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Abstract To understand signaling by the neuregulin (NRG)
receptor ErbB3/HER3, it is important to know whether ErbB3
forms homodimers upon ligand binding. Previous biophysical
studies suggest that the ErbB3 extracellular region remains
monomeric when bound to NRG. We used a chimeric receptor
approach to address this question in living cells, fusing the
extracellular region of ErbB3 to the kinase-active intracellular
domain of ErbB1. The ErbB3/ErbB1 chimera responded to NRG
only if ErbB2 was co-expressed in the same cells, whereas an
ErbB4/ErbB1 chimera responded without ErbB2. We, therefore,
suggest that ErbB3 is an obligate heterodimerization partner
because of its inability to homodimerize.
� 2004 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The epidermal growth factor (EGF) receptor, or ErbB,

family of receptor tyrosine kinases play important roles in

normal embryonic development, and their aberrant signaling is

associated with human cancers [1,2]. There are four members

of the family: the EGF receptor itself (EGFR or ErbB1),

ErbB2 (also known as HER2 or Neu), ErbB3 (HER3) and

ErbB4 (HER4). Each has a large (�620 amino acid) extra-

cellular ligand-binding region, a single transmembrane a-helix,
and an intracellular region containing the tyrosine kinase do-

main plus regulatory sequences. ErbB1/EGFR is activated

directly by multiple ligands, which promote homodimerization

and autophosphorylation of the receptor [3]. ErbB4 appears to

be regulated (in part) in a similar manner, but by neuregulins

(NRGs) rather than EGF receptor agonists [4]. By contrast,

ErbB2 has no known direct extracellular ligands, and ErbB3

binds NRGs but appears to have a non-functional tyrosine

kinase domain [5–8].

The ErbB receptors form a network of homo- and hetero-

dimers [1,9]. ErbB2 can only be regulated indirectly, and is

thought to be the preferred heterodimerization partner for

other ErbB receptors [10]. ErbB3, on the other hand, must

associate with an ErbB family member that has an active ty-
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rosine kinase in order to respond to its own NRG binding. It is

thought that the NRG-induced ErbB3/ErbB2 heterodimer is

among the most potent mitogenic signaling complexes in the

ErbB network [8,11–13]. However, the molecular mechanism

for activation of ErbB2 and ErbB3 through NRG-induced

hetero-oligomerization is not clear. Whereas other receptor

extracellular regions dimerize upon ligand binding, no study of

the ErbB3 extracellular region has detected dimerization upon

NRG binding [14–17]. The ErbB2 extracellular region also fails

to homodimerize even at very high concentrations [15,18,19].

