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SUMMARY

Inhibitor of apoptosis (IAP) proteins are anti-
apoptotic regulators that block cell death in
response to diverse stimuli. They are expressed
at elevated levels in human malignancies and
are attractive targets for the development of
novel cancer therapeutics. Herein, we demon-
strate that small-molecule IAP antagonists
bind to select baculovirus IAP repeat (BIR) do-
mains resulting in dramatic induction of auto-
ubiquitination activity and rapid proteasomal
degradation of c-IAPs. The IAP antagonists
also induce cell death that is dependent on
TNF signaling and de novo protein biosynthe-
sis. Additionally, the c-IAP proteins were found
to function as regulators of NF-kB signaling.
Through their ubiquitin E3 ligase activities
c-IAP1 and c-IAP2 promote proteasomal deg-
radation of NIK, the central ser/thr kinase in
the noncanonical NF-kB pathway.

INTRODUCTION

Apoptosis or programmed cell death is a cell suicide

mechanism with a major role in development and homeo-

stasis in vertebrates and invertebrates (Steller, 1995). Inhi-

bition of apoptosis can lead to the absence of physiolog-

ical cell death and contribute to development and

progression of various malignancies (Thompson, 1995).

There are two well-characterized apoptotic pathways;

one initiated through the engagement of cell surface death

receptors by their specific ligands (Ashkenazi and Dixit,

1999) and the other triggered by changes in internal cellu-

lar integrity (Budihardjo et al., 1999; Kaufmann and Vaux,

2003). Both pathways converge, resulting in activation of

caspases—cysteine-dependent aspartyl-specific prote-
C

ases—that represent the effector arm of the apoptotic

process (Salvesen and Abrams, 2004). Inhibition of apo-

ptosis enhances the survival of cancer cells and facilitates

their escape from immune surveillance and cytotoxic ther-

apies (Reed, 2003). Among the principal molecules con-

tributing to this phenomenon are the inhibitor of apoptosis

(IAP) proteins (Hunter et al., 2007).

IAP proteins interact with multiple cellular partners and

inhibit apoptosis induced by a variety of stimuli (Salvesen

and Duckett, 2002). This places IAPs in a central position

as inhibitors of death signals that proceed through a num-

ber of different pathways (Miller, 1999). The IAP proteins

contain one to three zinc-binding baculovirus IAP repeat

(BIR) domains that are required for anti-apoptotic activity

(Liston et al., 2003; Salvesen and Duckett, 2002). Most of

them also possess carboxy-terminal RING domains that

function as ubiquitin ligases (Salvesen and Duckett,

2002; Vaux and Silke, 2005). Some IAP proteins, like

c-IAP1 and c-IAP2, possess a caspase-associated re-

cruitment domain (CARD) as well (Hofmann et al., 1997).

c-IAP1 and c-IAP2 were originally identified through their

ability to interact directly with tumor necrosis factor asso-

ciated factors (TRAFs), namely TRAF2 (Rothe et al., 1995,

1994). Through TRAF2 interactions, c-IAP1 and c-IAP2 are

recruited to TNF receptor 1- and 2-associated complexes

where they regulate receptor-mediated apoptosis (Shu

et al., 1996; Wang et al., 1998). c-IAPs and TRAF2 associ-

ate through their BIR and TRAF-N domains (Rothe et al.,

1995) respectively. Recent studies indicate that the first

two alpha-helices in the BIR1 domain of c-IAP1 and

c-IAP2 are critical for that interaction (Samuel et al.,

2006; Varfolomeev et al., 2006). c-IAP1 and c-IAP2 are

also RING domain-containing ubiquitin ligases capable

of promoting ubiquitination and proteasomal degradation

of themselves and several of their binding partners (Li

et al., 2002; Vaux and Silke, 2005; Yang et al., 2000).

The anti-apoptotic activity of IAP proteins can be

negated by the mitochondrial protein SMAC (second

mitochondrial activator of caspases)/DIABLO (direct IAP
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binding protein with low pI), which is liberated into the

cytoplasm in response to pro-apoptotic stimuli (Du et al.,

2000; Verhagen et al., 2000). The pro-apoptotic function

of SMAC/DIABLO is dependent on a conserved four-

residue IAP-interaction motif (Ala–Val–Pro–Ile) found at

the amino-terminus of the mature, post-translationally

processed protein (Du et al., 2000; Verhagen et al.,

2000). This IAP-interaction motif binds to a surface groove

on the BIR domains of the IAP proteins (Liu et al., 2000; Wu

et al., 2000). A number of IAP antagonists that mimic the

interactions of the SMAC amino-terminal peptide with

IAP proteins have been reported recently, and been

shown to possess pro-apoptotic activity both in vitro

and in vivo (Li et al., 2004; Oost et al., 2004; Sharma

et al., 2006; Sun et al., 2004; Zobel et al., 2006). These

IAP antagonists effectively block the interaction between

IAP proteins and activated caspase-9 (Li et al., 2004;

Sharma et al., 2006; Zobel et al., 2006), resulting in unim-

peded caspase activation, although the mechanism by

which these compounds initiate the apoptotic cascade

is not entirely clear (Oost et al., 2004).

Here we describe development of a novel class of

small-molecule IAP antagonists that bind to the BIR

domains of IAP proteins leading to rapid ubiquitination

and proteasomal degradation of c-IAPs. We discover

that c-IAP proteins are important regulators of NF-kB sig-

naling and ubiquitin ligases for the critical kinase in the

noncanonical NF-kB pathway, NIK. Finally, we establish

that IAP antagonist-induced cell death is dependent on

TNF signaling. These functional and mechanistic data pro-

vide a molecular platform for the rational development of

a novel class of cancer therapeutics.

