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Abstract

Multidimensional scaling, item response theory, and factor analysis may be considered
three major contributions of psychometricians to statistics. Matrix theory played an important
role in early developments of these techniques. Unfortunately, nonlinear models are currently
very prevalent in these areas. Still, one can identify several areas of psychometrics where
matrix algebra plays a prominent role. They include analysis of asymmetric square tables,
multiway data analysis, reduced-rank regression analysis, and multiple-set (T -set) canonical
correlation analysis among others. In this article we review some of the important matrix
results in these areas and suggest future studies.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

There were days when matrix algebraists and psychometricians were much more
closely related. Mathematicians/statisticians used to publish their papers more of-
ten in substantive journals. Harold Hotelling, for example, published his papers on
principal component analysis (PCA) in Journal of Educational Psychology. Alston
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Householder published three papers in Psychometrika in 1937 alone (10 in total),
although part of this could be due to the fact that he was at the University of Chicago
around that period with more substantive interests. The University of Chicago was
one of the central sites in psychometrics with L.L. Thurstone, founder of psychomet-
rics, who had just started the Psychometric Society and its journal Psychometrika.

The following episode tells a close tie between psychometricians and mathemati-
cians at the University of Chicago in early days of psychometrics. One day Thurstone
was having lunch with a mathematician in school cafeteria, talking about factor
analysis (FA). The mathematician told him that it was a matrix in form. Thurstone
immediately realized the importance of matrix algebra in his work and started study-
ing it, which later culminated in his book entitled “Vectors of Mind” (The University
of Chicago Press, 1935). Some mathematicians at the university, including Carl
Eckart, Gale Young, and Alston Householder, also got interested in psychometric
research and published some of their papers in Psychometrika. Other prominent
statisticians (not necessarily at the University of Chicago) such as T.W. Anderson,
Quinn McNemar, Frederick Mosteller, C.R. Rao, John Tukey, and S.S. Wilks have
also contributed one or more papers to Psychometrika.

In the meantime, matrix theory has sufficiently pervaded virtually every aspect
of psychometrics and its knowledge has become common sense among psychome-
tricians. Somewhat ironically, however, with the advancement of specializations and
the publications of many more new journals specialized in one specific area, those
days are long gone when mathematicians and statisticians looked for journals outside
their own disciplines to publish their work. This is a bit unfortunate state of affairs
because it is getting increasingly more difficult to keep track of more recent de-
velopments in matrix algebra useful in psychometrics. The Psychometric Society is
making every effort, however, to provide its members the opportunity to keep their
knowledge in matrix algebra up to date. For example, the Society invited Ingram
Olkin to its 1996 annual meeting to deliver an insightful lecture on “Interface be-
tween multivariate analysis and matrix theory”.

This article has a somewhat reversed role (to that of Olkin’s). I am a psychometri-
cian addressing to mathematicians and statisticians, reviewing some of the areas in
psychometrics where matrix algebra plays an essential role. Along the way, I would
like to suggest some of the interesting matrix algebra problems yet to be solved
and encourage further studies. Areas of psychometrics to be discussed in this ar-
ticle include multidimensional scaling (MDS) (with special emphasis on analysis
of asymmetric square tables and multiway data analysis), various extensions of re-
duced-rank regression analysis, multiple-set (T -set) canonical correlation analysis
(CANO), and the Wedderburn–Guttman theorem.

2. Multidimensional scaling

MDS is a data analysis technique to locate a set of points in a multidimensional
space in such a way that points corresponding to similar stimuli are located close
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together, while those corresponding to dissimilar stimuli are located far apart. Many
road maps, for example, have a matrix of intercity distances. Put simply, MDS recov-
ers a map based on the intercity distances. Given a map it is relatively straightforward
to measure the distances between cities. However, the reverse operation, that of re-
covering a map from a given set of distances is not as straightforward. MDS is a
method to perform this reverse operation [65].

A variety of MDS procedures have been developed, depending on the kind of
similarity data analyzed, the form of functional relationships assumed between the
observed data and the distance model, the type of fitting criteria used, etc. During
the past 40 years or so, however, a form of MDS called nonmetric MDS [42,43,63]
has been very popular because of its flexibility. In this paper, however, we focus on
foundational aspects of MDS that can be easily seen through simple matrix manipu-
lations.

