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Let H be a fixed graph. We introduce the following list homomorphism problem:
Given an input graph G and for each vertex v of G a “list” L(v) < V(H), decide
whether or not there is a homomorphism f: G — H such that f(v)e L(v) for each
ve V(G). We discuss this problem primarily in the context of reflexive graphs, i.e.,
graphs in which each vertex has a loop. We give a polynomial time algorithm to
solve the problem when H is an interval graph and prove that when H is not an
interval graph the problem is NP-complete. If the lists are restricted to induce con-
nected subgraphs of H, we give a polynomial time algorithm when H is a chordal
graph and prove that when H is not chordal the problem is again NP-complete. We
also argue that the complexity of certain other modifications of the problem
(including the retract problem) are likely to be difficult to classify. Finally, we men-
tion some newer results on irreflexive and general graphs.  © 1998 Academic Press

1. INTRODUCTION

We consider finite undirected graphs which may have loops. A graph is
reflexive if each vertex has a loop, and irreflexive if no vertex has a loop.
A homomorphism f- G — H of a graph G to a graph H is a vertex mapping
which preserves edges, i.e., a mapping f: V(G) — V(H) such that uv € E(G)
implies f(u) f(v) e E(H). If there is a homomorphism of G to H we write
G — H. Note that a homomorphism may in general identify adjacent ver-
tices (onto a vertex which has a loop). Loops are usually ignored when
properties of reflexive graphs are discussed. In particular, we say that a
reflexive graph H is a tree, cycle, interval graph, or chordal graph, precisely
when the graph obtained from H by removing all loops has the corre-
sponding property (as defined, e.g., in [ 14]). As the only exception to this,
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we apply the definition of a bipartite graph literally, and hence, a bipartite
graph is by definition irreflexive.

Let H be a fixed graph; we shall refer to the problem of deciding whether
or not an input graph G satisfies G — H as the homomorphism problem
HOMH.

The problem HOMAH is only interesting for irreflexive graphs, since if H
has a loop on a vertex v then every G admits a homomorphism to H, by
mapping all vertices of G to v. When H is the irreflexive complete graph K,
then a homomorphism of G to H is just an n-colouring of G. Thus HOMK,,
is the problem of n-colourability, which is known to be NP-complete when
n> 2, and polynomial time solvable for n =1, 2. The complexity of HOMH
for other irreflexive graphs has been classified in [18]: When H is any
bipartite graph then G — H if and only if G is also bipartite; thus in this
case HOMH is polynomial. When H is not bipartite then HOMH is
NP-complete [ 18].

The problem HOMH can also be stated for a digraph H. (Digraph
homomorphisms must also preserve the directions of edges.) This problem
seems much harder [5, 6] and there is some evidence [8] that a full
classification of the complexity of HOMAH for digraphs H may be difficult.

Before formally introducing list homomorphisms, we wish to point out
an analogy with list colourings, which have been studied in graph theory
for some time [7, 2, 21, 24, 26]. Informally, list colourings restrict at each
vertex the set of allowed colours. The study of list colourings introduced
deep new insights and techniques which led to solutions of old problems on
ordinary colourings, as well as to fruitful new conjectures [2, 7, 12]. In
some cases, the list equivalents of old problems turned out to be in a sense
nicer than the original problems. Consider, for instance, planar graphs.
Every planar graph is 4-colourable, and there is a planar graph which is
not 3-colourable. The former statement is extremely difficult to prove [ 1],
while the second one is trivial (take K,). The situation is more balanced
when one asks the corresponding question for list colourings: Specifically,
Erdés, Rubin, and Taylor [7] define a graph G to be k-choosable if a
proper colouring of G exists whenever each vertex of G has a list of k
allowed colours to choose from. It turns out that every planar graph is
5-choosable and that there is a planar graph which is not 4-choosable.
Both of these results are nontrivial and have very nice proofs of manageable
size [ 26, 24].