RESULTS

Biophysical Analysis of IAP Protein-IAP
Antagonist Interactions
To elucidate the mechanism of IAP antagonism, structure-

based design was used to generate novel, monovalent

(MV1) and bivalent (BV6) compounds that target IAP pro-

teins (Figure 1A and Figure S1 in the Supplemental Data

available with this article online). Both MV1 and BV6, but

not their enantiomers, MVE1 and BVE6, antagonize IAP

protein-protein interactions as exemplified by disruption

of XIAP – caspase-9 association (Figure S2). Binding affin-

ities of the monovalent and bivalent IAP antagonists were

determined by surface plasmon resonance (SPR), em-

ploying biotinylated versions of MV1 and BV6 as analytes

(MV1-B and BV6-B, respectively) and recombinant IAP

proteins (XIAP and c-IAP1) containing BIR2, BIR3, or

both BIR2 and BIR3 domains as ligands (Table 1). As

reported previously for SMAC-derived peptides (Liu

et al., 2000), the monovalent SMAC-based antagonist dis-

played tighter binding to the BIR3 domains relative to the

BIR2 domains. The bivalent antagonist displayed similar

affinities for the BIR2-BIR3 domain constructs, although

the interactions could be only fit using a two-site binding
670 Cell 131, 669–681, November 16, 2007 ª2007 Elsevier Inc.
model. The stronger, first-site affinities were essentially

equal to the binding affinities of the BIR3 constructs for

MV1-B, and the second-site affinities were greater than

the measured affinities of the BIR2 constructs for MV1-B

(Table 1). These increased affinities may reflect improved

binding to the BIR2 domains, corresponding to a probable

increase in the effective concentration of the antagonist at

the BIR2 domains due to the bivalent linkage (XIAP, see

below), or the dimerization of two IAP proteins through

the bivalent linkage of two BIR3 domains (c-IAP1, see be-

low). Fluorescence polarization competition assays were

also used to study binding of MV1, BV6, and their enantio-

mers, MVE1 and BVE6, to the BIR2 and BIR3 domains of

XIAP, c-IAP1, and c-IAP2 in solution. Observed binding af-

finities for MV1 and BV6 were similar to those determined

by SPR analysis, while the enantiomeric compounds did

not display significant binding to any of the BIR domains

(Table S2).

Analytical ultracentrifugation was used to further inves-

tigate the binding mode of MV1 and BV6 to the c-IAP1 and

XIAP BIR2-BIR3 domains (Tables 1 and S3). Both c-IAP1

and XIAP BIR2-BIR3 domains were monomeric in the

absence of antagonists and in the presence of up to

a 30-fold excess of MV1, as assessed by sedimentation

velocity and equilibrium experiments. XIAP BIR2-BIR3

also remained monomeric with the addition of BV6, even

at high concentrations, suggesting that BV6 binds intra-

molecularly to both the BIR2 and BIR3 domains of XIAP.

In contrast, BV6 induced dimerization of c-IAP1 BIR2-

BIR3, plateauing at 0.6 equivalents of BV6 to c-IAP1, sug-

gesting that one molecule of BV6 binds the BIR3 domains

of two c-IAP1 molecules, and that the second affinity

observed in SPR analysis is the result of a reduced binding

affinity (by one order of magnitude) to a second c-IAP1

BIR3 domain rather than an increased affinity (by four

orders of magnitude) to the c-IAP1 BIR2 domain.

IAP Antagonists Trigger Rapid Proteasomal
Degradation of c-IAP1 and c-IAP2
Next, the effects of the monovalent and bivalent IAP an-

tagonists on the stability of IAP proteins were examined.

Treatment of MDA-MB-231 breast carcinoma cells with

BV6 lead to a precipitous loss of c-IAP1 and 2 proteins

(Figure 1B). The levels of XIAP, TRAF2, TRAF5, caspase-

3, and caspase-8 proteins were unperturbed except at

the 12h time point, coincident with the observed activation

of caspases 8 and 3 and induction of apoptosis (Figure 1B

and data not shown). When MDA-MB-231 cells were

treated with MV1 or BV6 for much shorter time periods,

the c-IAP1 and 2 protein levels were found to decrease

significantly by as early as two minutes following exposure

(Figure 1C). This striking and prompt loss of c-IAP proteins

following treatment with MV1 or BV6 was not due to se-

questration of the proteins to the insoluble fraction of the

cellular lysates because direct lysis of cells in SDS-con-

taining buffer confirmed the rapid loss of these proteins

following treatment (Figure S3). The decrease in c-IAP1

and 2 protein levels was dependent on the concentrations



Figure 1. Monovalent and Bivalent IAP Antagonists Trigger Rapid Proteasomal Degradation of c-IAP1 and c-IAP2

(A) The structure of monovalent (MV1) and bivalent (BV6) IAP antagonists.

(B) Treatment with IAP antagonists leads to degradation of c-IAP1 and 2. MDA-MB-231 cells were treated with BV6 (5 mM) for the indicated time

periods and cell lysates were probed with the indicated antibodies.

(C) Monovalent and bivalent IAP antagonists cause rapid loss of c-IAP1 and c-IAP2. MDA-MB-231 cells were treated with MV1 or BV6 (5 mM) for the

indicated time periods and cell lysates were examined by Western blotting using antibodies against c-IAP1 and c-IAP2.

(D) Degradation of c-IAP1 and c-IAP2 induced by IAP antagonists is specific. MDA-MB-231 cells were treated with MVE1 and BVE6 (all at 5 mM) for

1 hr and cellular lysates were examined by Western blotting using antibodies against c-IAP1 and c-IAP2.

