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Abstract 

We study the sequential order of product spaces. In some classes of sequential spaces we show 
the product theorems for sequential order. We construct under the continuum hypothesis two Frtchet 
spaces whose product is sequential and its sequential order is WI. 
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1. Introduction 

There are many papers devoted to studying the FrCchetness of product spaces [l- 

3,5,6,10-13,181. Since every Frkchet space is a sequential space with the sequential 

order one, it seems natural to pose the following two problems instead of asking the 

Frkchetness of product spaces: 

Problem 1.1. When is the product of Frkchet spaces sequential? 

Problem 1.2. If the product of FrCchet spaces is sequential, then are there any relation- 

ships between the sequential order of the product space and that of factor spaces? 

We just note here that Problem 1 is considered as a special case of the general problem, 

namely when the product of sequential spaces is sequential which has been widely studied 

by many authors [3-6,8,18]. We only concentrate on studying Problem 2 in this paper. 
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According to Noble [9], the product of two countably compact FrCchet spaces is 

sequential. One can easily show that in this case the sequential order of the product 

space is at most two (Corollary 2.3). Hence the sequential order of the product of com- 

pact FrCchet spaces constructed by Simon [ 171 is actually two. In Section 2 we show 

that if the product of two FrCchet spaces with point-countable lc-networks is sequential, 

then the sequential order of the space is at most two. The class of FrCchet spaces with 

point-countable k-networks is subtler than the class of countably compact FrCchet spaces 

because if we do not assume the sequentiality of the product then we have an example 

of two FrCchet spaces with point-countable k-networks whose product is not sequential, 

and the sequential order of the sequential coreflection of the product space is three. 

In Section 3 we will construct using the continuum hypothesis (CH) two FrCchet spaces 

whose product is sequential and its sequential order is WI. 

All spaces in this paper are assumed to be Hausdorff topological spaces. 

2. Product theorems for sequential order 

A space X is sequential if whenever A c X and A is not closed, there is a sequence 

from A converging to a point outside the set A, and X is Fre’chet (or Fre’chet-Urysohn) 

if whenever x E ?I, there is a sequence from A converging to x. 

If A is a subset of a space X, then [Alseq denotes the sequential closure of A, i.e., the 

set of limits of convergent sequences consisting of points of A. Obviously A C [AISeq. 

We define [Ala by induction on CY E WI + 1 as follows: [Alo = A, [A],+1 = [[Alalseq 

and Ma = U{[Alp I P < a‘Y) f or a limit CL One can easily see that [A],,+1 = [A],, , and 

that a space X is sequential if and only if z = [A],, for every A c X. For a sequential 

space X we define so(X), the sequential order of X, by so(X) = min(cr E WI + 1 1 

A = [A]= for every A C X}. Note that a Fr&het space is a sequential space with the 

sequential order 1 [6]. 

For a space X we introduce a new topology on X in such a way that a subset A of X is 

closed if AnK is closed for any compact metric (or equivalently any convergent sequence 

together with the limit point) subset K of X. We call this new space the sequential 

coreflection of X and denote by S[X]. Clearly if X is a sequential space then both X 

and S[X] have the same topology. A collection y of subsets of X is called point-countable 

if every point 5 E X belongs to at most countably many L$ E y. Recall that a collection 

y of subset of X is a k-nehvork if for every compact K c X and any open U > K there 

is a finite 7~ C y such that K C UYK C U. A space X is a k-space if whenever A 5 X 

and A is not closed, there is a compact subset K of X such that A n K is not closed in 

K. If we can choose countably many such compact subsets from X, the resulting space 

is called a k,-space. It is easy to see that every sequential space is a k-space and it was 

shown that every k-space with a point-countable k-network is sequential [7]. 

Lemma 2.1. Let X be a sequential space and Y be a countably compact sequential 

space. Ifx E [TX(A)], f or a subset A of X x Y, then there is a point z E T;‘(X) such 

that z E [Ala, where TX : X x Y + X is a projection. 
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Proof. First we show the case when TX(A) is a sequence converging to 2. If rrii (x) n 
?i = 8, then TX (3) = rrx (A) 9 z. This is a contradiction because xx is a closed map. 

Now we show the general case. The proof will be done by induction on CY. Assume 

the assertion of the lemma is true for any p < (Y. If LY is a limit ordinal, then we have 

nothing to do. Assume Q = p + 1 and z E [rx(A)]~+l\[rx(A)]p. Then we can choose 

a sequence from [TTX(A)]P converging to 5. Hence this case is reduced to the above one. 