Suppose H is a fixed graph. Given a graph G and lists L(v) < V(H) for
all ve V(G), a list homomorphism of G to H, with respect to the lists L, is
a homomorphism f: G— H with f(v)e L(v) for each ve V(G). Thus list
colourings are precisely list homomorphisms to irreflexive complete graphs.
The list homomorphism problem L-HOMH asks, for input G with lists L,
whether there is a list homomorphism of G to H with respect to L. Since
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list homomorphisms limit the possible images of each vertex, list
homomorphism problems may be interesting even when H has loops. In
fact we shall concentrate in this paper on the case of reflexive graphs. For
irreflexive and general graphs we have similar results, summarized in the
last section; we will return to this topic in separate papers [ 10, 11].

The list homomorphism problem for reflexive graphs admits a very
natural interpretation. Suppose we have a set of processors, with direct
connections between certain pairs of processors. Define a graph H with the
processors as vertices and the processor connections as edges. Suppose we
also have a set of jobs to be performed by the processors, each job being
suitable only for some of the processors, and with certain pairs of jobs
requiring communication during processing. We may now define another
graph G with the jobs as vertices and the job pairs in need of communica-
tion as edges; in addition, we also have for each job a list of admissible
processors. Then a desired assignment of jobs to processors is precisely
a list homomorphism of G to H. Thus we have an instance of the prob-
lem L-HOMAH. (A similar interpretation would apply for emulating one
architecture by another.) An important point here is that each processor is
naturally viewed as being able to communicate with itself; thus the graphs
in question have to be reflexive.

We also consider two variants of the list homomorphism problem. The
connected list homomorphism problem CL-HOMAH restricts L-HOMAH to
those inputs in which each list L(v) induces a connected subgraph of H.
The one-or-all list homomorphism problem OAL-HOM H restricts the inputs
of L-HOMH to have each list L(v) either a single vertex of H or the entire
set V(H). When H itself is connected, OAL-HOMAH is a further restriction
of CL-HOMAH. The problem OAL-HOMAH is equivalent to a previously
studied problem of graph retraction.

For reflexive graphs we have the following results: In Section 2 we prove
that there is a polynomial time algorithm for L-HOMH when H is an
interval graph, and L-HOMH is NP-complete otherwise. In Section 3 we
show that there is a polynomial time algorithm for CL-HOMH when H is
a chordal graph, and CL-HOMH is NP-complete otherwise. In contrast to
these results we shall argue in Section 4 that the boundary between easy
and hard OAL-HOMAH problems is unlikely to be simple to describe.
Finally, in Section 5 we mention some recent results on list homomor-
phisms for irreflexive and general graphs.

In analogy to the above discussion on list colourings of planar graphs,
one can argue that the list homomorphism versions of the complexity ques-
tions are in a sense nicer than the original homomorphism questions: Both
in the reflexive case (the present paper) and the irreflexive case ([10]) we
obtain both interesting new polynomial algorithms for list homomorphisms
to well-structured graphs, and natural NP-completeness constructions for
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list homomorphisms to unstructured graphs. In contrast, for ordinary
homomorphism problems, the reflexive case is trivial, and in the irreflexive
case, it is quite difficult to prove that HOMH is NP-complete for all
nonbipartite A [ 18], while the polynomial algorithms for HOMH with H
bipartite are trivial (cf. above).

2. LIST HOMOMORPHISMS WITH GENERAL LISTS

In this section we shall assume that all graphs are reflexive, unless stated
otherwise. A chordless cycle in a graph H is an induced cycle, of length at
least four, without chords. We prove the following fact:

THEOREM 2.1. If H contains a chordless cycle then L-HOMH is
NP-complete.

For future reference we first prove a stronger result for a special case.
This result has been independently proved by G. MacGillivray (personal
communication).

Lemma 2.2. If H is the cycle of length k, with k >4, then OAL-HOMH
is NP-complete.