2.1. MDS for a single square symmetric table

The reverse operation mentioned above is particularly simple when the set of
error-free Euclidean distances are given between stimuli. Let xir denote the coordi-
nate of point i (i = 1, . . . , n) on dimension r (r = 1, . . . , p). The squared Euclidean
distance between points i and j is then given by d2

ij = ∑p

r=1(xir − xjr )
2. Let X

denote an n by p (� n − 1) matrix of stimulus coordinates, assumed nonsingular.
Then, the matrix of squared Euclidean distances, D(2)(X), between stimuli can be
expressed as

D(2)(X) = 1n1′
n diag(XX′) − 2XX′ + diag(XX′)1n1′

n, (1)

where 1n is an n-element vector of ones. Define S = (−1/2)JnD(2)(X)Jn, where
Jn = (In − 1n1′

n/n). Then, S = JnXX′Jn = XX′, where it is assumed that JnX =
X. (The origin of the space is placed at its centroid.) The matrix of stimulus
coordinates (X) can be obtained by a square root decomposition of S. Note that
rank(S) = rank(X) = p.

The above procedure suggests the following theorem known as the Young–House-
holder theorem [60,96].

Theorem 2.1. A set of dissimilarities, {δij }, defined on the set of pairs of n stimuli
can be embedded in the irreducible p-dimensional Euclidean space if and only if
Ŝ = (−1/2)Jn�(2)Jn is positive semi-definite (PSD) of rank p, where �(2) is the
matrix of δ2

ij .

More generally, let Ŝ denote a matrix of observed “similarities” between n stimuli.
The stimuli can be embedded in the p-dimensional (but not less than p-dimensional)
Euclidean space if and only if Ŝ is PSD of rank p [21]. Let Ŝ = XX′ be a square root
decomposition of Ŝ, where X is n by p, and nonsingular. Then, the matrix of squared
Euclidean distances between the stimuli are given by (1).
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The exact reverse operation presented above strictly applies to only error-free
data. However, a similar procedure can be used in fallible cases as well [82]. This
method obtains the best rank p approximation (in the least squares (LSs) sense) of Ŝ
by the eigenvalue-vector decomposition of Ŝ. This method is now known as classical
MDS. More recently, this approach has been extended to nonmetric MDS by Trosset
[83] (see [11] for a more comprehensive review of literature in MDS).

Various extensions of the above scheme of MDS are possible. In the following
subsections, three such extensions are considered: (1) MDS for a rectangular table,
(2) MDS for m (� 1) square symmetric tables, and (3) MDS for a square asymmetric
table.

2.2. MDS for a rectangular table

In the above discussion, there is only one set of objects (stimuli) between which
dissimilarities are observed. In some cases, however, dissimilarities are defined bet-
ween objects that belong to two distinct sets. Such data often arise when a group of
m subjects make preference judgments on a set of n stimuli, and the preference data
are assumed inversely related to the distances between subjects’ ideal stimuli and the
actual stimuli. MDS designed for such situations is called unfolding analysis [10].

Let ykr denote the coordinate of subject k’s ideal point on dimension r , and let
xir denote the coordinate of stimulus i on dimension r . Then, the squared Euclidean
distance between them is given by d2

ki = ∑p

r=1(ykr − xir )
2. Let Y (m × p) and X

(n × p) denote the matrices of ykr and xir , respectively. Then, similarly to (1), the
m by n matrix of squared Euclidean distances, D(2)(Y, X), between subjects’ ideal
points and stimulus points can be expressed as

D(2)(Y, X) = 1m1′
n diag(XX′) − 2YX′ + diag(YY′)1m1′

n, (2)

where 1m is an m-element vector of ones.
There is an exact reverse operation applicable to this case, which is similar to the

one discussed above. The method “recovers” Y and X from D(2)(Y, X) [61]. Let

Z = (−1/2)JmD(2)(Y, X)Jn = JmYX′Jn = Y∗X∗′,
where Jm = Im − 1m1′

m/m, Y∗ = JmY, and X∗ = JnX. By rank factorization, Z =
ỸX̃′, where Ỹ and X̃ are m by p and n by p nonsingular matrices. The origin of the
space may be set at the centroid of X∗, and the origin of Y∗ is to be adjusted ac-
cordingly. For a square nonsingular matrix T of order p and a p-element translation
vector y0,

X = X∗ = X̃T,

and

Y = Y∗ + 1my′
0 = ỸT−1 + 1my′

0.