It is important to know whether or not intact ErbB3 ho-

modimerizes on NRG binding in order to understand how

ErbB2/ErbB3 hetero-oligomers signal. If ErbB3 is truly kinase-

inactive, and ErbB receptor activation involves trans-phos-

phorylation of receptors, it is not clear how ErbB2 can become

either activated or phosphorylated within a simple ErbB2/

ErbB3 heterodimer. This difficulty could be resolved if sig-

naling occurs in the context of a higher-order ErbB2/ErbB3

hetero-oligomer, such as a heterotetramer, and it has been

suggested that such heterotetramers might be ‘nucleated’ by

NRG-induced ErbB3 homodimerization [3,20]. To test this

hypothesis in a cellular context, we analyzed signaling by

ErbB3/ErbB1 and ErbB4/ErbB1 chimerae to determine whe-

ther NRGs can promote ErbB3 homodimerization at the cell

surface. Under conditions identical to those that promote ro-

bust activation of the ErbB4 chimera, we find that NRGs

cannot induce activation of the ErbB3 chimera. Our findings

argue that NRG does not promote ErbB3 homodimerization

at the cell surface, and have important implications for un-

derstanding the mechanism of signaling through ErbB3/ErbB2

hetero-oligomers.
2. Materials and Methods

2.1. Expression constructs
Full-length human ErbB1 and ErbB2 were subcloned into KpnI/NotI

digested pAc5.1/V5-HisA (Invitrogen Corporation, Carlsbad, CA).
Constructs encoding chimerae with the extracellular region plus
transmembrane domain of either ErbB3 or ErbB4 fused to the entire
cytoplasmic sequence of ErbB1 (ErbB3/ErbB1 or ErbB4/ErbB1) were
generated by four-primer PCR. In ErbB3/ErbB1, the ErbB3 fragment
extends through Trp647. In ErbB4/ErbB1, the ErbB4 fragment extends
through Val675. The ErbB1 fragment begins at Arg645 in both cases.

2.2. Cell culture
Schneider-2 (S2) Drosophila melanogaster cells (Invitrogen) were

grown at 24 �C in complete Schneider’s Medium (Sigma–Aldrich, St.
Louis, MO), containing penicillin/streptomycin (50 U ml�1/50 lg
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Schematic representation of ErbB receptors and chimerae.
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ml�1), and gentamicin (50 lg/ml) (GibcoBRL, Rockville, MD), sup-
plemented with 10% heat-inactivated fetal bovine serum (FBS) (Hy-
Clone, Logan, UT).

2.3. Stable cell-lines
S2 cells were transfected with 20 lg DNA (19 lg desired expression

construct plus 1 lg pCoHygro selection vector (Invitrogen)) using the
calcium phosphate method (Invitrogen). After approximately 3 weeks
of selection, pools of cells resistant to 300 lg/ml Hygromycin B were
expanded and screened for expression by Western blotting and flow
cytometry. All stably expressing cell-pools were maintained in com-
plete Schneider’s Medium supplemented with 10% FBS and 300 lg/ml
Hygromycin B.

2.4. Antibodies
Western blots were probed with anti-ErbB1 antibody Ab-15, anti-

ErbB2 antibody Ab-8 (NeoMarkers, Freemont, CA), anti-phospho-
MAPKinase antibody 9101 (Cell Signaling Technology, Beverly, MA),
anti-MAPKinase antibodyM5670 (Sigma–Aldrich) and anti-phospho-
tyrosine antibody PY20 (Zymed Laboratories, South San Francisco,
CA). Flow cytometry was performed with R-phycoerythrin (R-PE)-
conjugated anti-EGFR, R-PE-conjugated anti-HER-2/Neu antibodies,
R-PE-conjugated secondary antibodies (rat anti-mouse IgG2aþb and rat
anti-mouse IgG1) (BD Biosciences, Franklin Lakes, NJ), anti-ErbB3
antibody Ab-4, and anti-ErbB4 antibody Ab-1 (NeoMarkers).

2.5. Flow cytometry
For analysis of ErbB1 and ErbB2 expression, cells were incubated

for 30 min on ice with PE-conjugated antibodies, and then diluted to
approximately 500 ll in PBS with 2% FBS. For ErbB3 and ErbB4
analysis, cells were incubated on ice for 30 min with 5 lg primary
antibodies, washed with ice-cold PBS/FBS, and subsequently incu-
bated for 30 min on ice with R-PE-conjugated secondary antibodies
(1:50 (v/v)). Flow cytometry was performed using a FACScan flow
cytometer (BD Biosciences).

2.6. Receptor phosphorylation and MAPK activation experiments
Cells were harvested, washed with PBS, and serum-starved overnight

in complete Schneider’s medium supplemented with 0.5% FBS (star-
vation medium). Cells were then stimulated on ice (for receptor
phosphorylation) or at room temperature (for MAP kinase (MAPK)
phosphorylation studies) for 10 min with 100 ng/ml EGF (Intergen,
Purchase, NY) or human NRG1-b1 EGF domain (R&D Systems,
Minneapolis, MN) or were left untreated. The cells were washed with
ice-cold PBS and lysed in RIPA buffer (25 mM Tris–HCl, pH 7.5, 150
mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 1
mM PMSF, 1 lg/ml leupeptin, 1 lg/ml aprotinin, 25 mM NaF, 5 mM
Na2MoO4, and 0.2 mM Na3VO4), and clarified by centrifugation at
14 000 rpm for 10 min at 4 �C. Boiled samples of equal protein levels
were then subjected to Western blotting analysis with the indicated
antibodies, followed by horseradish peroxidase-conjugated secondary
antibodies, and were detected using chemiluminescence.
3. Results

