-

cause p65 is the major component of NF-jB in LPS-stimulated

macrophages, we determined the effect of tomatidine on p65

DNA-binding activity. In the presence of tomatidine at 10–

40 lmol/L, the binding activity of NF-jB was suppressed in

a dose-dependent manner (Fig. 4B).



Fig. 2. Effects of tomatidine, solasodine and diosgenin on LPS-
induced nitrite production and iNOS expression in RAW 264.7 cells.
(A) Inhibition of LPS-induced NO production by tomatidine (Td),
solasodine (Sd) and diosgenin (Dg) in RAW 264.7 cells. The cells were
treated with the indicated concentrations of the test compounds for 1 h
before the addition of 100 ng/mL LPS, and the cells were further
incubated for 24 h. The concentration of nitrite in the culture medium
was monitored, as described in Section 2. Each bar represents the
means ± S.D. from four separate experiments. *P < 0.05 compared
with LPS alone. (B) Inhibition of LPS-induced iNOS expression by the
test compounds tomatidine (Td), solasodine (Sd) and diosgenin (Dg).
The cells were treated with the indicated concentrations of compounds
for 1 h before the addition of 100 ng/mL LPS, and the cells were
further incubated for 16 h. The levels of iNOS protein were monitored,
as described in Section 2. This experiment was repeated four times,
with similar observations in each experiment.

Fig. 3. Effects of tomatidine on LPS-induced PGE2 production and
COX-2 expression in RAW 264.7 cells. The cells were treated with the
indicated concentrations of tomatidine (Td) for 1 h before the addition
of 100 ng/mL LPS, and the cells were further incubated for 16 h. (A)
Inhibition of LPS-induced COX-2 expression by tomatidine. The levels
of COX-2 protein were monitored, as described in Section 2. (B)
Inhibition of LPS-induced PGE2 production by tomatidine in RAW
264.7 macrophages. The concentrations of PGE2 in culture medium
were monitored, as described in Section 2. Each bar represents the
means ± S.D. from three separate experiments. *P < 0.05 compared
with LPS alone. This experiment was repeated four times with similar
observations in each experiment.
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The nuclear translocation of NF-jB is preceded by the phos-

phorylation and degradation of I-jBa [15]. To determine

whether the inhibition of nuclear translocation of NF-jB by

tomatidine is because of an effect on I-jBa degradation, the

cytoplasmic levels of I-jBa were determined. Incubation of

RAW 264.7 cells with LPS for 30 min could induce I-jBa
phosphorylation and degradation; and this induction was

inhibited by tomatidine in a dose-dependent manner (Fig.

4C). These findings suggest that tomatidine suppresses the ac-

tion of NF-jB at least partly through the inhibition of I-jBa
degradation.

3.4. Effect of tomatidine on LPS-induced phosphorylation of

JNK and c-jun

As MAP kinases have been shown to be required for iNOS

induction mediated by LPS in RAW 264.7 macrophages, we

investigated the effect of tomatidine on the activation of

MAP kinases in LPS-stimulated RAW 264.7 cells. After incu-
bation with LPS, the phosphorylation of c-jun was significantly

increased, and this activation was blocked by tomatidine

(Fig. 5A and B).

To further determine if inhibition of MAP kinases contrib-

utes to the inhibitory action of tomatidine, cells were pre-

treated with the MEK1/2, p38 and JNK inhibitors—

PD98059, SB203580 and SP600125, respectively—before the

addition of LPS. The LPS-induced increases in iNOS and

COX-2 levels were unaffected by PD98059 and SB203580 (data

not shown) but were inhibited by the JNK inhibitor SP600125

(Fig. 5C). Based on this information, it seems that JNK signal-

ing is of primary importance in controlling iNOS and COX-2

expression.

3.5. Effect of tomatidine on LPS-induced Oct-2 expression

The Oct-2 transcription factor had been shown to bind to

the octamer motif in the iNOS promoter [7,16], and Oct-2 is

required for iNOS activation by LPS [17]. To determine

whether tomatidine treatment decreases the level of LPS-in-

duced Oct-2 expression, RAW 264.7 cells were exposed to

LPS with and without tomatidine, and examined using Wes-

tern immunoblot analysis. Incubation of RAW 264.7 cells in

the presence of LPS could induce expression of Oct-2 and this

induction was inhibited by tomatidine in a concentration-

dependent manner (Fig. 6A). To examine further the signaling

cascade triggering the increase in Oct-2 expression by LPS,

specific pharmacological antagonists were used. The LPS-in-

duced increase in Oct-2 levels was unaffected by PD98059

and SB203580 (data not shown) but was blocked by

SP600125 (Fig. 6B). These findings indicate that inhibition of

LPS-induced iNOS expression by tomatidine may proceed

through down-regulation of Oct-2 by the JNK signaling cas-

cade.