Matrix T and vector y0 can be found by putting the above expressions of X and
Y into (2). Again, this method can only be applied to error-free data. Due to the
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additional steps needed, the procedure is rather sensitive to errors. This is in con-
trast to the similar procedure for a square symmetric table discussed earlier. Some
remedial measures have been suggested by Gold [20] to make the method more
robust against errors. See Heiser and Meulman [30] for more recent developments
and issues surrounding the unfolding analysis.

2.3. MDS for m square symmetric tables

So far, it is assumed that there is a single set of dissimilarity data, either square or
rectangular. In some cases, however, there are m sets of square symmetric data ob-
tained from, say, m individuals. MDS applicable to such data is called individual dif-
ferences MDS. One useful technique for individual differences MDS represents both
commonality and uniqueness in such data sets by the weighted Euclidean distance
model [5].

Let xir denote the coordinate of stimulus i on dimension r , and let wkr denote the
weight individual k attaches to dimension r . Then, the squared weighted Euclidean
distance between stimuli i and j for individual k is given by d2

ijk = ∑p

r=1 wkr(xir −
xjr )

2. The matrix of d2
ijk can be expressed, analogously to (1), as

D(2)
k (X, Wk) = 1n1′

n diag(XWkX′) − 2XWkX′ + diag(XWkX′)1n1′
n (3)

for k = 1, . . . , m, where X (n × p) is the matrix of xir , and Wk (p × p) is the diago-
nal matrix of wkr , assumed to be nonnegative definite (NND). For identification, it is
convenient to require that diag(X′X) = Ip. This model attempts to explain differen-
ces among the sets of dissimilarities defined on a same set of stimuli by differential
weighting of dimensions by different individuals.

Again, there is an exact reverse operation for this model [62]. Let Sk = (−1/2)Jn

D(2)(X, Wk)Jn. Then, Sk = XWkX′, where JnX = X is assumed. Let

S =
m∑

k=1

Sk/m = X

(
m∑

k=1

Wk/m

)
X′ = XX′,

where it is temporarily assumed that
∑m

k=1 Wk/m = Ip. (This can be done without
loss of generality; it amounts to using

∑m
k=1 Wk/m = Ip as the identification restric-

tion.) By a square root decomposition, S = X̃X̃′. Then, for some p by p orthogonal
matrix T, X = X̃T. Let

S =
m∑

k=1

Skek

denote a linear combination of Sk . Then,

S = X

(
m∑

k=1

Wkek

)
X′ = XWX′,
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where W = ∑m
k=1 Wkek . Then,

W = (X′X)−1X′SX(X′X)−1 = T′(X̃′X̃)−1X̃′SX̃(X̃′X̃)−1T,

since T−1 = T′ and T′T = Ip. That is, C = TWT′, where C = (X̃′X̃)−1X̃′SX̃
(X̃′X̃)−1. Matrices T and W is given by the eigenvalue-vector decomposition of
C. For this decomposition to be unique there must be at least one linear combination
of Wk such that the diagonal elements of W are all distinct. Again, this procedure
can only be applied to infallible data. Iterative procedures for fallible data have been
developed by Carroll and Chang [5] and de Leeuw and Pruzansky [12].

The data analyzed by individual differences MDS are three-way (stimuli by stim-
uli by individuals). Psychometrics has a long tradition in dealing with multiway
data, starting from Tucker’s [84] three-mode FA, Harshman’s [26] PARAFAC (par-
allel FA), etc. The latter is a kind of three-way component analysis postulating
Zk = YWkX′ (k = 1, . . . , m) for a rectangular matrix Zk . An iterative parameter
estimation procedure has been developed for PARAFAC [41,58] as well as for Tuck-
er’s three-mode FA. Interesting results are also due to psychometricians on some
algebraic properties of multiway tables (e.g., ranks of multiway tables), see
[44,45,79,80], and references therein for further details.