Since the tyrosine kinase domain of ErbB3 appears to be

catalytically impaired or inactive [5–7], ligand-induced dimer-

ization of this receptor cannot be followed by directly ana-

lyzing its autophosphosphorylation. To circumvent this

problem, we generated a chimera with the extracellular region

plus transmembrane domain of ErbB3 fused to the cytoplas-

mic region of EGFR. This chimera will have the NRG-binding

properties of ErbB3, yet its intracellular region should be ca-

pable of dimerization-dependent kinase activation as seen with

EGFR. If NRG-binding does induce dimerization of the

ErbB3 extracellular region in a cellular context, this should be

evidenced by ligand-induced autophosphorylation of the

ErbB3/ErbB1 chimera and resulting MAPK activation. As a

positive control, we also generated a chimera in which the

extracellular region is instead derived from ErbB4. Previous
work has shown that the extracellular region of ErbB4 oligo-

merizes readily upon NRG binding [15], so the ErbB4/ErbB1

chimera should certainly show NRG-regulated autophospho-

rylation and activation. A schematic representation of the

ErbB receptors and the chimerae is shown in Fig. 1.

3.1. Signaling by human ErbB receptors in Drosophila

Schneider-2 cells

We used the Drosophila melanogaster Schneider-2 (S2)

cell-line as a null background for mammalian ErbB proteins.

Insect cell-lines have previously been used as cellular back-

grounds for a number of studies of the human ErbB receptors

[7,16,21–23].

We first tested the utility of S2 cells by generating cells that

stably overexpress human ErbB1 or ErbB2. As shown in

Fig. 2, human ErbB1 expressed in S2 cells was tyrosine auto-

phosphorylated in response to EGF (but not NRG) treatment.

In addition, robust EGF-induced activation (phosphoryla-

tion) of Drosophila rolled/MAPK could be detected by im-

munoblotting with anti-phospho-MAPK antibodies. These

responses were EGF-specific, and were only found in ErbB1-

expressing S2 cells. No similar responses were detected upon

EGF or NRG treatment of parental S2 cells or cells expressing

human ErbB2.

3.2. NRG efficiently activates an ErbB4/ErbB1 chimera, but not

an ErbB3/ErbB1 chimera

Having established that human ErbB1 can signal in S2 cells,

we next generated cell-lines that stably express either the

ErbB3/ErbB1 or ErbB4/ErbB1 chimera depicted in Fig. 1. We

verified that that both chimerae were expressed at the cell

surface using flow cytometry (Fig. 3), indicating that our chi-

meric receptors are correctly folded and processed – so that

differential accessibility to extracellular ligand can be ruled out

in interpreting any differences in their signaling. Comparative

studies of human breast cancer cell lines with reported num-

bers of NRG-binding sites [24] suggested that our chimerae are

expressed at 104–105 copies per cell, with the ErbB3/ErbB1

chimera expressed at 2–5 fold higher levels than the ErbB4/

ErbB1 chimera.