The proof is completed. 0 

Theorem 2.2. Let X be a sequential space and let Y be a regular (locally) countably 

compact sequential space. Then X x Y is sequential and so(X x Y) < so(X) + so(Y). 

Proof. It is well known that the product X x Y is sequential [8]. We will determine the 

sequential order of it. 

Let so(X) < LY and so(Y) < /3. Let A C X x Y and (~0, ya) E z\A. We show 

(ZO,YO) E &%IP. If ( zo,yo) E An ((~0) x Y), then clearly (ze,yo) E [Alo. We may 

assume without loss of generality A n {zo} x Y = 8. For any basic neighborhood 

W = U x V of (x0, ye), choose a point 

z(W) = (~O>Y(W)) E u x v 

such that z(W) E A n W. Then by Lemma 2.1 z(W) E [A],. Since the closure of the 

set {z(W) 1 W ranges all the neighborhood of z(W)} contains the point (20, ya), we 

complete the proof. 0 

Corollary 2.3. Let X and Y be countably compact Fre’chet spaces. Then so(X x Y) < 2. 

Remark. Shakhmatov [15] posed a problem if the product of two countably compact 

Frechet groups is Frechet. Here is another problem whether the sequential order of a 

topological group is wi if it is not FrCchet [14]. In view of the above theorem the 

following problem arises naturally. 

Problem 3. Is there any ordinal number (Y, 1 < Q < wi such that so(G) # a for any 

countably compact topological group G? If G is not Frechet then is so(G) limit? 

Another problem is: 

Problem 4. Is there a (countably) compact FrCchet space X such that so(Xn) > 2 for 

some n > 3? 

It is well known that the product of a sequential space and a first countable (or even 

metrizable) space need not be sequential [6,5,18]. So in this case it seems natural to 

consider the sequential order of the sequential coreflection of the product. 

Theorem 2.4. Let X be a sequential space and Y be a first countable space. Then 

so(S[X x Y]) < so(X) + 1. 
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Proof. Let us prove the following fact by induction on (Y: 

PR(F, U, z, o): Let F C X x Y, z E [F],, my E U & Y, U is open in Y. Then 

there is P 2 F with the following properties: 

(lp) ZGEPCXXU, 

(2~) if 5 E [7rx(P)IY then there is z’ E BIG’ such that z’ E [Ply. 

Suppose we have proved PR(F, U, z, p) for all the quadruplets (F, U, z, fl), where 

,0 < (Y. Choose {Ui}iEw a base of open neighborhoods at the point ny(z) so that 

u, = u, u z+i 2 Vi. We may assume without loss of generality that cy > 0 so there is a 

sequence {zi}iEw such that zi E [F]p,, pi < Q, TTY(Z~) E Ui, zi + z as i + 00. NOW 

since pi < (Y by PR(F, U,, zi, /3i) find Pi C F with properties below: 

(li) Zi E pi C X X Vi, 

(2i) if z E [nX(Pi)]y then there is Z' E T:'(CIJ) such that Z' E [Pi],. 

Now put P = UiEw Pi. Let z’ E p. If 7ry (z’) # 7ry (z) then there is i E w such that 

7~.- (z’) $ q and thus 

z’ E u Pj c: x x uo = x x u. 
j<i 

Since P > E 3 Zi and Zi + z as i --t co, then z E p. Thus (lp) holds. Let us now 

use induction on y mentioned in (2~). Suppose the property is satisfied for all b < y. 

Choose a sequence {Si}iEw such that xi + z as i + 03, xi E [TX(P)]~~, CT~ < 7. For 

every i E w by (2i) there is gi E Y such that (Zi,yi) E nk’(~i) and (xi,yi) E [Pig,. 
Suppose vi # MY. Then there is j E w such that yi $ q. It follows that 

(xi, Yi) E IJ R. 

l<j 

Thus it may be assumed without loss of generality that there are three cases: 

(1) all Yi = ry(Z), 

(2) there is n E w such that (xi, y2) E [PnlI,, , 

(3) for every i E w there is ji E w such that (xi, yi) E [Pjzlo, and ji+i > ji. 

Consider case (2). Since zi + z as i + cc and (xi, yi) E [Pnlc, one has that 

5 E [nx(Pn)lr. By (2,) one has that there is z’ E 7rX’(z) such that z’ E [P,], C [Ply. 

Now consider case (3). In this case yi E ny (Pj,) C Uj,. Since {Uj,}iEw is a 

base of neighborhoods by the choice of Ui’S yz + TY(Z) as i + 03 and now 

(Zi, yi) + (Z,7ry(Z)) as i + 00. Since (Zi,yi) E [Pjilni 

z’ = (x, TY (z)) E [Ply. Case (1) is considered analogously. 