Proof. 1t is clear that OAL-HOMAH is in NP. We present a reduction
from k-colourability of irreflexive graphs: For any irreflexive graph X we
construct (in polynomial time) a graph G with lists L(g) < V(H), ge V(G),
in such a way that X is k-colourable if and only if G admits a list
homomorphism to H. First of all, the graph G will contain a fixed copy H,
of H. Next, each edge xy of X will be replaced by a gadget. If k is even,
k=2l (I=2), then the gadget consists of a new vertex, z, a path of length
[—1 between x and z, and two paths of length / between z and y. If k is
odd, k=2/+1 (I=2), then the gadget consists of three new vertices z, z', z”
forming a triangle, a path of length /—1 between x and z, and two paths
of length / between z’ and y, and between z” and y. (All the paths are inter-
nally disjoint; cf. Fig. 1.) Note that each edge xy of X gives rise to its own
copy H,, of H (formed by the two paths joining z, y in case k is even, or

i 2 l
-1 -1
x z y X z y
1 z” 1
k=21 k=2Il+1

Fig. 1. The gadgets for the proof of the lemma.
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by the edge z'z" and the two paths joining z’, y and z”, y in case k is odd).
Finally, each H,, is connected to H, by a sequence of k — 1 new copies of
H, where consecutive copies are joined so that the ith vertex of one copy
is joined to the ith and the (i + 1)th vertex of the next copy (with addition
modulo k; see Fig. 2). The lists are defined as follows: for each vertex
geV(H,) we let L(g)={g}; for all other vertices ge V(G) we let
L(g)=V(H). Note that the connections between consecutive copies of H in
each chain connecting an H,, to H, assure that in any list homomorphism
of G to H the ith vertex of one copy can be only identified with the ith or
(i+ 1)th vertex of the next copy. Thus each cycle must “rotate” to the next
cycle. It is not hard to conclude (using the fact that />2) that in any list
homomorphism of G to H, the vertices y and z of the gadget corresponding
to the edge xy (this is the gadget containing the copy H,, of the cycle H)
must map to opposite vertices of H. Here opposite means of distance
/=] k/2_] along the cycle, regardless of the parity of k. Moreover, for any
two opposite vertices u, v of H,, there is a list homomorphism of G to H
which maps x to u and y to v. Thus each list homomorphism of G to H
takes x, y to different vertices of H, and any two different vertices of H are
the images of x, y under some list homomorphism of G to H. Therefore, G
admits a list homomorphism to H if and only if the vertices of X can be
labelled by the vertices of H so that adjacent vertices of X obtain different
labels, i.e., if and only if X is k-colourable. ||

Note that when H is the reflexive three-cycle then OAL-HOMA is poly-
nomial time solvable; indeed this is so for any reflexive complete graph.

Now we can easily complete the proof of the theorem: It is again clear
that L-HOMAH is in NP. Let H' be an induced cycle (of length k>4)
without chords in H. Any instance of OAL-HOMH’ can be viewed as an
instance of L-HOMAH since H' is a subgraph of H. Thus OAL-HOMH' is
a restriction of L-HOMH and hence the lemma implies that the latter is
also NP-complete.

ny H,
A A
~ L

~N—
k-1

Fig. 2. Connections between the copies of H.
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An asteroidal triple of H is a set of three nonadjacent vertices
0, 1,2 € V(H) such that for each pair i # j of vertices from {0, 1,2} there
is a path in H joining i and j not containing any neighbour of the third ver-
tex k (k #1, j) from {0, 1, 2}.

THEOREM 2.3. If H contains an asteroidal triple then L-HOMH is
NP-complete.

Proof. Let 0, 1,2 be three nonadjacent vertices of H and let, for each
pair of distinct 7, j€ {0, 1,2}, P, ; be a shortest path in H joining i and j
and not containing any neighbours of the third vertex k€ {0, 1, 2}. Note
that the assumption that P, ; is a shortest path implies that i (and ;) has
only one neighbour on P, .

We reduce not-all-equal 3-satisfiability without negated variables [ 13] to
L-HOMH in a manner similar to the proofs in [20]. The key in this
reduction is the construction of “choosers.” Let 7, j be distinct elements of
{0, 1,2} and let I, J be distinct subsets of {0, 1,2}. An (i, 1, j, J)-chooser
is a path P with endpoints @ and b, and with lists L, = V(H), pe V(P),
such that any list homomorphism f of P to H has f(a)=i and f(b) e or
fla)=jand f(b) € J, and, moreover, for any i’ € I and any j' € J there exists
a list homomorphism f: P — H with f(a)=1i and f(b)=i" and a list homo-
morphism g: P —» H with g(a)=j and g(b)=j'.