We analyzed the ability of NRG to stimulate autophos-

phorylation of the ErbB3/ErbB1 and ErbB4/ErbB1 chimerae



Fig. 4. Analysis of signaling by ErbB3/ErbB1 and ErbB4/ErbB1 chi-
merae in S2 cells. (A) S2 cells stably expressing the ErbB3/ErbB1 and
ErbB4/ErbB1 chimera were left unstimulated or treated with NRG on
ice. Receptor autophosphorylation was analyzed by immunoblotting
with anti-phosphotyrosine (a-P-Tyr) antibody (upper blot). An arrow
highlights the bands corresponding to the human ErbB receptor chi-
merae. Chimera expression was confirmed by Western blotting with an
antibody specific for the ErbB1 intracellular domain (a-ErbB1 endo)
antibody (lower blot). (B) Stable cell pools expressing ErbB3/ErbB1 or
ErbB4/ErbB1 were treated for 10 min at room-temperature with no
growth factor ()) or with NRG (+). Upper blot: detection of activated
MAPK (a-P-MAPK). Lower blot: detection of total MAPK loaded
(a-MAPK).

Fig. 3. Cell-surface expression of ErbB3/ErbB1 and ErbB4/ErbB1
chimerae. Expression of the ErbB3/ErbB1 (A) and ErbB4/ErbB1
(B) chimerae on the cell surface, analyzed by flow cytometry. The solid
gray traces (with peaks shaded gray) represent data from parental S2
cells treated with the primary and secondary antibodies, while the
black traces represent data from the stable cell-lines analyzed in the
same fashion. The marked right-shifts in each case demonstrate that
both chimerae are expressed appropriately at the cell surface. 10 000
cells were analyzed for each FACS analysis.

Fig. 2. Ligand-induced activation of human ErbB receptors in Dro-
sophila S2 cells. Receptor autophosphorylation and MAPK activation
were analyzed by immunoblotting whole-cell lysates from parental,
ErbB1-expressing, and ErbB2-expressing S2 cells after treatment with
human EGF or NRG. The primary antibodies used for Western
blotting are marked at left, and recognize phospho-tyrosine (a-P-Tyr)
(top blot), phosphorylated MAPK (a-P-MAPK) (middle blot), and
pan-MAPK (a-MAPK) (lower blot). The arrow at right in the top blot
marks the size of the exogenous ErbB receptor bands to distinguish
from endogenous Drosophila phospho-tyrosine containing proteins.
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and resulting MAPK activation. As shown in Fig. 4A, robust

NRG-induced autophosphorylation was detected in cells ex-

pressing the ErbB4/ErbB1 chimera, but no response was ob-

served with the ErbB3/ErbB1 chimera. Similarly, NRG

promoted strong MAPK phosphorylation in S2 cells express-

ing the ErbB4/ErbB1 chimera but not those expressing ErbB3/

ErbB1 (Fig. 4B). Thus, the ErbB3/ErbB1 chimera is not sen-

sitive to ligand stimulation despite that fact that it is well ex-

pressed at the cell surface (Fig. 3A), and that an identically

designed ErbB4/ErbB1 chimera signals robustly. Together

with our inability to detect dimers of the ErbB3 extracellular

region in biophysical studies [15], these results argue that

ErbB3 does not homodimerize when it binds NRG.