Let now 

‘G. [Ploi we conclude 

Thus (2~) takes place. 

that 

Then z E [F]= for some Q < wi. Choose {Ui}tEw a neighborhood base at ry(z). 

For every i E w using PR(F, U,, z, cx) find Pi 2 F with properties (lp,), (2p,). By 

(IP,) z E c KJ TX(Z) E [~x(Pz)]so(x). N ow by (2p,) there is Zi E T%‘(~~x(z)) such 

that Zi E [Pi]so(x). By (lp,) ry(zi) E Vi. Thus zi -+ z as i + 03. We obtain that 

z E [Ug, pZIso(x)+l C [FIs,(x)+l. 0 
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Let t : w2 + r C X be a bijection. Then we say that a pair (t, r) is a table in X. A 

set t9 2 w2 will be called thin (thick) if 101 3 No and for any no E w the following holds: 

l{m E w I (no,m) E @I < No (I{ 72 E w 1 I{ n > x w n 01 3 No }l 3 No respectively). We 

say that a set re = t(O) C X is thin (thick) if 0 C w2 is a thin (thick) set. 

The following lemma is proved in [16] but we include its proof for the reader’s 

convenience. 

Lemma 2.5. Let (t,r) b e a table in X and X have a countable k-network. Then there 

exists a thin set ret = r\re for some Fe C r such that for any thin set K g 8 there is a 

thick set CJ such that for any open neighborhood U of a nonempty set of cluster points of 

an arbitrary thin set r,l where ICI C (T, we have U n r,\, # 8, where f 2 w2 is jinite. 

Proof. Let y be a countable k-network for r. Without loss of generality we may assume 

that y is closed under finite unions and intersections and that r\f E y for any finite f c 

r. Let E = {& 1 i E w} C y be the set of all such Ei E y that the set r\([iurto,,.,,n,jxw) 
is thin for some ni E w. Without loss of generality we may assume that no = 0 and that 

ni+l > ni. We let 

rQ = u n tk "r{n%+l(..., n,+,}xw . 
iEw K ) k<i ) 

Then r\ro is a thin set by the way <i’s and ni’s were chosen. Let now K C 8 be 

an arbitrary thin set. Let it4 = {pi I i E w} c y be the set of all pc”i E y such that 

pi n r, = 0. Then note that pi $ E. We will show that M is closed under finite unions. 

Let M’ C M be finite. Then p = UM’ E y, /I fl r, = 8. Let us prove that ,U $ E. 

Suppose not, then /I = <k for some /C E w. Since K is infinite and thin, there exists 

n’ 3 nk such that (n’,m) E K for some m E w. Since K c 8, 

But ,LL n r, = 8, a contradiction. Hence I_L I$ E and p E M. For every i E w choose 

mi E w such that 

t({mi} x w)\ U pj 2 No, mi+i > 7%. 

j<i 

It is possible since otherwise there is j E w such that 

r\ 
( 

U pi n (r\qO,..+,+ 
i63 9 

is thin for some ni E w. Then UiGj pi E E contradicting UiGj pL, E M and Mr\Z = 0. 

We let 

rC = U t({mi} X w)\ U Pi 

iEw j<i > 
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By the way pi’s were chosen cr is a thick set. Let IC’ C_ g be a thin set, B be the set of 

all cluster points of r,~. Suppose that there is an open neighborhood U > B such that 

B n r,\, = 0 for some finite f C w2. Then T = (U n m?)\(x), x E B is not closed 

and (since T 2 U) T c X\r,,,. Then there exists < E y such that < n r,\, = 0 and 

I< rl TI > No. Since <\rf E y we may assume that [ n c = 0. Then there are two 

possibilities: 

(1) < $ M. Then it follows from < E y, [ n r, = 8 that < E E. But then [ n r, # 0. 
A contradiction. 

(2) < E M. Then [ = pi for some i E w. Since [ n r,/ is infinite and thin, there is 

nEw,n~isuchthatt(m,,Ic)E~=Cliand(m,,Ic)E~’forsomeIcEw.But 

t(m,,Ic) E Q%J x w)\ u IL3 c X\Pi. 
j<71 

A contradiction. 0 

If f : X + Y is a map then by flA we denote the restriction of f on A C X. 