Fig. 4. Effects of tomatidine on LPS-induced NF-jB activation and I-
jBa degradation and phosphorylation in RAW 264.7 cells. The cells
were treated with the indicated concentrations of tomatidine (Td) for
1 h before the addition of 100 ng/ml LPS, and the cells were further
incubated for 30 min. After the isolation of nuclear and cytoplasm
extracts, NF-jB p65 translocation (A) was measured by Western blot,
and NF-jB p65 binding activity (B) was determined, as described in
Section 2. Each bar represents the means ± S.D. from three separate
experiments. *P < 0.05 compared with LPS alone; the proliferating cell
nuclear antigen (PCNA) and a-tubulin as the nuclear and cytosol
fractions marker, respectively. (C) Inhibition of LPS-induced I-jBa
phosphorylation and degradation by tomatidine. RAW 264.7 cells
were treated with the indicated concentrations of tomatidine (Td) for
1 h before the addition of 100 ng/mL LPS, and the cells were further
incubated for 30 min. Western blot analysis was carried out, as
described in Section 2. These experiments were repeated four times
with similar observations in each experiment.

Fig. 5. Effects of tomatidine on LPS-induced phosphorylation of
MAPKs in RAW 264.7 cells. The cells were stimulated with 100 ng/mL
LPS alone or LPS plus tomatidine (Td; 10, 20 and 40 lmol/L) for
30 min, and whole-cell lysates were analyzed by immunoblot analysis
using various antibodies against activated MAPKs (A) and phospho-c-
jun (B). (C) Cells were pretreated with tomatidine (Td; 40 lmol/L) and
SP600125 (SP; 5, 10 or 50 lmol/L) for 1 h before LPS (100 ng/mL)
treatment for 16 h. Whole-cell lysates were analyzed by immunoblot
analysis using various antibodies against iNOS and COX-2. The
results presented are representative of three independent experiments.

Fig. 6. Effect of tomatidine on LPS-induced Oct-2 expression in RAW
264.7 cells. (A) RAW 264.7 cells were pretreated with tomatidine (Td;
10, 20 or 40 lmol/L) for 1 h before LPS (100 ng/mL) treatment for
12 h. (B) Cells were pretreated with tomatidine (Td; 40 lmol/L) and
SP600125 (SP; 5, 10 and 50 lmol/L) for 1 h, then LPS (100 ng/mL) was
added for 16 h. Whole-cell lysates were analyzed by immunoblot
analysis using various antibodies against Oct-2. These experiments
were repeated three times with similar observations in each experiment.
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4. Discussion

Tomatidine is the aglycone of tomatine, which is a major to-

mato glycoalkaloid. Tomatidine has been associated with a

variety of effects on human health, including lowering choles-

terol, enhancing immune responses when used as a cancer che-

motherapy agent, and protecting against pathogenic fungi and

other microorganisms [18]. Tomatidine may benefit cancer

chemotherapy by inhibiting multidrug resistance in human

cancer cells [19] and by inhibiting the growth of colon and liver

cancer cells [20]. Tomatidine was developed into a pregnane

derivative possessing neuritogenic and NGF-enhancing activi-

ties [21]. In addition, tomatidine suppresses the oxidative burst

and is able to suppress induced plant defense responses [22,23].

However, the effects of tomatidine on inflammatory processes

are still unclear. Our present results provide, for the first time,

evidence for the anti-inflammatory effects of tomatidine.



Fig. 7. Possible anti-inflammatory mechanisms of tomatidine (Td).
LPS-induced activation of macrophages is mainly mediated through
TLR 4 and results in the production of proinflammatory mediators
including iNOS and COX-2. The promoter regions of proinflamma-
tory mediators contain several binding site for transcriptional factors,
such as jB, AP-1, and Oct. The anti-inflammatory effects of tomatidine
are due to repression of NF-jB, c-jun, and Oct-2 acting on different
regions of the genes promoter through NF-jB and JNK pathways.
TLR, Toll-like receptor; IKK, inhibitor-jB Kinase; I-jB, inhibitor-jB;
MEKK, mitogen-activated protein kinase kinase kinase; MKK,
mitogen-activated protein kinase kinase; JNK, c-jun N-terminal
kinase; NF-jB, nuclear factor-jB; AP-1, activating protein-1; Oct,
octamer.
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Comparison of the chemical structures of tomatidine and