3.3. The ErbB3/ErbB1 chimera forms a functional heteromeric

NRG receptor with ErbB2

To rule out the possibility that the ErbB3/ErbB1 chimera is

non-functional for some reason not controlled for in our in-

vestigation, we asked whether it could form an active signaling

complex with human ErbB2. As mentioned in Section 1, li-

gand-induced active ErbB3/ErbB2 heterodimers are thought to

be potently mitogenic (and oncogenic). Alone, neither ErbB2

nor ErbB3 can activate signaling cascades upon NRG-stimu-

lation. However, coexpression of ErbB2 with ErbB3 generates



Fig. 5. Transient expression of ErbB2 reconstitutes NRG signaling in
S2 cells expressing the ErbB3/ErbB1 chimera. (A) S2 cells expressing
the ErbB3/ErbB1 chimera were transiently transfected with human
ErbB2 and were stimulated with NRG. Immunoblotting of whole-cell
lysates was performed with an anti-ErbB2 antibody (upper blot) anti-
phosphotyrosine (middle blot), and chimera expression (lower blot)
was detected with an anti-ErbB1 endodomain-specific antibody (a-
ErbB1 endo). (B) MAPK activation was analyzed by immunoblotting
of whole-cell lysates of ErbB3/ErbB1-expressing cells transiently
transfected with control or ErbB2 vectors. Upper blot: ErbB2 ex-
pression (a-ErbB2). Middle blot: activated MAPK (a-P-MAPK).
Lower blot: total MAPK loaded (a-MAPK).
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a potent functional NRG receptor [11,25,26]. If this coopera-

tion results primarily from extracellular interactions, we an-

ticipate that coexpression of ErbB2 with the ErbB3/ErbB1

chimera in S2 cells should also reconstitute NRG signaling.

We transiently transfected ErbB3/ErbB1-expressing S2 cells

with a plasmid that drives expression of full-length human

ErbB2. As shown in Fig. 5, although transient overexpression

of ErbB2 in these cells resulted in high levels of basal auto-

phosphorylation as described by others [26,27], a slight NRG-

induced enhancement of receptor autophosphorylation can be

discerned in the cells co-expressing ErbB2 and the ErbB3/

ErbB1 chimera. More convincingly, Fig. 5B shows that,

whereas NRG does not promote MAPK activation in parental

or ErbB2-expressing S2 cells (see Fig. 2) or the ErbB3/ErbB1

chimera alone, it does induce a robust increase in phospho-

MAPK levels when both proteins are expressed. These results

argue that the ErbB3/ErbB1 chimera can respond to NRG.

However, like wild-type ErbB3, it is only competent to signal

when expressed alongside another ErbB receptor with which it

can form heteromeric complexes. Interestingly, this appears to

be a property of ErbB3 whether its kinase domain is active (as

in our ErbB3/ErbB1 chimera) or impaired (as in wild-type

ErbB3). We therefore suggest that the unusual signaling

properties of ErbB3 arise less from its reported inability to

function as a tyrosine kinase than from its inability to form

ligand-induced homodimers.
4. Discussion

A key question in ErbB receptor signaling is whether ligand

binding causes ErbB2 and ErbB3 to form heterodimers or

larger oligomers. If ErbB3 is kinase-inactive, and therefore

cannot phosphorylate ErbB2 directly, it is difficult to see how

NRG could activate ErbB2 in the context of an ErbB2/ErbB3
heterodimer. This consideration has led to the suggestion that

higher order hetero-oligomers must form [3,15,28], perhaps

nucleated by NRG-induced ErbB3 homodimerization, allow-

ing ErbB2 molecules to phosphorylate one another. Here, we

provide evidence suggesting that NRG does not induce ErbB3

homodimerization at the cell surface, supporting previous

studies employing isolated extracellular domains [14–17].

These findings argue against the hypothesis that NRG induces

large ErbB2/ErbB3 hetero-oligomers, and together with recent

structural studies [29] are more consistent with the possibility

that ErbB3 does directly activate ErbB2 in the context of

NRG-induced ErbB2/ErbB3 heterodimers.

How might ErbB3 trans-activate ErbB2 in such a heterodi-

mer? One possibility is that it does possess significant (but low

level) kinase activity, and can trans-phosphorylate ErbB2 in

the context of a heterodimer. The initial suggestion that the

ErbB3 kinase domain is impaired was sequence-based [30,31],

and was supported by subsequent studies of the intact protein

[5–7] and its isolated kinase domain [6] (although none con-

clusively demonstrated an absence of activity). Guy et al. [5]

reported that the tyrosine kinase activity of full-length insect

cell-expressed ErbB3 is at least 100-fold weaker than that for

ErbB1 or ErbB2. ErbB3 autophosphorylation and substrate

phosphorylation was readily detectable in these studies, but its

insensitivity to NRG treatment led to the interpretation that

ErbB3 alone was not responsible. However, if NRG does not

promote ErbB3 homodimerization – as our studies and pre-

vious biophysical analyses suggest – then such NRG activation

would not be expected. Thus, a possible interpretation of

earlier phosphorylation studies is that ErbB3 does in fact have

a low (but nonetheless detectable) level of kinase activity, but

that it is not activated (through homodimerization) by NRG

binding to the extracellular region. Caution should, therefore,

be exercised in assuming that ErbB3 is truly ‘kinase-dead’.