Lemma 2.6. Let X be a Fre’chet space with a point-countable k-network. Let r = 

{x(i, j) 1 i,j E w} c X be such that: 

(1) t : w* + I’ is a bijection where t(i, j) = x(i, j), 

(2) x(i,j) + x(i) as j + 00 for some x(i) E X, 

(3) x(n) # x(m) # x(i, j) for any 72 # m, 4.i E w, 
(4) x(i) + x E x us i + CO. 

Then there is a thin set 8’ C w* such that r’ = {x(i, j) 1 (i, j) $ 0’) is compact with 

every point x(i, j) isolated in I”. 

Proof. We may assume without loss of generality that X = r U {x(i) 1 i E w} U {x} and 

thus X has a countable k-network. Strengthen the topology of X by declaring every point 

z(i, j) isolated and the points it: and z(i) having their original neighborhoods. It is easy to 

see that in such topology to be denoted as r X remains a Frechet space with a countable 

/c-network. First prove that the lemma is valid for X equipped with such topology. Choose 

B as in Lemma 2.5. Let us prove that in the new topology r(r)’ = {z(i, j) ( (i, j) E 0)’ 

is compact. Suppose not. Then there exists a thin set K c w*\8’ = 8 such that r, 

is discrete and closed in r’ (we use the fact that every z(i, j) is isolated in the new 

topology). Find a thick set 0 c B as in Lemma 2.5. Since c is thick we have that 
r 

x E {z(i,j) 1 (i,j) E U} . N ow r is Frechet in r so there exists a thin set K’ c o such 

that 5’ = {x(i,j) 1 (i,j) E K’} U { } h 5 IS omeomorphic to a countable compact with the 

unique nonisolated point x. Now U = r\rK is a neighborhood of x in the new topology 

r and x is the unique cluster point of 5’ = r,,. But U n r, = 8 contradicting to Lemma 

2.5. Now r(r)’ is compact in a stronger topology 7. So r(r)’ = r’. 0 

Lemma 2.7. Let X and Y be Fre’chet spaces with point-countable k-networks. Suppose 

that 

r = {z(i,j) I i,j E W} c X x Y 
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is such that z(i,j) 4 z(‘) 2 us j -+ CO, z(i) + z us i --f CO, Z(il, j,) # z(iz,jz) if 

(in ,A) # (h,j2), z(i) # z(j) if i # j, z # z(i) # z(m, n) # z for any i, m, n E w. 

Suppose also that there is no sequence in r converging to z. Then there exist infinite set 

o C w and a projection 7r E {TX, ITY} such that r(z(i)) = r(z(j)) for any i, j E o. 

Proof. Suppose that there are no such r, 0. Then it is easy to see that there exists cr.’ c w 

such that nx]{z(i) 1 i E a’} and rryl{z(i) 1 i E CT’} are injections. We may assume 

without loss of generality that U’ = w. Then it may be easily shown that there exists a 

thick set B c w2 such that either ryl{z(i,j) 1 (i,j) E 0) and rxl{z(i,j) I (i,j) E 8) 

are injections or rrzl{z(i, j) I (i, j) E 0) is an injection and 

~{X,Y)\Z ({ z(i) I (4 d E e>) = T{X,Y)\Z ({ z(G j) I (4 j) E q> 
where 2 E {X, Y}. Consider the first case. We may assume without loss of generality 

that 8 = w2. So we have that nxllTJ{z(i) 1 i E w}U{z} and ~~Yjl?J{z(i) I i E w}U{z} 

are injections. It follows from Lemma 2.6 that there exists a thin set 0’ C w2 such that 

7r_x ({Z(U) i w $0’) u 14 u (44 i i E 4) 

and 

ny({z(i,j) i (id) 5f et> u 14 u (44 i i E w>> 

are compact and thus metrizable subsets. But then 

{Z(U) i w) e of> u {4 u (44 1 i E W> 

is a FrCchet subspace of X x Y which contradicts the fact that there is no sequence in 

r converging to z. 0 

We recall the definition of sequential fan S,. S, is obtained from disjoint sum of 

countably many nontrivial convergent sequences by identifying the limit points to one 

point, endowed with the quotient topology. Let Si be a convergent sequence with the 

limit point xi and let So = {yi I i = 1,2,. . .} U (~0). Identifying points yi and pi to zi 

for i = 1,2,. . . and equipping the resulting space with quotient topology one get another 

canonical space Sz. 

The following lemma was proved in [4, Lemma 41. 

Lemma 2.8. Let X be a k-space with a closed point-countable k-network and let X x S, 

be a k-space. Then X has a point-countable k-network consisting of compact sets. 