(E) IAP antagonist-induced degradation of c-IAP1 and c-IAP2 is dependent on proteasomal machinery but not on caspase activation. MDA-MB-231

cells were treated with MV1 or BV6 (5 mM) for 1 hr in the absence or presence of proteasome inhibitor (20 mM MG132) or caspase inhibitor (z-VAD;

25 mM) and cell lysates were examined by Western blotting using antibodies against c-IAP1 and c-IAP2.
Cell 131, 669–681, November 16, 2007 ª2007 Elsevier Inc. 671



Table 1. Biophysical Effects of IAP Protein-IAP Antagonist Interactions

Protein Antagonist KD site I (nM)a KD site II (mM)a AUCb

c-IAP1

BIR2 MV1-B — 220 ± 240

BIR3 MV1-B 5.8 ± 2.1 —

BIR2-BIR3 — monomer

BIR2-BIR3 MV1-B 1.00 ± 0.26 — monomer

BIR2-BIR3 BV6-B 0.46 ± 0.31 0.029 ± 0.011 mono 4 dimer

XIAP

BIR2 MV1-B — 28 ± 15

BIR3 MV1-B 16.0 ± 8.9 —

BIR2-BIR3 — monomer

BIR2-BIR3 MV1-B 1.00 ± 0.55 — monomer

BIR2-BIR3 BV6-B 1.30 ± 0.25 4.3 ± 2.6 monomer

aApparent dissociation constants for the BIR2 and BIR3 domains of c-IAP1 and XIAP as determined by SPR analysis against
biotinylated versions of antagonists MV1 and BV6. For full rate information, see Table S1.
bOligomerization state of the BIR2-BIR3 domains of c-IAP1 and XIAP in the presence and absence of nonbiotinylated IAP antag-

onists, as determined through sedimentation equilibrium analysis. For more information, see Table S3.
of MV1 or BV6, with higher concentrations being required

for comparable decreases in c-IAP2 levels relative to

c-IAP1 (Figure S4). Notably, the ability of the antagonists

to induce dimerization was not necessary to induce the

loss of c-IAP1 and 2. In contrast, the enantiomers of MV1

and BV6, MVE1 and BVE6 respectively, did not affect the

levelsofc-IAP1 or2,evenathighconcentrations (Figure 1D).

Since the IAP antagonists MV1 and BV6 induce cell

death in cancer cells (discussed below and shown in Fig-

ure 3), the observed loss of c-IAP1 and 2 proteins may be

a consequence of the activation of apoptosis (although

this seems unlikely given the rapid kinetics). In addition,

however, c-IAP1 and 2 are ubiquitin E3 ligases that are

capable of mediating auto-ubiquitination and ubiquitina-

tion of several of their binding partners (Li et al., 2002;

Vaux and Silke, 2005; Yang and Du, 2004), suggesting

that their loss following treatment with the IAP antagonists

may be the result of proteasome-mediated degradation.

To address these possible mechanisms of IAP antago-

nist-induced loss of c-IAP1 and 2, MDA-MB-231 cells

were treated with MV1 or BV6 in the absence or presence

of either the pan-caspase inhibitor z-VAD or the protea-

some inhibitor MG132. The presence of MG132 efficiently

blocked the IAP antagonist-dependent decreases in

c-IAP1 and 2 protein levels, while administration of z-VAD

had no effect (Figure 1E). This proteasome-mediated deg-

radative effect of IAP antagonists was observed in all cell

lines tested suggesting that it might be a general phenom-

enon (Figure S5). Thus, IAP antagonists stimulate protea-

somal degradation of c-IAP1 and 2 that is independent of

caspase activation.

To determine which portions of c-IAP1 and 2 are re-

quired for IAP antagonist-induced degradation, an over-

expression system was established in 293T cells and
672 Cell 131, 669–681, November 16, 2007 ª2007 Elsevier Inc.
Flag-tagged c-IAP1 and 2 proteins were demonstrated

to be similarly degraded in a proteasome-dependent fash-

ion upon treatment with MV1 or BV6 (Figures 2A, 2B, and

S6). In agreement with earlier experiments, the IAP antag-

onists did not affect protein levels of Flag-tagged XIAP

and ML-IAP or of endogenous TRAF2 and TRAF5

(Figure 2A). MV1 and BV6 bind to the BIR2 domain of

c-IAP1 with low affinities and to the BIR3 domain with

high affinities, therefore key contact residues were mu-

tated to alanine in both domains of c-IAP1 (Liu et al.,

2000) and the effect of these mutations on the stability of

c-IAP1 protein following treatment with the IAP antago-

nists investigated. In contrast to wild-type c-IAP1, the mu-

tant c-IAP1 protein levels were unchanged (Figure 2C). In

order to test the hypothesis that auto-ubiquitination of

c-IAP1 might be required for IAP antagonist-induced deg-

radation, one of the zinc-coordinating residues in the ubiq-

uitin E3 ligase RING domain of c-IAP1 (histidine 588) was

mutated to alanine. As observed for the BIR2/3-domain

mutant, treatment with MV1 or BV6 had no effect on the

protein levels of the c-IAP1 RING-domain mutant (Fig-

ure 2C). Additionally, in agreement with published obser-

vations showing simultaneous interaction of c-IAP1 with

SMAC and TRAF2 (Samuel et al., 2006), IAP antagonists

did not affect c-IAP1 binding to TRAF2 (Figure S7). Having

established that auto-ubiquitination is required for the

degradative effect of the IAP antagonists on c-IAP1, we

endeavored to reconstitute the ubiquitination process

with purified components in vitro. To this end recombinant

full-length c-IAP1 protein was incubated with E1 and E2

(UbcH5a) enzymes in an ubiquitination assay in the ab-

sence or presence of BV6 or MV1 (Figure 2D). After as little

as three minutes both BV6 and MV1 triggered significant

auto-ubiquitination of c-IAP1 that was more pronounced



Figure 2. IAP Antagonist-Mediated Degradation of c-IAP1 Requires BIR and RING Domains
(A) HEK293T cells were transiently transfected with indicated Flag-tagged IAP constructs and 24 hr later treated with 5 mM of MV1, BV6, MVE1, or PBS

for 1 hr. Following treatment, cells were lysed in Nonidet P-40 lysis buffer and expression levels of Flag-tagged IAP proteins and endogenous TRAF2

and TRAF5 were determined by immunoblotting with the indicated antibodies.