Indeed, consistent with a requirement for ErbB3 kinase ac-

tivity, Wallasch et al. [26] found that mutation of a critical

lysine in the ATP binding site of ErbB3 significantly reduces

the extent of NRG-induced ErbB2 phosphorylation in cells

expressing both ErbB2 and the mutated (or wild-type) ErbB3.

These findings are clearly consistent with the possibility that

ErbB3 directly phosphorylates ErbB2 in the context of a

NRG-induced ErbB2/ErbB3 heterodimer.

It should be noted that our findings with the ErbB3/ErbB1

chimera contradict two previous reports. In chemical cross-

linking studies, Tzahar et al. [20] failed to detect NRG-induced

dimerization of the ErbB3 extracellular region, but could detect

cross-linked dimers when the ErbB3 extracellular region was

membrane anchored by a transmembrane domain or lipid an-

chor. Since ErbB3 was only detected in these studies by affinity

labeling with 125I labeled NRG, it is not clear whether the

observed crosslinked oligomeric species are enhanced by ligand

binding, or are constitutive (as suggested in other studies of

ErbB3 [16,17]). Alimandi et al. [32] also generated an ErbB3/

ErbB1 chimera with the ErbB3 extracellular region fused to the

transmembrane and intracellular domains of ErbB1. This chi-

mera did appear to become phosphorylated following NRG

treatment in 32D cells, by contrast with our findings in S2 cells

[32]. It is unlikely that the different origin of the transmembrane

domain in our studies (where it was ErbB3-derived) and those

of Alimandi et al. (where it was ErbB1-derived) could explain

this discrepancy. The cellular background therefore seems a

more likely origin of the difference. Although the murine 32D
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cell-line used by Alimandi and colleagues has been reported to

be ErbB receptor null [11], it may contain endogenous ErbB

receptors that are not detectable, but nonetheless interact

productively with the exogenous chimera. Indeed, such en-

dogenous receptors could also explain the surprising observa-

tion that in 32D cells (but not BaF3 cells) co-expressed ErbB2

and ErbB3 (or the ErbB3/ErbB1 chimera) appear to respond to

EGF and betacellulin (despite the fact that neither receptor

binds these ligands) [32–35].

Excepting these caveats, we argue that NRG does not induce

homodimerization of intact ErbB3 or its isolated extracellular

region. Some evidence was previously presented for weak

NRG-induced hetero-oligomerization of the ErbB2 and ErbB3

extracellular domains [15] (although others have not seen this

[14]), and our data suggest that NRG induces ErbB3/ErbB2

heterodimerization in the absence of ErbB3 homodimeriza-

tion. Assuming a simple heterodimerization mechanism based

on recent structural studies [29], it can be argued that ErbB2

will be activated much more efficiently by ligand-bound ErbB3

than by ligand-bound ErbB4 or ErbB1. Whereas ligand-bound

ErbB1 or ErbB4 may prefer to form homodimers than to

heterodimerize with, and activate, ErbB2, there is no such

homomeric alternative for NRG-bound ErbB3. Given the

mitogenic potency of activated ErbB2, this lack of competition

from homodimerization may provide part of the reason why

the ErbB2/ErbB3 combination appears to be particularly po-

tent in propagating mitogenic signals in tissue culture systems,

and has also been identified in a wide array of human tumors

[2,8,12,36].
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