Lemma 2.9. Let X be a Frechet space with a point-countable k-network. If X is not 

first-countable then it contains a closed subspuce homeomorphic to S,. 

Proof. Let 2 E X be a strongly Frechet point. Declaring every point Z’ E X, ZE’ # IC 

isolated and x having old neighborhoods we get a regular strongly Frechet topology r on 

X and X has a point-countable k-network in this topology. Now by [7, Corollary 3.61 

X is first-countable at x in the topology r and thus in its original topology. 
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Let now X be nonfirst-countable at x E X. By the fact proved above x is not a 

strongly FrCchet point. So there exists 

r = {x(i,j) 1 i,j E Ld} c x 

such that ~(i, j) -+ z as j -+ M and there is no sequence x(ik, jk) such that x(ik, jk) --+ 

x as /C + 00 and ik+l > il, for every k E w. Let y be a point-countable &network in 

X. Let 

7’ = {rn I n E w) = {E WEnrf& 0% 

Now it is easy to choose for every i E w a number r~i E w such that 

x(Cj) $ u G 
k<i 

whenever j > ni. It is easy to see that r’ = {x(i, j) 1 j > ni} U {x} is homeomorphic 

to S,. Let us prove that r’ is closed in X. Suppose not. Then there exists a sequence 

x(ik,jk) such that x(ik,jk) + 5’ # X LiS k + M, X(ik,jk) E r’ and ik+i > ik. SO 

there exists &, E y’ such that &, n {x(ik, jk) / k E w } IS infinite. But it is easy to check 

that x(ik, jk) $ tp when ik > p, a contradiction. 0 

Lemma 2.10. Let X, Y be Frechet spaces with point-countable k-networks. Let x E X, 

y(i) -+ y as i t c3, y(i), y E Y, y(i) # y(j) if i # j. Let r = {z(i,j) 1 i,j E w} C 

X x Y be such that: 

(1) z(i,j) + (x, y(i)) as j + 03, 
(2) there is no sequence in r converging to (x, y). 

Then there exists S’ c r such that S = nx(S’) U {x} is homeomorphic to S,, closed 

in X and so that x is the unique nonisolated point in S. 

Proof. Using Lemma 2.5. we can choose a thick set 19 c w2 such that 

K = W(r) U {(X1 Y(i)) i i E W> U {(X, Y)} 

is compact. To simplify the notations we assume that 0 = w2. By induction on i E w and 

Hausdorffness of X we can choose a thick set 0’ c w2 such that every point rrx (-z(i, j)) 

where (i, j) E 8 is isolated in 

X’ = 7rx({z(i,j) 1 (i,j) E w”}). 

Now it is easy to see that X’x K is not Frechet where K is a compact metrizable set. Thus 

X’ is not first-countable and, by Lemma 2.10, contains a closed subset homeomorphic 

to S,. Using the fact that x is the unique nonisolated point in X’ one can easily choose 

the set S’ c r having all necessary properties. 0 

Using the method similar to that of the proof of Lemma 2.9 one can prove: 

Lemma 2.11. Let X be a Frechet space with a point-countable k-network and S(i) be 

a closed subspace of X homeomorphic to SW with the unique nonisolated (in S(i)) point 
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x(i). Let also z(i) + z us i + do. Then there exists a sequence ofopen sets U(i) 3 z(i) 

such that {x} U Ui,,(S(i) n U(i)) is closed in X. 

Theorem 2.12. Let X and Y be Fre’chet spaces with point-countable k-networks. Sup- 

pose that X x Y is sequential. Then so(X x Y) < 2. 

Proof. Suppose the contrary. Then there exists a set 

rr = {z(i,j,k) 1 i,j,k E CIJ} c 2 = x x Y 

such that z(i,j,k) + z(i,j) as k + co, z(i,j) + z(i) as j -+ 00, z(i) + z as i + 03 

and hold: 

(1) there is no sequence in rI’ converging to t, z(i), 

(2) there is no sequence in r = {z(i, j) 1 i, j E w} converging to t. 

Using Lemma 2.7 we can assume without loss of generality that ~x(z(i)) = TX(Z) for 

every i E w. Applying Lemma 2.7 to every set 

ri = {z(i, j, k) 1 j, k E w} u {z(i,j) 1 j E w} u {z(i)} 

we have that we may assume without loss of generality that either .rry(z(i, j)) = ny(z(i)) 

or rx(z(i,j)) = rx(z(i)) = n(z) for all i,j E w. But in the last case the set r U {z} 

lies in rr%‘(z) - the FrCchet subspace of 2 and r 3 z which contradicts to condition (2). 