(B) 293T cells were transiently transfected with Flag-tagged c-IAP1 construct and 24 hr later pre-treated with or without 20 mM MG132 or 25 mM zVAD

for 20 min followed by treatment with 5 mM of MV1 or BV6 for 1 hr. After treatment, cells were lysed in Nonidet P-40 lysis buffer and expression levels of

c-IAP1 protein were determined by immunoblotting with anti-Flag antibody.

(C) 293T cells were transfected with vector (v), or cDNA constructs encoding Flag-tagged wild-type c-IAP1, BIR2 and BIR3 mutant (D234A/E239A/

D320A/E325A; B2B3DE/AA), or RING domain point mutant (H588A; RINGmt). 24 hr after transfection, cells were treated with MV1 or BV6 (5 mM) for

1 hr. Expression of c-IAP1 proteins was analyzed using anti-Flag antibodies.

(D) IAP antagonists stimulate auto-ubiquitination of c-IAP1. Recombinant c-IAP1 (0.2 mM) purified from bacteria was incubated at 21�C in the

absence or presence of MV1 or BV6 (1 mM each) in the ubiquitination reaction for the indicated time periods and detected with anti-c-IAP1

antibodies.
than in the absence of the IAP antagonists (Figure 2D).

This is consistent with the notion that auto-ubiquitination

of c-IAP1 is induced by the IAP antagonists independent

of additional cellular factors (Figure 2D). Collectively,

these results demonstrate that both monovalent and

bivalent IAP antagonists trigger auto-ubiquitination and

subsequent rapid proteasomal degradation of c-IAP1

and 2.
C

Monovalent and Bivalent IAP Antagonists Induce
TNFa-Dependent Cell Death
Antagonism of IAP proteins has been shown to provoke

apoptosis in cancer cell lines (Li et al., 2004; Oost et al.,

2004; Sun et al., 2004; Zobel et al., 2006). To evaluate

whether monovalent and bivalent IAP antagonists can in-

duce cell death, MDA-MB-231 and EVSA-T breast cancer

and A2058 melanoma cell lines were treated with MV1 or
ell 131, 669–681, November 16, 2007 ª2007 Elsevier Inc. 673



Figure 3. IAP Antagonists Induce Cell Death

(A and B) EVSAT, A2058 (A) and MDAMB-231 (B) cells were treated with increasing amounts of MV1 and BV6 for 24 hr. Cell viability was determined as

described in Experimental Procedures.

(C) IAP antagonists trigger caspase-dependent cell death. Cells were treated with MV1 or BV6 (4 mM each) alone or in the presence of z-VAD (25 mM)

for 24 hr. Results indicate mean with standard deviation from at least three independent experiments.
BV6 (Figures 3A and 3B). Both IAP antagonists exhibited

single-agent cell killing activity with approximate IC50

values of 5 mM and 14 nM, respectively, in the highly sen-

sitive EVSA-T cell line (Figure 3A). The enantiomers MVE1

and BVE6 did not induce any appreciable cell death in all

cell lines tested (Figure S8). Cotreatment of several cancer

cell lines with the caspase inhibitor z-VAD inhibited IAP

antagonist-induced apoptosis (Figure 3C), demonstrating

that MV1 and BV6 stimulated cell killing is caspase

dependent.

Previous studies have shown that the cytotoxic activity

of IAP antagonists can be enhanced by administration of

TRAIL/Apo2L or TNFa (Li et al., 2004). In concurrence

with these reports we observed decreased viability upon

treatment of cells with recombinant TNFa, or by expres-

sion of TNFa cDNA in the presence of BV6 or MV1 (Figures

4A and S9). Additionally, through TRAF2 interactions

c-IAP1 and 2 associate with the TNFR1 signaling com-

plexes and regulate receptor-mediated apoptosis (Mi-

cheau and Tschopp, 2003; Rothe et al., 1995; Shu et al.,

1996; Wang et al., 1998). Therefore, to examine if cell

death induced by IAP antagonists depends upon signaling

through TNF family death receptors, cells were treated

with BV6 in the presence of TNFR1-Fc, DR5-Fc, or Fas-

Fc fusion proteins that would neutralize the respective

ligands of the receptor chimeras. Only TNFR1-Fc fusion

protein afforded protection from BV6-induced cell death

(Figure 4B). The functional inhibitory activities of the Fc-

fusion proteins used in these studies were confirmed by

cotreatment with their cognate ligands (Figure S10). In

addition, small interfering RNA oligonucleotides targeting
674 Cell 131, 669–681, November 16, 2007 ª2007 Elsevier Inc.
TNFR1 or TNFa-blocking antibodies provided similar

protective effects (Figure 4C and data not shown). The im-

portance of TNF signaling for IAP-mediated cell death was

also examined in a clonogenic assay. Inhibition of TNF

signaling offered protection to cells from IAP antagonist-

stimulated apoptosis and resulted in long-term survival

(Figures 4D and S11). Similarly, suppression of TNF sig-

naling prevented cell death induced by the overexpression

of the natural IAP antagonist SMAC (Figure S12). To inves-

tigate the functional importance of apical caspases in IAP

antagonist-induced cell death, we used small interfering

RNA oligonucleotides to downregulate the expression of

caspase-8 or caspase-9 (Figure 4C). Caspase-8 targeting

siRNAs provided significant protection from apoptosis

induced by treatment with IAP antagonist BV6 alone or

in combination with TNFa (Figure 4C). On the other

hand, downregulation of caspase-9 did not have any sig-

nificant effect on this cell death stimulus (Figure 4C) sug-

gesting that caspase-8 is a critical apoptotic protease in

IAP antagonist-induced cell death. Thus, the pro-apopto-

tic activity of IAP antagonists is mediated by caspase-8

and dependent upon TNF signaling.