Suppose that Pisa (0, {0, 1}, 1, {1, 2} )-chooser, P'isa (0, {1, 2}, 1, {2, 0})-
chooser, and P" is a (0, {2,0},1,{0, 1})-chooser. Let T be the tree
obtained from P, P’, P" by identifying all three vertices b, calling the three
a vertices a, a', a”.

It is easy to check that 7" admits a list homomorphism to H in which the
images of a, a’, a” are any combination of 0 and 1 except 000 and 111.
Hence if we replace, in an instance of not-all-equal 3-satisfiability without
negated variables, each clause by a copy of 7 (with the literals identified

Fig. 3. The tree T constructed from three choosers.
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with a, a’, a”), we obtain a graph G which admits a list homomorphism to
H if and only if the instance is satisfiable.

Thus it remains to construct the required (i, 7, j, J)-choosers. Suppose first
that 7= {i, k} and J={j, k}, k#1, j. Let [ be the larger of the lengths of
P, i, P i, and let A be the set of all vertices in all the paths P; ;, P, x, P, 1,
except those which are adjacent to i or j. (Recall that there are at most two
vertices adjacent to i and at most two adjacent toj on these paths.) Leti*, j*
be the first vertices on P, ,, P; , after i, j, respectively. Let P be a path of
length / from a to b, and let a ™ denote again the first vertex after @ on P. We
define L(a) = {i, j}, L(a™)={i*, j*}, L(b)={0, 1,2}, and L(p) = A for all
other p e P. Then P with L is an (i, I, j, J)-chooser:

Indeed, any list homomorphism of P to H which takes a to i must take
a® toi* as i, j* are not adjacent (since j lies on the path P, ). Then
the next vertex on P is taken either to i, in which case all subsequent ver-
tices including b will map to i, or to the next vertex on P, ,, in which case
b cannot map to either i or j because all their neighbours are absent from
the label set A4. Since the length of P is at least as large as that of P, ;, there
is a list homomorphism of P to H taking a to i and b to k; there is also
an obvious list homomorphism taking both @ and b (and all other vertices
of P, except a*) to i. List homomorphisms taking a to j are analyzed in
an analogous fashion.

We next consider the case when /= {i} and J={k}, k# j. Let [ be the
length of the path P, ; and let 4 = V(P, ;). Let P be a path of length / from
a to b, with all lists L(p) equal to A4 except L(a)={i, j} and L(b)={i, k}.
Then a simple analysis shows that P with L is an (i, I, j, J)-chooser.

It is now possible to form all the required choosers by concatenating the
two kinds of choosers constructed above:

The required (0, {0, 1}, 1, {1, 2})-chooser P is obtained by concate-
nating a (0, {0}, 1, {2} )-chooser and a (0, {0, 1}, 2, {2, 1} )-chooser. The
required (0, {1, 2}, 1, {2,0})-chooser P’ is obtained by concatenating a
(0, {0}, 1, {2} )-chooser, a (0, {1}, 2, {2} )-chooser, a (1, {1}, 2, {0} )-chooser,
and a (1, {1, 2}, 0, {0, 2} )-chooser. Finally, the required (0, {2, 0}, 1, {0, 1} )-
chooser P” is obtained by concatenating a (0, {2}, 1, {1})-chooser and a
(2,{0,2},1,{0, 1} )-chooser. |

COROLLARY 2.4. If H is not an interval graph then L-HOMH is NP-
complete.
Proof. If H is not an interval graph then it contains a chordless cycle or an