So for every i E w, rry(z(i,j)) = ry(z(i)). Now using Lemma 2.10 we have that 

ry({z(G.L k) I j, k E w) u {-z(i))) contains a subset, say S(i), homeomorphic to S, 

and such that y(i) = ny(z(i)) is the unique nonisolated point in S(i). By Lemma 2.1 I 

we may assume that the set 

T = u S(i) u {TY b,} 

iEw 

is closed in Y. Using Lemma 2.10, condition (2) and the fact that nx(z(i)) = TX(Z) 

it is easy to show that X contains a closed subset homeomorphic to S,. Now it may 

be easily checked that T is a regular closed countable subspace of Y. So T x S, is a 

k-space. Applying Lemma 2.8 we get that T has a countable k-network consisting of 

compact sets. Let y = {ei 1 i E w} be such a network for T. Since every tz is compact 

one can choose for every i E w a sequence Sq(i) c S(i) converging to y(i) such that 

Sq(i) n U <i = 0. 
k<i 

Then 

u Sq(i) 3 TY (z). 
iEw 

But there is no sequence in UiEw Sq(i) converging to zy(t). Otherwise such a sequence 

would have an infinite intersection with some <i which contradicts to the fact that 

Sq(i) n U [i = 0 
k<i 
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for every i E w. We obtain a contradiction to the Frechetness of Y. 0 

In view of Theorems 2.2 and 2.4, one may expect that the sequentiality of products 

in the above theorem may be omitted by replacing so(X x Y) by so(S[X x Y]). The 

following example shows that this is not the case. 

Example 2.13. There are Frechet spaces X and Y with point-countable k-networks such 

that so(S[X x Y]) = 3. 

Proof. Let X = S,. Let Si, i E w be sequential fans. Let D be a discrete sum of Si’s 

and Y = D U {t}, where t is a point and t $ D. Every point y E Si C Y has its usual 

neighborhoods. The point t has a neighborhood base consisting of all the sets of the form 

U = {t} U {D\ finitely many S’s}. Obviously Y is FrCchet and has a countable closed 

k-network. We prove so(S[X x Y]) 3 3. To show it let us put 

X = S, = {s} U {x(n,m) 1 n,m E w}, 

z(n,m) + s as m -+ M and 

Si = {Si} U {Zi(n,m) 1 n,m E W}, 

zi(n,m) +Si asm+oo. 

Let us put 

A=UU{{{(z(k,n),zt(~,m)) Imtw}/~Ew} Ik~w}. 

Then it is easy to see that: 

[Al,=AuU{{(~(lc,m),sk) ImEw} Ik~w}, 

[Al2 = [All u {(s, sli) I JC E w}, 
[-4j = 142 u { (~7 t,}. 

The proof is completed. 0 

Problem 5. Let X and Y be k-spaces with point-countable k-networks and X x Y be 

sequential. Then is so(X x Y) < max{so(X) + so(Y), so(Y) + so(X)}? 

Remark. Note that + in the above theorems and problem means the sum of ordinals, so 

it is not commutative. If we assume that X in the above problem is FrCchet and so(Y) 

is finite, then we can solve the above problem similarly. But in general case we don’t 

know the answer even if we assume X is Frechet. 

3. so(X x Y) can be arbitrarily large for FrCcbet X and Y 

Lemma 3.1. Let X be a space with topology 7. Let {xCn I n E w} be a closed discrete 

subset of X and x be a point of X. Then there is the strongest topology cr weaker than 

r such that D is a sequence converging to the point x with respect to o. 
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Proof. Let TV, n E w, and y be neighborhood bases in r at x,, n E w, and x, respectively. 

We only change the neighborhood base y at x by the new neighborhood base 7’: 

y’= UUW(UEy, W=U{V,EynIn>iforsomeiEw} 
{ 1 

It is easy to show that our new topology satisfies all the requirements. 13 

Before mentioning the following lemma, we would like to note that a countable k,- 

space is sequential. 

Lemma 3.2 (CH). Let X be a countable k,-space. Then there exist two topologies rl 

and 72 on X weaker than the original topology of X such that X is embedded into X2 

equipped with topology 1-1 x 72 as a closed subset and 71 and 72 are strongly Fre’chet, 

rl x 72 is sequential. 

Proof. Let X be a countable k,-space. Let us fix {Un}nEw-a countable number of 

open subsets of X such that for any x1,x2 E X such that xt # x2 there are U,, 3 xi 

and U,, 3 22 such that U,, n U,, = 8. 