IAP Antagonists Activate the Canonical and
Noncanonical NF-kB Pathways
These findings prompted us to investigate the signaling

pathways that are regulated by TNFR1, including the

canonical and noncanonical NF-kB pathways, especially

given that the c-IAP1 and 2-interacting adaptor protein,

TRAF2, plays a major role in both pathways (Chen and

Goeddel, 2002; Grech et al., 2004). First, the effects of



Figure 4. Cell Death Induction by IAP Antagonists Is TNF Dependent
(A) IAP antagonists synergize with TNFa. Indicated cell lines were treated with BV6 (0.6 mM) in the absence or presence of TNFa (1 ng/ml). Cell viability

was determined as described in Experimental Procedures.

(B) Indicated cell lines were treated with MV1 (1 mM) or BV6 (100 nM) alone or in the presence of the indicated recombinant fusion proteins (2 mg/ml) for

24 hr. Cell viability was determined as described in Experimental Procedures.

(C) IAP antagonist triggers TNFR1- and caspase-8-dependent cell death. A2058 cells were transfected with control scramble (Contr), TNFR1, cas-

pase-8, or caspase-9 small interfering RNA duplexes. 48 hr later, cells were treated with BV6 (400 nM) alone or with BV6 (200 nM) in the presence of

TNFa (1 ng/ml). Right portion of the panel; Expression of TNFR1, caspase-8 and caspase-9 in A2058 cells transfected with gene-specific or scram-

bled (control) small interfering duplexes was examined by Western blot analysis using indicated antibodies.

(D) Blockade of TNF signaling affords long-term clonogenic survival to IAP antagonist-treated cells. EFM-192A cells were treated with MV1 (0.5 mM) or

BV6 (0.25 mM) in the absence or presence of TNFa (20 ng/ml), zVAD (20 mM), TNFa plus zVAD, TNFR1-Fc (5 mg/ml), or DR5-Fc (5 mg/ml), plated, and

the average number of colonies was determined 10 days later.

Results indicate mean with standard deviations from three independent experiments.
administration of MV1 or BV6 on production of TNFa,

a well-established target of NF-kB signaling, were investi-

gated. The IAP antagonists, but not their enantiomers,

induced a 15- to 30-fold increase in TNFa mRNA levels

compared to untreated cells (Figure 5A). The IAP antago-

nists also stimulated the mRNA expression of other

NF-kB-regulated genes, MCP-1 and IL-8 (Figures 5A

and S13). In agreement with its ability to induce TNF-

dependent cell death, overexpression of SMAC also led
C

to increased level of TNFa mRNA expression (data not

shown). Phosphorylation of IkB followed by its proteaso-

mal degradation is a critical event in the canonical

NF-kB signaling cascade allowing nuclear translocation

of p50:RelA or other NF-kB heterodimer complexes (Hay-

den and Ghosh, 2004; Scheidereit, 2006). Treatment with

BV6 induced phosphorylation and subsequent proteaso-

mal degradation of IkB in several cell lines with kinetics

comparable to treatment with TNFa. (Figures 5B and
ell 131, 669–681, November 16, 2007 ª2007 Elsevier Inc. 675



Figure 5. IAP Antagonists Activate the Canonical and Noncanonical NF-kB Pathways

(A) MV1 and BV6 stimulate TNFa and MCP-1 mRNA expression. Quantitative real-time PCR analysis of TNFa and MCP-1 mRNA expression was done

on RNA samples derived from cells treated with MV1, BV6, MVE1, or BVE6 (5 mM) for 5 hr. All values were normalized to an RPL19 RNA internal control.

(B) Activation of canonical NF-kB by BV6 is not inhibited by TNFR1-Fc. EFM-192A cells were treated for the indicated periods of time with TNFa

(20 ng/ml) or BV6 (5 mM) in the absence or presence of TNFR1-Fc (2 mg/ml). The levels of total and phosphorylated forms of IkB were analyzed by

Western blot.

(C) IAP antagonist-induced noncanonical NF-kB signaling is not inhibited by TNFR1-Fc. EVSA T cells were treated for the indicated periods of time

with BV6 (5 mM) in the absence or presence of TNFR1-Fc (2 mg/ml). p100/p52 protein levels were analyzed by Western blot.

(D) Inhibition of protein expression protects cells from IAP antagonist induced cell death. Prior to administration of MV1 or BV6 (1 mM each) cells

were treated with 2 mg/ml of cyclohexamide (CHX) or PBS for 2 hr. Results indicate mean with standard deviation from at least three independent

experiments.
S14). However, while administration of TNFR1-Fc com-

pletely blocked TNFa activity, it did not affect BV6-stimu-

lated phosphorylation and degradation of IkB (Figures 5B

and S14). To investigate the effect of IAP antagonism on

noncanonical NF-kB signaling, the effect of BV6 on the

signature phosphorylation-dependent proteasomal pro-

cessing of the inactive precursor NF-kB2/p100 to its ac-

tive p52 form, was examined (Chen, 2005; Scheidereit,

2006). Treatment of various cell lines with BV6 resulted

in the processing of precursor protein p100 to its active

p52 form (Figures 5C and S15); as with IkB phosphoryla-

tion, TNFR1-Fc was unable to inhibit this activity (Figures

5C and S15). Activation of the NF-kB pathways leads to

the induction of many genes, including TNFa, suggesting

that de novo protein synthesis may be required for the pro-
676 Cell 131, 669–681, November 16, 2007 ª2007 Elsevier Inc
apoptotic activity of IAP antagonists. Indeed, the protein

synthesis inhibitor cycloheximide (CHX) was found to

significantly protect cells from IAP antagonist-induced

apoptotic death (Figure 5D). Collectively, IAP antagonism

induces activation of both the canonical and noncanonical

NF-kB pathways, irrespective of the presence of a TNF-

blocking reagent. Subsequent IAP antagonist-induced

cell death requires protein synthesis, TNF signaling, and

caspase activation.

c-IAP1 and c-IAP2 Promote Proteasomal
Degradation of NIK
NF-kB-inducing kinase (NIK), a highly labile ser/thr kinase,

is a critical regulator of the noncanonical NF-kB pathway

that phosphorylates IKKa, leading to phosphorylation of
.



p100 and subsequent processing to p52 (Senftleben et al.,

2001; Xiao et al., 2001). TRAF2, a TNFR family-binding

adaptor protein negatively regulates the noncanonical

NF-kB pathway, presumably by controlling the stability

of NIK (Grech et al., 2004). In addition, TRAF2 exists in

a preassembled complex with c-IAP1 and 2 in cells (Rothe

et al., 1995; Shu et al., 1996), suggesting that c-IAP1 and 2

could be the elusive degradative E3 ligases responsible

for the lability of NIK. Under this assumption IAP antago-

nist-induced proteasomal degradation of c-IAP1 and 2

would eliminate the candidate E3 ligases responsible for

proteasomal degradation of NIK, thus allowing NIK to ac-

cumulate and trigger the noncanonical NF-kB pathway.