asteroidal triple [ 14]. |

THEOREM 2.5. If H is an interval graph then L-HOMH is polynomial time
solvable.
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Proof. We shall give a polynomial time reduction of this problem to
the (polynomial time solvable) problem of 2-satisfiability [ 13]. Thus suppose
H is an interval graph and G with L(v),ve V(G), is an instance of
L-HOMH. We may assume that the vertices of H, and hence the lists L(v), are
given as intervals (with two intervals intersecting if and only if the correspond-
ing vertices are adjacent in H). In addition, we may assume [ 14] that the
endpoints of the intervals are distinct and order them as a; <a, < --- <day,
where k= |V(H)|. Let P denote a set of 2k + 1 new points p,, py, ..., P2 Such
that po<a,, po>as, and a,<p;<a; ., for i=1,2, .., 2k—1. The corre-
sponding instance of 2-satisfiability will have variables /, ,and r, ,for each ver-
tex v of G and each point p € P. We shall define the clauses in such a way that
a list homomorphism of G to H, with respect to the lists L, exists if and only
if the clauses can be satisfied. The intented meaning of /, , = 1 is “the image of
v is an interval with the left endpoint less than p;” and r, , =1 is intended to
mean “the image of v is an interval with the right endpoint greater than p.”
(Once the values /, , and r, ,, for all pe P, are decided, we will be able to
choose an actual interval as the image of v). To assure that adjacent vertices are
assigned intersecting intervals we state a clause /, , v r, ,, for each p e P and
each ordered pair u, v of adjacent vertices of G. Since G is a reflexive graph, this
will include the clauses /,, , v r, ,, which assure that each interval has its left
endpoint less than its right endpoint. To reflect the lists L(v) we impose clauses
requiring that the interval chosen for each vertex v can be extended to an inter-
valin L(v). These are the clauses /, , v 7, , for each ve V(G) and each p, g€ P
such that the interval ( p, ¢) is not contained in any interval from L(v). Finally,
we assure that at least one /, , and at least one r, , is true for each ve V(G) by
stating the clauses /, ,, andr, , for each vertex v of G. We now claim that these
clauses are satisfiable if and only if a list homomorphism exists. Indeed, if f'is
such a list homomorphism, we only need to set the values /, , and r, , as
suggested above; ie., [, ,=1if and only if the left endpoint of the interval f(v)
is less than p, and r, ,=1 if and only if the right endpoint of the interval f(v)
is greater than p. On the other hand, a satisfying truth assignment can be used
to define a homomorphism as follows: Let p e P be the smallest point with
l,, ,=1and let g € P be the largest point with r, , = 1. Then there exists an inter-
val Ie L(v) which contains (p, ¢), and we define f(v) = I. The clauses assure
that adjacent vertices are assigned intersecting intervals. Since H, and hence P,
is fixed, this is a polynomial time reduction. |

We are grateful to X. Zhu for pointing out that an alternate proof of the
above result can be obtained by proving that interval graphs have the
X-underbar property defined in [15] and by modifying the algorithm in
[15] to apply to the list homomorphism problem. The proof given
here actually shows that the problem is of strict width two, in the terminology
of [8].
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3. CONNECTED LISTS

We again assume that all graphs in this section are reflexive. We say
that a set of vertices of H is connected if it induces a connected subgraph of H.
Thus CL-HOMAH is the problem L-HOMAH restricted to inputs with
connected lists. It is easy to see that Theorem 2.1 applies in fact to
CL-HOMH (all lists mentioned in the proof are connected).

THEOREM 3.1. If H is not chordal then CL-HOMH is NP-complete.

THEOREM 3.2. If H is chordal then CL-HOMH is polynomial time solvable.

Proof. We present a polynomial algorithm for CL-HOMAH. First we find
(in polynomial time [14]) a perfect elimination ordering 4, 4, ..., ,, of H.
(This means that for each i=1,2,..,n, any two neighbours of /; in
{his1,hiys,s . h,} are adjacent.) Let G be a graph and suppose that, for each
g€ V(G), the set L(g) < V(H) is connected. In the ith stage of the algorithm
(i=1,2, .., n), we will consider removing /, from each list L(g). If L(g) contains
h; and at least one other vertex, we do remove 4, from L(g). If L(g) does not
contain /2, we do nothing. Finally, if L(g) = {/,} then we do not change L(g)
but, for each g’ adjacent to g, we remove from L(g") all vertices which are not
adjacent to /1, in H and we remove g from consideration. If at any time an empty
list is produced then we declare that there is no list homomorphism; otherwise
we terminate with singleton lists which define a desired list homomorphism.