Let us count all the quadruplets {(x, F, S, G)} = T where x E X, F c X is closed, 

x(p, n) # x(q, k) if (p, n) # (q, k), G c X2 is closed. By CH 

T = { (~a, F,, Se, Ga)}a<w,, & = u S;. 

PEW 

For each LY < wt we shall construct two discrete subsets Dp c X and Dy c X, 

two topologies rp and ~-201 on X and four subsets x, E 0: c X and F, c VA c X, 
i E { 1,2} and two families of subsets {LE 1 k E w}, {RE 1 k E w} such that: 

(1) If 

thenO~nV~=8,O~,V~areopenin$for~~~,iE{1,2}.OtherwiseO~=V~=X. 

(2) D2Q is a closed discrete subset of X in topology r,,? for p < (Y, 0s c $7,. 

(3a) If x(p, n) + x(p) as n + co in some $‘, ,0n < o and x(p) + z, as p + co 

in some $, fl < QI and no sequence from S, converges to x,, then 09 is infinite and 

DF nS, is finite, i E {1,2}. 

(3b) Otherwise OF is empty. 

(4) D$ n D:‘;:’ is finite for any pi, /32i < (Y, where 2/i = 1 if i = 2 and = 2 if i = 1. 

(5) Lz’s are open in rp, Rz’s are open in 7;. 

(6) If G, is closed in X2 in topology rp x T; then every point t E X2\G, has a 

neighborhood of the form Lg x Rg 3 z such that Lg x R$ n G, = 0. 
(7) Un’s are open in T,P, ,0 < QI. 
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(8) 7,” is the strongest topology such that 7,” is weaker than the original topology on 

X and Of U {zp} (see (3)) is homeomorphic to a countable compact space with the 

limit point zcp, /3 < cy. 

Now it may be easily shown that provided (l)-(8) hold the following conditions hold: 

(9) Every 7,” is a k,-topology (follows from (8)). 

(10) Every 7,” is Hausdorff (follows from (7) and the choice of {Un}) and thus (by (9) 

and Lemma 3.2 below) normal. 

(11) Let y(k) -+ y as k + co in topology rf for i E {1,2}, p < o. Then Dpn{y(k) / 

k E w} is finite (follows from (8) and (2)). 

Let now ri be the strongest topology on X such that ~1 is weaker than rp for any 

Q < wi, 72 may be defined analogously. It is possible to prove the following facts about 

ri: 

(12) ri is the strongest topology on X such that ri is weaker than the original topology 

on X and D$ U (5,) (see (3) and Lemma 3.1) is homeomorphic to a countable compact 

with the limit point 2, for every (Y < wi. 

(13) The sets {Un}, 0; and VP (see (I)), {L;E}and {RE} (see (5)) are open in pi for 

P < wt. 
Let us prove that pi is regular. First let us note that it follows from (13) and the 

construction of {Un} that 7% is Hausdorff. Suppose that F c X is closed in ri and 

5 E X, z 6 F. Then F is closed in the original topology of X by (12) and thus 

F = F,, x = x, for some Q < WI. Now x, E Oh, F, c Vi and 0: n VA = 0 by (1). 

By (13) 0: and VJ are open in ri. We conclude that ri is regular and thus Lindelof. 

Let us prove that ri is strongly Frechet. Suppose not. Then there exist a set {z(p, n) 1 

p,n E w} such that z(p, n) -+ z(p) as 72 --+ 03 in ri and z(p) + z as p -+ 03 in ri, 

z(p, n) # x(q, n) if (p, rz) # (q, Ic) and there is no sequence in S = {z(~, n) 1 p, n E w} 

converging to 2. It easily follows from the definition of topology ri that there exists 

(Y < wt such that 5’ = S, and (3a) holds. But then D$ is a sequence in S converging to 

x = x, in topology 7,” and thus in ri. 

NowA={(x,x) IxEX}CX 2 is closed in X2 in topology ri x r2 since it is 

the diagonal of X2 where X is equipped with a weaker than both ~1 and 72 Hausdorff 

topology T generated by { Un}. 

A is homeomorphic to X in its original topology. Indeed otherwise there would exist 

a sequence {x(k) 1 !t E w} c A such that ri(x(k)) -+ x E X as k + 

rri(z(k)) fi x in the original topology of X. By (12) we can assume that 

00 in ri and 

{rri (z(k)) 1 k E w} c D;’ 

for some (_yi < wl. But 0” n Dr;2/’ is finite by (4) which contradicts the fact that 

x1(x(k)) = rrz(x(k)) and thus D’% n Dt;{’ = {ri(x(k)) 1 k E w} is infinite. 