To test this hypothesis Myc-tagged NIK was expressed

in 293T cells alone or together with c-IAP1 or 2. Coexpres-

sion of NIK with c-IAP1 or 2 led to a complete loss of NIK

protein (Figure 6A). However, coexpression of the RING

domain mutant of c-IAP1 did not affect NIK protein levels,

suggesting that ubiquitin E3 ligase activity is necessary for

c-IAP1-induced degradation of NIK (Figure 6A). A c-IAP1

mutant construct that lacks the ability to associate with

TRAF2 (Varfolomeev et al., 2006) was also tested and

found to not affect NIK protein levels (Figure 6A). Consis-

tent with this finding, the same c-IAP1 mutant did not as-

sociate with NIK (Figure 6B). These results suggest that

TRAF2 is providing a critical scaffolding link between the

ubiquitin E3 ligase c-IAP1 and its substrate NIK. Further-

more, coexpression of NIK with XIAP had no effect on

NIK protein levels, demonstrating that negative regulation

of NIK is not a general function of IAP proteins, but rather is

limited to the TRAF2-interacting IAP proteins c-IAP1 and 2

(Figure 6A). Coexpression of c-IAP1 and NIK in the pres-

ence of proteasome inhibitor MG132 also promoted ubiq-

uitination of NIK (Figure 6C).

Having established that c-IAP1 and 2 are ubiquitin E3 li-

gases capable of promoting ubiquitin-mediated proteaso-

mal degradation of NIK, we next explored the effect of IAP

antagonism on NIK stability. A 293T cell line was gener-

ated that stably expressed such low levels of labile NIK

that it was only detectable following treatment with the

proteasome inhibitor MG132 (Figure 6D). Treatment of

this NIK-expressing cell line with the IAP antagonist BV6

triggered the expected degradation of endogenous

c-IAP1 protein and led to a remarkable increase in the

levels of NIK that initiated p100 processing (Figure 6D).

At the same time, protein levels of TRAF2 and TRAF3

remained unchanged (Figure 6D). IAP antagonist treat-

ment also led to stabilization of endogenous NIK as well

(Figures 6E and S16). These results support a pivotal

role for c-IAP1 in the degradative regulation of NIK and

the noncanonical NF-kB pathway (Figure 6D). To investi-

gate whether physiological pathways that lead to p100

processing also stimulate c-IAP1 degradation we treated

several cell lines with the TNF family cytokine TWEAK (Fig-

ures 6E, 6F, and S17). Exposure to TWEAK triggered

c-IAP1 degradation that was accompanied by p100 pro-

cessing suggesting that c-IAPs are an inherent component

of cytokine-mediated NF-kB2 activation (Figures 6F and
C

S17). NIK protein levels increased following BV6 or TWEAK

treatment and this increase was preceded by degradation

of c-IAP1 consistent with the proposed role of c-IAPs as

critical regulators of NIK stability (Figure 6F). Consistent

with findings in human cell lines, treatment of mouse

embryonic fibroblasts (MEFs) with BV6 caused rapid deg-

radation of c-IAP1 (Figure 6G). Additionally, the processing

of p100 observed in MEFs following treatment with BV6

was completely absent in NIK knock-out MEFs, demon-

strating that NIK is indeed critical to mediating IAP antag-

onist-induced activation of the noncanonical NF-kB path-

way (Figure 6G). In sum, these results suggest that c-IAPs

are the E3 ligases responsible for induction of proteasomal

degradation of NIK, and are thus critical regulators of the

noncanonical NF-kB pathway.

DISCUSSION

Current efforts to translate fundamental understanding of

cell death pathways into treatments for the eradication of

cancer cells have yielded several candidate approaches

that are undergoing evaluation. The ability of IAP proteins

to act as inhibitors of apoptosis together with their prom-

inent expression in human malignancies makes them at-

tractive targets for therapeutic intervention (Hunter et al.,

2007). Equally important, the feasibility of targeting IAPs

to disrupt their interactions with pro-apoptotic proteins

has been demonstrated (Reed, 2003). However, the

mechanism by which IAP-targeting compounds initiate

apoptotic signaling was not clear. In the present study

we have identified critical mechanistic aspects of IAP an-

tagonism that are important for the understanding of IAP

function and their relevance in tumor biology.

Investigation of the binding of small-molecule IAP an-

tagonists to XIAP and c-IAP1 revealed distinct differences

in their interactions with the BIR domains of these pro-

teins. While the bivalent IAP antagonist BV6 induced

dimerization of c-IAP1 BIR2-BIR3, the XIAP BIR2-BIR3

protein construct remained monomeric. The observed

differences are most likely the result of differential affinities

of the small molecule for the BIR2 domains of c-IAP1 and

XIAP (Table 1). The ability of BV6 to simultaneously

engage both BIR2 and BIR3 domains of XIAP enables

a more potent abrogation of XIAP-mediated caspase inhi-

bition and potentially contributes to the higher cellular po-

tency observed for bivalent IAP antagonists ([Gao et al.,

2007] and data not shown). We have also demonstrated

that both monovalent and bivalent IAP antagonists induce

remarkably rapid and dramatic auto-ubiquitination and

proteasomal degradation of c-IAP proteins. Although the

bivalent compound is more potent, the observed activities

of the monovalent and bivalent IAP antagonists are identi-

cal. This proteasomal degradation-promoting activity re-

lies on the binding of the IAP antagonists to the BIR

domains and involves RING domain-mediated auto-ubiq-

uitination of c-IAP1 and c-IAP2 with no requirement for

additional cellular factors beyond the necessary ubiquitin,

and E1 and E2 enzymes. The molecular mechanism for
ell 131, 669–681, November 16, 2007 ª2007 Elsevier Inc. 677



Figure 6. c-IAP1 and c-IAP2 Destabilize NIK

(A) 293T cells were transiently cotransfected with Myc-tagged NIK plasmid and indicated Flag-tagged IAP constructs. After 24 hr, cells were lysed and

protein levels of ectopically expressed proteins were analyzed by Western blot analysis.