Since the graph H is fixed, it is clear that this is a polynomial time algorithm.
(In fact, with | V(G)| processors, it can be performed in constant time.) We now
prove that it is correct. Specifically, we shall show that if the original connected
lists L admit a list homomorphism, then throughout the execution of the
algorithm the changing lists L' are also connected and still admit a list
homomorphism. (This is the case for the initial lists, by assumption.) This state-
ment assures that at termination all lists are singletons and they define a list
homomorphism. Thus assume the invariant holds at the outset of the ith stage;
we claim that it remains true after the ith stage. In fact, these properties remain
true after each list L(g) is treated: If /; is removed from L(g) then the only list
that changes is L(g) and it remains connected, as any two neighbours of /1, are
adjacent. Moreover, if a list homomorphism existed before L(g) was treated
and if it assigned /4, to g, then we can replace &, by any /; adjacent to /,in H
and still have a homomorphism. (Note that some /; adjacent to 4, must belong
to the current list of g, since the list is connected.) Indeed, suppose that fis a
list homomorphism (with respect to the lists at the beginning of the ith stage)
of G to H, with f(g) =h;, and let /* be defined by f*(x) = f(x) if x # g, and
S*(g)=h;. To verify that /* is a homomorphism, consider a vertex g’ adjacent
to g and suppose that f(g') = f*(g') =h,. If k <i then £, is the only element
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in the current list of g’ and, hence, it is adjacent to all elements of the current
list of g, including /;. Thus suppose that k> i, and note that the fact that
flg)=h,, f(g')=h, implies that A, is adjacent to /1, in H. Since both jand k are
greater than 7, and both /, and A, are adjacent to &;, we conclude (from the
definition of a perfect elimination ordering) that f*(g) =h;and f*(g') = h, are
adjacent in H as well. If L(g) = {h;} then the lists that change are L(g’) for g’
adjacent to g in G. The change amounts to taking an intersection of the con-
nected L(g') with the neighbourhood of /;, which is complete. Thus the inter-
section is connected (in fact, it is complete). Moreover, any list homomorphism
with respect to the lists at the beginning of the ith stage remains a list
homomorphism with respect to the lists at the end of the ith stage. |

CoroLLARY 3.3. [If H is chordal then OALH is polynomial time solvable.

Proof. For connected graphs H, the problem OALH is a restriction of the
problem CL-HOMAH. The extension to disconnected H is straightforward, in
view of the fact that a component of G cannot admit a list homomorphism to
H if two of its vertices are required to map to different components of H. |

The essential feature of chordal graphs, on which the previous algorithm is
based and which is easy to prove by contradiction, is the following.

THEOREM 3.4. H is chordal if and only if for any connected sets A, B< V(H),
the intersection A N N(B) is also a connected vertex set in H.

(The neighbourhood N(B) of the set B consists of all vertices adjacent to a
vertex of B; since H is reflexive, it includes all vertices of B.)

We are grateful to N. Vikas for noticing the following alternate view of the
above algorithm (cf. [ 25]), using the language of [ 20]: We first apply the edge
consistency test. If it results in nonempty lists, then these lists are connected by
the above theorem. It is easy to see that this fact allows one to define a
homomorphism by choosing for each vertex the maximum element, in the per-
fect elimination order, of its list. In particular, this implies that CL-HOML is
of width one, in the terminology of [ 8].

4. OAL-HOMH AND THE RETRACT PROBLEM RETH

The problem OAL-HOMH has been previously considered under an equiv-
alent formulation. Suppose H is a subgraph of G. We say that H is a retract of
G if there exists a homomorphism f: G— H (called retraction) such that
f(v)=v for all ve V(H). The retraction problem RETH for a fixed graph H
takes as instance a graph G with a particular induced subgraph H’ isomorphic
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to H and asks whether or not A’ is a retract of G. Retraction problems in graph
theory have been investigated since early seventies [ 16, 17, 22, 23, 4], often
from an algorithmic perspective. The problem is meaningful for general graphs,
although it has been studied mostly for reflexive [22] or irreflexive [ 16, 17]
graphs. (Only [ 4] briefly discusses the general case.) For irreflexive graphs, the
result of [ 18] implies that RETH is NP-complete when H is not bipartite. On
the other hand, for bipartite H the problem RETH can be restricted to bipartite
instances G—as there can be no retraction from a nonbipartite graph G to a
bipartite graph H. Thus we discuss here two main versions of the retract
problem RETH—one for reflexive graphs and one for bipartite graphs. We
shall return to the problem RETH for general graphs H in the companion
paper [11].