Let us prove that ~1 x 72 is sequential. Suppose that G c X2 is not closed and there is 

no sequence in G converging outside G. It is easy to see that G = G, for some cr < wi. 

Since T~L x ~2” is a k,-topology it is sequential. If G is not closed in rp x r; there is a 

sequence in G converging outside G in topology rp x 7; and thus in a weaker topology 
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ri x r2. So we may assume that G is closed in ria x 7;. Then by (13) and (6) G is 

closed in rt x 72, a contradiction. 

Let us now construct all the neccessary sets. 

The following lemma is well known and easy to prove. 

Lemma 3.3. A k,-space is normal. 

Suppose now that all the neccessary sets and IY~ are already constructed for every 

/? < Q. Let us prove the following fact. 

Fact. Let X be a countable k,-space. Suppose that 

S= u S,, S, = {+W) I n E w}, 

PEW 

G,n) # z(q, k) if (nn) # (4, k) and 4~ ) n -+ z(p) as n + cc and x(p) -+ 5 as 

p + co. Let (M, / n E w} be a countable number of open subsets of X. If there is no 

sequence in S converging to x then there is a closed discrete subset D of X such that: 

(14) D c S. 

(15) D n S, is finite for every p E w. 

(16) If a E Mk for some k E w then D\Mk is finite. 

Proof. Without loss of generality we may assume that there are two cases: 

Case 1. x(p) = x for all p E w. 

Case 2. x(p) # x(q) if p # 4, z(P) # x f or any p E w and {x(p) 1 p E w} n S = 0. 

Let us now note that a countable k,-space is a normal sequential space with a countable 

closed k-network. Suppose Case 1 holds. Then arguing like in the proof of Lemma 2.9 

one can show that, we may assume without loss of generality, S U {x} is a closed subset 

of X homeomorphic to sequential fan S,. It also may be assumed that x E M, for any 

n E w and Mn+l C M, for any n E w. Now it is easy to choose the points di satisfying 

di E Mi n Si. Let D = {di 1 i E w}. One can check that D satisfies (14)-(16). 

Now suppose that (15) holds. Shrinking the set Sq = {x(p) 1 p E w) U {x} to a point 

we obtain a space X/Sq with a countable k-network. Let r = S. Repeating the argument 

from the proof of Lemma 2.9 beginning with the words “Let y be a point-countable k- 

network . . . ” literally one can show that in X/Sq the set I’ Up(Sq) may be assumed to 

be homeomorphic to S, and closed where p: X + X/Sq is the obvious quotient map. 

It follows that we may assume that S U Sq is a closed subset homeomorphic to the space 

S2. The rest of the proof is similar to the corresponding part of proof for Case 1. 0 

Now let 
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Let us construct 09. If S, is such that (3b) holds, then the construction is obvious. 

Suppose that S, satisfies (3a). Let (0 1 /3 < a} = {Pk 1 k E w}. We may assume 

without loss of generality that 

(*> SF ” (UkGp @Ti) = 0 (see (11)). 

Let {A& 1 n E w} = {Mi 1 n E w} f or i E {1,2}, S = S, and S, = Sp”. Choose 

D c S satisfying conditions (14)-( 16) of the fact. Let DF = D. Now let T: be the 

strongest topology on X such that ~~9 is weaker than the original topology of X and 

D$ u {to} is homeomorphic to a countable compact with the unique nonisolated point 

tp. By condition (16) of the fact and condition (7) all Un’s are open in 7,‘. 

Since every U, is open in r,Fy, 7,” is Hausdorff, and being a Ic,-topology is normal by 

Lemma 3.3, it is easy to construct 0: and VA satisfying (1). Then it is easy to construct 

{L;} and {R;} to satisfy (6) using the countability of X2. By assumption (*) condition 

(4) is also satisfied. Other conditions are easy to check. So all the neccessary sets are 

constructed. 

Example 3.4 (CH). If we take X being Arhangel’skii-Franklin space [3] we obtain two 

FrCchet (in fact strongly Frechet) spaces Y and 2 whose product is sequential and 

so(Y x 2) = wi. 

Remark. By Lemma 3.2 one can construct two strongly Frechet spaces whose product 

contains a closed nonmetrizable LaSnev subspace. Such an example was constructed in 

[ 1 l] by a different method. 

Problem 6. Are there Frechet spaces X (cr) and Y (cy) such that 80(X(o) x Y (cx)) = cx 

for a given 2 < cx < wi? 
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