(B) c-IAP1 association with NIK requires TRAF2. 293T cells were transiently cotransfected with Myc-tagged NIK plasmid and indicated Flag-tagged

c-IAP1 constructs. After 24 hr, cells were lysed and protein levels and associations were analyzed by immunoprecipitations and Western blot analysis.

(C) c-IAP1 promotes ubiquitination of NIK in cells. Flag-NIK was coexpressed in 293T cells with HA-ubiquitin and vector or Myc c-IAP1 in the presence

of MG132 (20 mM). NIK expression and ubuiqutination were assessed with anti-Flag and anti-HA antibodies.

(D) IAP antagonism stabilizes NIK. 293T cells stably expressing Myc-tagged NIK were treated with MG132 (20 mM) or BV6 (5 mM) for 4 hr. Proteins

levels were analyzed by Western blot and indicated antibodies.

(E) IAP antagonists or TWEAK treatments lead to c-IAP1 degradation and subsequent NIK stabilization. A2058 cells were treated with BV6 (2 mM) or

TWEAK (25 ng/ml) for the indicated time periods and NIK and c-IAP1 protein levels in cellular lysates were determined as described in Experimental

Procedures.

(F) TWEAK triggers c-IAP1 degradation and processing of p100. Kym1 and A2058 cells were treated with TWEAK (25 ng/ml) for indicated time periods

and p100/p52 and c-IAP1 protein levels in cellular lysates were determined by immunoblotting with the indicated antibodies.

(G) IAP antagonist BV6-stimulated p100 processing depends on NIK. NIK knock-out and matched wild-type mouse embryonic fibroblasts (MEFs)

were treated for indicated times with BV6 (5 mM) or PBS. Following treatment cells were lysed in Nonidet P-40 lysis buffer and p100/p52 and

c-IAP1 protein levels were determined by immunoblotting with indicated antibodies.
this induction of auto-ubiquitination is not entirely clear,

although we speculate that the IAP antagonists disrupt

an intramolecular interaction, or otherwise induce a con-
678 Cell 131, 669–681, November 16, 2007 ª2007 Elsevier Inc
formational change in the c-IAP proteins that allows the

ubiquitination reaction to occur. In agreement with previ-

ously published studies (Yang and Du, 2004), XIAP
.



appears to be spared from the IAP antagonist-stimulated

auto-ubiquitination and proteasomal degradation. These

findings underscore the necessity for evaluation of multi-

ple members of the IAP family when designing antagonists

with broad-spectrum affinities.

An unexpected finding was that cell death induced by

IAP antagonists depends upon de novo protein biosynthe-

sis and TNFa signaling. Given that c-IAP1 and 2 are re-

cruited to the proximal TNFR1-signaling complexes where

they cooperate with TRAF2 to suppress caspase-8 activa-

tion (Micheau and Tschopp, 2003; Wang et al., 1998), their

proteasomal degradation via IAP antagonist-induced

ubiquitination likely alters signaling to favor an apoptotic

outcome. By negating the activity of three antiapoptotic

proteins, c-IAP1 and c-IAP2 through induced auto-ubiqui-

tination and degradation and XIAP through antagonism of

caspase binding (Gao et al., 2007; Li et al., 2004; Sharma

et al., 2006), IAP antagonists establish an intracellular

milieu that allows caspase activation and thus advances

an apoptotic fate when TNF is produced in response to

IAP antagonist-induced NF-kB activation (Figure S18).

Another important discovery was the critical role of

c-IAPs in the regulation of NF-kB signaling. By stimulating

ubiquitin ligase activity and subsequent proteasomal deg-

radation of c-IAP1 and c-IAP2, IAP antagonists trigger

activation of the canonical and noncanonical NF-kB path-

ways. Noncanonical NF-kB signaling is largely controlled

by NIK, a highly labile ser/thr kinase that phosphorylates

IKKa; our studies identify c-IAP1 and c-IAP2 as the

ubiquitin ligases responsible for its proteasomal degrada-

tion. Thus, IAP antagonists, through downregulation of

c-IAPs, promote NIK stabilization and consequent activa-

tion of noncanonical NF-kB signaling (Figure S18). In addi-

tion, we have demonstrated that cytokine-mediated phys-

iological pathways that trigger the processing of NF-kB2

(p100) involve the degradation of c-IAP1. These findings

establish c-IAPs as seminal mediators of signaling path-

ways that activate NF-kB and provide a mechanistic

insight for the recent observations that a significant pro-

portion of multiple myeloma patients with inactivating

biallelic mutations in both c-IAP1/2 have constitutive acti-

vation of the noncanonical NF-kB pathway (Annunziata

et al., 2007; Keats et al., 2007).

In summary, our study provides a mechanistic explana-

tion for the observed ability of IAP antagonists to stimulate

apoptosis in cancer cells and defines novel biological

roles for c-IAP1 and c-IAP2 in regulation of cellular sig-

naling.