We first explain how the retract problem RETH corresponds to OAL-
HOMAH. Suppose we have an instance of the retract problem, i.e., an input
graph G with a subgraph H' isomorphic to H. Then we can view G as an
instance of OAL-HOMH by making all lists of vertices v e V(H') equal to {v}
and making the lists of all other vertices equal to V(H'). Clearly H' is a retract
of G if and only if a list homomorphism exists. Conversely, suppose we have an
instance of OAL-HOMAH, i.e., a graph G with lists L(v), v€ V(G), which are
either singletons or the entire V( H). First, we may suppose that at most one ver-
tex v of G has the list {/} for any /& € V(H). Otherwise we can identify in G all
vertices with the list { #}. There will be a list homomorphism from the modified
graph if and only if there was a list homomorphism from the old graph G.
Second, we may assume that if v has the list {/#} and v" has the list {#'}, then
vv' is an edge of G if and only if 44 is an edge of H. Indeed, if vv' is an edge and
hh' is not, then there can be no list homomorphism; and if 44’ is an edge of H
then G admits a list homomorphism to H if and only if G with the edge v’
added, if it wasn’t present, admits such a list homomorphism. It is clear that by
adding extra vertices to G if necessary, we may assume that H is an induced sub-
graph of G, and a list homomorphism exists if and only if H is a retract of G.
We have just proved:

THEOREM 4.1. For every graph H, the problems OAL-HOMH and RETH
are polynomially equivalent.

In [16], it is proved that an irreflexive tree H is a retract of a bipartite graph
G if and only if it is an isometric subgraph of G—that is, the distance between
any two vertices of H is the same in G and in H. (More general results of this
kind are proved in [ 3 ]; in particular the statement remains true for any chordal
bipartite graph H.) A similar result has been proved for reflexive trees in [ 22].
These results yield polynomial time algorithms for RETH (and thus OAL-
HOMAH) when H is a reflexive or irreflexive tree. (In fact the above result of [ 3]
implies a polynomial algorithm when H is a chordal bipartite graph, and
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Corollary 3.3 implies a polynomial algorithm when H is a reflexive chordal
graph.)

In [4], the authors observe a very close relationship between the bipartite
and reflexive retract problems. We begin by making this relationship even more
specific:

THEOREM 4.2. For every bipartite graph H there exists a reflexive graph H'
such that RETH and RETH' are polynomially equivalent.

Proof. Suppose H has a bipartition V(H)=Xu Y. The graph H' is
obtained from H by adjoining five new vertices n, ', s, s', and u such that n and
n' are adjacent to each other and to all vertices in X, and s, s" are adjacent to
each other and to all vertices in Y; the vertex u is adjacent to all vertices of
H and to n' and 5" (see Fig. 4). Moreover, all vertices of H' have loops (not
depicted in the figures).

We first construct a polynomial time reduction from RETH to RETH'. Con-
sider an arbitrary instance of RETH, i.e., a bipartite graph G containing H as
a subgraph. Assume that V(G)= X, U Y, is a bipartition of G such that
X< X, and Y< Y. We construct a reflexive graph G’ containing H' by
adjoining to G the same five vertices n, #', s, s', u and making them adjacent to
the appropriate vertices of H' as defined above, with the additional connections
between n, n' and all vertices of X; — X and between s, s’ and all vertices of
Y;— Y. We claim that H is a retract of G’ if and only if H' is a retract of G.
Indeed, any retraction of G to H has a natural extension to a retraction of G’
to H'; moreover, in any retraction of G’ to H' those vertices of G that are not
isolated in G lie on paths of length three joining n and s in G'—thus they must
map to H. The isolated vertices in G may be mapped arbitrarily.