solasodine shows that the major difference between them is

that tomatidine lacks the double bond in the 5,6 position of

the B-ring. We found that tomatidine was a more potent

anti-inflammatory than solasodine. In other words, the ab-

sence of a 5,6 double bond in the B-ring of tomatidine results

in a much stronger anti-inflammatory effect compared with the

otherwise structurally similar solasodine (which contains such

a double bond). In addition, the results of our cell viability as-

say indicated that tomatidine is much less toxic than solaso-

dine and diosgenin; with similar concentration treatment

(40 lmol/L) showed 5.5%, 13.5%, and 26.8% growth inhibition

of tomatidine, solasodine, and diosgenin, respectively (data

not shown). Recent studies also indicated that tomatidine is

a much less toxic molecule in both pregnant and nonpregnant

mice when compared with the structurally similar solasodine

[24], and that it does not affect the body and liver weights of

mice [25]. The other difference between them is that the 25-

methyl group of tomatidine in the nitrogenous F-ring is epi-

meric. Therefore, the relationships between chemical structure

and the anti-inflammatory characteristics of tomatidine need

to further investigated. These results show that tomatidine

has the best anti-inflammatory effect and least toxicity of the

pair.

The NOS and COX systems are often present together, share

a number of similarities, and play fundamental roles in similar

pathophysiological conditions, such as inflammation [26] and

cancer [27]. The transcription factor NF-jB is implicated in

the regulation of many genes that code for mediators of the im-

mune, acute-phase and inflammatory responses, e.g. iNOS and

COX-2 [28,29]. The p50/p65 heterodimer is the most common

dimer found in the NF-jB signaling pathway [30]. Activation

of the NF-jB signaling cascade results in the complete degra-

dation of I-jB via phosphorylation and ubiquitination. In our

study, tomatidine inhibited the phosphorylation of I-jB,

blocked the I-jB production, and furthermore suppressed

p65 NF-jB translocation to the nucleus and modulated bind-

ing activity. The role of the MAP kinases in the regulation of

iNOS and COX-2 expression has been investigated intensively.

In this study, we found that incubation of RAW 264.7 cells

with LPS brings about activation of MAP kinases, and that

treatment with tomatidine inhibits LPS-induced phosphoryla-

tion of JNK but not p38 MAPK and ERK. These results sug-

gest that NF-jB and JNK pathways could modulated the

suppression of LPS-induced iNOS and COX-2 expression by

tomatidine (Fig. 7).

The octamer transcription factors are member of the Pit-

Oct-Unc domain family, exerting their effects through binding

to sequences related to the octamer motif (ATGCAAAT) [6].

Oct-1 and Oct-2 are the two most prominent octamer factors.

Oct-1 was identified as a ubiquitous protein, whereas Oct-2

expression is restricted largely to B lymphocytes [31], but is

also present in macrophages [17,32]. Recent studies have indi-

cated that Oct-2 binds to the octamer motif in the iNOS pro-

moter [7] and is required for iNOS activation by LPS [33].

Our results are consistent with previous studies, and we con-

firm that Oct-2 is required for iNOS activation by LPS.

Furthermore, we demonstrated that LPS-induced Oct-2

expression was abolished by blocking the MAP kinase path-

way with the JNK inhibitor SP600125 (Fig. 6B), but no effect

was seen with PD980559 and SB203580 (data not shown).

Here, for the first time, we demonstrated that JNK pathway
could be modulated the LPS-induced Oct-2 expression. These

results suggest that tomatidine�s suppression of LPS-induced

Oct-2 expression through the JNK pathway in turn modu-

lates iNOS expression. Besides, this study indicates that

NF-jB is required for transcriptional activation of the Oct-

2 gene in transformed pre-B lymphocytes [34]. Therefore,

more studies are needed to determine whether tomatidine

inhibits inflammatory-mediator expression only through the

MAPK and NF-jB pathways, or by cross-interactive regula-

tion.

LPS-induced activation of macrophages is mainly mediated

through the transmembrane signaling receptor toll-like recep-

tor (TLR) 4 [35]. LPS stimulation of macrophages activates

several intracellular signaling pathways that include the

IKK–NF-jB pathway and three mitogen-activated protein ki-

nase (MAPK) pathways: ERKs 1 and 2, JNK and p38. These

signaling pathways in turn activate a variety of transcription

factors that include NF-jB (p50/p65) [5,36] and activator pro-

tein-1, AP-1 (c-Fos/c-Jun) [37], as well as Octamer (Oct-2)

[7,16], which coordinate the induction of many genes encoding

inflammatory mediators. In conclusion, these experiments

demonstrate that tomatidine inhibits LPS-induced expression

of the iNOS and COX-2 genes through suppressing the phos-

phorylation of I-jBa and the activation of NF-jB, and by

inhibiting the JNK pathway, which in turns inhibits c-jun

phosphorylation and Oct-2 expression in RAW 264.7

cells (Fig. 7). Tomatidine shows great potential as an

anti-inflammatory agent and may be used in the future as a no-

vel agent for the chemoprevention of cancer or inflammatory

diseases.
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