EXPERIMENTAL PROCEDURES

Cell Lines, Reagents, and Transfections

Hek 293T human embryonic kidney cells, A2058 human melanoma

cells, HT1080 human fibrosarcoma cells, HT29 human colorectal ade-

nocarcinoma cells, and MDA-MB-231 human breast carcinoma cells

were obtained from ATCC. EVSA-T and EFM-192A human breast car-

cinoma cells were obtained from DSMZ. Human rhabdomyosarcoma

Kym-1 cell line was obtained from HSRRB. NIK-deficient and matched

wild-type mouse embryonic fibroblasts were kindly provided by
C

Dr. Andrew Chan. HEK293T cells stably expressing NIK were estab-

lished by transfection with myc-tagged NIK expression vector and hy-

gromycin selection. Transient transfection of HEK293T cells was done

using Geneporter 2 reagent (Genlantis). A2058 cells were transfected

with siRNA oligonucleotides as described previously (Varfolomeev

et al., 2005). All cell lines were grown in 50:50 Dulbecco’s modified Ea-

gle’s and FK12 medium supplemented with 10% FBS, penicillin and

streptomycin. Flag-tagged FasL was prepared as described (Sharp

et al., 2005). Human recombinant soluble TNFa and TWEAK were

from Genentech, Inc. Agonistic a-DR5 antibodies were purchased

from R&D Systems, MN. The primary antibodies against c-IAP1 were

purchased from R&D (affinity-purified goat antibody) or described pre-

viously (Varfolomeev et al., 2006; Zender et al., 2006), and we thank

Dr. John Silke for his kind gift. Anti-c-IAP2 antibodies were purchased

from Abcam; anti-caspase-3, -caspase-8, -XIAP, -phospho-specific

IkB antibodies were from Cell Signaling Technology, Inc.; anti-

caspase-9 antibody was from BD PharMingen; anti- IkB antibodies

were from Cell Signaling Technology and Upstate; anti-TRAF2 and

-TRAF3 antibodies were from Santa Cruz Biotechnology, Inc.; anti-

Flag M2 antibody was from Sigma, anti-Myc antibody was from

Roche; anti-p100/p52 antibody was from Upstate Biotechnology,

anti-TRAF5 antibody was from IMGENEX; anti-Actin antibody was

from ICN Biomedicals, MG132 was purchased from Calbiochem,

and z-VAD-Fmk was purchased from BioMol.

Viability Assays

Cells (1–1.5 3 104 per well) were seeded into 96-well dishes. 8-12 hr

later the media were changed, and cells were treated as indicated in

the figure legends. Cell viability was measured by neutral red uptake

as described (Johnston et al., 1981; Zobel et al., 2006). Long-term sur-

vival (clonogenic) assays were performed as described with 200 cells

plated on 6-well plates in triplicates after indicated treatments

(Franken et al., 2006).

Ubiquitination Assays

Ubiquitination assays were performed as described previously (Wertz

et al., 2004). Briefly, for cell-based ubiquitination assays, 293T cells

were transiently transfected as indicated and pre-treated with 20 mM

MG132. 10 mM N-ethylmaleimide and 20 mM MG132 were added to

the lysis buffer. Lysates were cleared by centrifugation and proteins

were dissociated by heating at 95�C for 10 min. Samples were diluted,

immunoprecipitated with anti-Flag antibody, and immunoblotted as

indicated. Reconstituted auto-ubiquitination assays were performed

in a 100 ml reaction volume with 2 mg N-terminal biotinylated ubiquitin,

0.2 mg E1, 1 mg E2 (UbcH5a) (all Boston Biochem), 0.2 mM recombinant

c-IAP1 with or without 1 mM BV6 or MV1 in a buffer containing 30 mM

HEPES, 2 mM DTT, and 5 mM MgCl2-ATP. Reactions were incubated

at 21�C for indicated time periods, stopped by adding 4 3 SDS loading

buffer, boiled at 95�C for 10 min, and immunoblotted with anti-c-IAP1

antibody.

Western Blot Analyses and Immunoprecipitation

Western blot analyses were performed as described previously (Varfo-

lomeev et al., 2006; Vucic et al., 2000) using the following lysis buffer:

1% NP40, 120 mM NaCl, 50 mM HEPES, (pH 7.2), 1 mM EDTA, 10%

glycerol, protease inhibitory cocktail (Roche) and MG132 (20 mM). In

the case of direct lysis (Figure S3) upon treatment, cells were lysed

in a buffer containing 1% SDS. Immunoprecipitation were performed

as described previously (Vucic et al., 2002, 2005), the only difference

being the presence of MG132 (20 mM) in the media prior to cell

lysis (3 hr) and in the lysis buffer in NIK association studies. For detec-

tion of endogenous NIK protein cellular lysates were immunopre-

cipitated with the cocktail of anti-NIK antibodies (purchased from

Chemicon, Cell Signaling, and two antibodies from Santa Cruz Bio-

technology, Inc.) followed by Western blotting by anti-NIK antibody

from Novus.
ell 131, 669–681, November 16, 2007 ª2007 Elsevier Inc. 679



Analyses of Canonical and Noncanonical NF-kB Pathways

Cells were seeded into 10-cm dishes. Twelve hours before treatment,

cells were washed once with PBS, and the growth media were

replaced by media containing 2% heat-inactivated FBS. Cells were

treated as described in the figure legends with 5 mM of IAP antagonist,

or 20 ng/ml of TNFa, or 25 ng/ml of TWEAK. Cells (A2058, EVSA-T,

Kym1 and EFM-192A) used in the experiments assessing p100/52

levels were treated in the presence of 20 mM of z-Vad. Following treat-

ment cells were lysed with a kinase lysis buffer (20 mM TRIS-HCl, (pH

7.5), 150 mM NaCl, 1 mM EDTA, 1% triton, 1 3 phosphatase inhibitor

cocktail II [#P-5726, Sigma]) and analyzed by SDS-PAGE followed by

immunoblot analysis, using anti-phospho-specific IkB or anti-total IkB

antibodies, p100/p52 antibodies and ECL kit (Amersham, NY).

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, eighteen figures, and three tables and

can be found with this article online at http://www.cell.com/cgi/

content/full/131/4/669/DC1/.
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