Now we construct a polynomial time reduction from RETH' to RETH. Thus
let G’ be a reflexive graph containing H'. We may assume that no vertex of
G' — H' is adjacent to both n and s, as otherwise H' is not a retract of G'.
A similar argument shows that no vertex of G' — H' can be adjacent to n, s’ or

n

N

Fig. 4. The construction of H'.
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n', s. Let A denote the set of vertices of G' — H' adjacent to n which have dis-
tance two (in G”) to s, and let 4’ denote the remaining set of vertices of G' — H'
adjacent to n. Similarly, let B denote the set of vertices of G’ — H' adjacent to
s which have distance two (in G') to n, and let B’ denote the remaining set of
vertices of G’ — H' adjacent to s. Finally, let C denote the set of all other vertices
of G' — H'. We denote by G~ the graph obtained from G’ by removing the sets
A', B', C. We claim that H' is a retract of G~ if and only if it is a retract of G'.
Clearly, if H' is a retract of G’ then it is also a retract of its subgraph G ~. Thus
suppose r~ is a retraction of G~ to H'. Note that all vertices of G~ — H' lie on
paths of length three joining 7 and s, and therefore must be mapped to Xu Y
by r~. It follows from the definitions of 4, A’, B, B’, C that there is no edge
joining A" and BUB U YU {s,s'}, or B and AuAd'vXu{nn'}, or C
and {n, s}. Therefore we may define a retraction r’: G' > H as follows:

r(x)=r"(x) for all vertices of G~
r(x)=n' for all vertices of A’
r(x)=s' for all vertices of B’
F(x)=u for all other vertices of C.

We now consider possible retractions of G~ to H': the vertices of 4 will
have to map to X and the vertices of B will have to map to Y. Let X
denote the set of vertices obtained from X U A by identifying any adjacent
vertices. (The images of such vertices under any retraction of G~ to H' will
have to be the same.) Let Y be obtained in a similar fashion from Y u B.
Now we define a bipartite graph G to consist of X and Y (with all loops
removed). It is easy to see that H is a retract of G if and only if H' is a
retract of G~ and hence of G'. ||

The preceding result will be useful to limit our attempts to classify the
complexity of RETH. According to [8] for every constraint satisfaction
problem I7 there exists a bipartite graph H such that RETH and [T are
polynomially equivalent. Since for constraint satisfaction problems it is not
even known whether or not each I7 is polynomial time solvable or NP-
complete [8], this is taken as evidence that the complexity of bipartite
retraction problems is not likely to be easily classified. (A similar result
holds for the digraph homomorphism problem mentioned in the introduc-
tion [8].) In the same spirit, we interpret the next corollary to mean that
the complexity of reflexive retract problems is a difficult question.

COROLLARY 4.3. For every constraint satisfaction problem II there exists
a reflexive graph H such that RETH and Il are polynomially equivalent.



LIST HOMOMORPHISMS 249

Thus completely classifying the complexity of RETH for reflexive graphs
H also seems difficult. Our results in this paper tell us that RETH is NP-
complete when H is a cycle of length at least four and is polynomial time
solvable when H is chordal. Nonchordal graphs H with polynomial-time
solvable RETH can be constructed, for instance, by taking strong products
of paths (cf. [19]).

5. CONCLUSIONS

We have shown that nicely structured graphs H can lead to interesting
list homomorphism problems and that we can often determine precisely the
boundary between easy and hard list homomorphism problems. This is
somewhat surprising, as it seems hopeless to classify the complexity of
some very similar homomorphism problems.

In a companion paper, joint with J. Huang [10], we study the list
homomorphism problem for irreflexive graphs. We give a full classification
of the complexity of L-HOMAHA when H is an irreflexive graph. As men-
tioned before, this problem is NP-complete when H is not bipartite. It
turns out that among bipartite graphs the problem is still NP-complete
when the complement of H is not a circular arc graph. When H is a bipar-
tite complement of a circular arc graph, we shall give a polynomial time
algorithm.

We also have results on general graphs (graphs in which each vertex
may or may not have a loop) [ 11]. Let ¥, denote the set of vertices of H
which have loops. We shall prove that if H is connected but V/; is not, then
RETH (and hence CL-HOMH and L-HOMH) are NP-complete. Restrict-
ing ourselves to general trees H, we prove that if V/, is connected, then
CL-HOMH (and hence also RETH) are polynomial time solvable. Finally,
we shall give a complete classification of general trees H into those with
an NP-complete L-HOMAH and those with a polynomial time solvable
L-HOMH.

We are grateful to J. Huang for many valuable suggestions that improved
this manuscript.
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