In statistics, a model similar to Sk = XWkX′ has been proposed by Flury [17]
with the additional restriction that X′X = I, and is called “Common Principal Com-
ponent Analysis”. Carroll and Chang also proposed a model called IDIOSCAL (in-
dividual differences in orientation scaling), where the NND diagonal matrix Wk in
the weighted Euclidean distance model was replaced by an NND matrix Ck .

2.4. MDS for a square asymmetric table

Relationships between stimuli are often asymmetric. For example, the degree to
which person A likes B is not necessarily the same as the degree to which person
B likes A. Such examples of asymmetric relationships abound in psychology and
elsewhere, for example, mobility tables, stimulus identification data, brand switching
data, journal citation data, husband’s and wife’s occupations in two-earner families,
etc.

A variety of models that capture asymmetries in the data have been proposed,
some of which will be briefly discussed below:

1. DEDICOM (DEcomposing DIrectional COMponent) [27]. Let A denote an n

by n asymmetric table. DEDICOM postulates A = XRX′ + E, where X is an n by
p (< n) matrix, R is a square asymmetric matrix of order p, and E is a matrix of
residuals. This model attempts to explain asymmetric relationships between pairs
of n objects by a smaller number (p) of asymmetric relationships (represented by
R), and by their relations to the objects (represented by X). In the infallible case
(E = 0), the model implies that Sp(A) = Sp(A′), which always holds for p = n.
For rank(A) = p < n, this condition characterizes the falsifiable DEDICOM model.
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A closed form solution exists in this case [39]. An iterative algorithm has also been
developed for fallible data [39].

2. Generalized GIPSCAL [38]. An asymmetric square matrix A can be gener-
ally expressed as the sum of symmetric and skew-symmetric parts: A = Ss + Ssk,
where Ss = (A + A′)/2, and Ssk = (A − A′)/2 with S′

s = Ss, and S′
sk = −Ssk. In

the DEDICOM model, XRX′ can also be decomposed in a similar way: XRX′ =
XRsX′ + XRskX′, where Rs = (R + R′)/2, and Rsk = (R − R′)/2. It can be further
rewritten as XRX′ = X̃(Ip + K)X̃′ if and only if Rs is positive definite (PD), where

K contains 2 by 2 blocks of the form

(
0 kl

−kl 0

)
along the diagonal when p is

even. There is an additional 0 diagonal entry when n is odd. This model is called
generalized GIPSCAL.

3. CASK (Canonical Analysis of SKew-symmetric Data) [22]. As a method for an-
alyzing square asymmetric tables, CASK precedes all other methods discussed in this
section. However, it analyzes only skew-symmetric data (or that part of data). The
SVD of Ssk yields Ssk = PDQ′. Singular values of a skew-symmetric matrix come
in pairs (except for the one extra zero singular value obtained when n is odd), and
PDQ′ can be further rewritten as PDQ′ = PDLP′ = XKX′, where X = P = QL,
K = DL, and L is similar in form to K above except that all kl’s are unities.

4. HCM (Hermitian Canonical Model) [15]. Form an hermitian matrix by H =
Ss + iSsk. HCM obtains the eigenvalue decomposition of H. Assume that H is NND.
Then,

H = ŨD̃Ũ∗ = UU∗, (4)

where ∗ indicates a conjugate transpose, and U = ŨD1/2. Let U = X + iY. Then,
H = (XX′ + YY′) + i(YX′ − XY′), where XX′ + YY′ = Ss, and YX′ − XY′ = Ssk
with X′X + Y′Y = I, and Y′X = X′Y (symmetric). The following theorem due to
Chino and Shiraiwa [7] is an extension of the Young–Householder theorem (Theo-
rem 2.1) to a finite dimensional complex Hilbert space.

Theorem 2.2. Let V = [X, Y], and V = VL̄, where L̄ =
(

0 I
−I 0

)
, and X and Y

are as defined above. Matrix L̄ has the effect of rotating V counter clockwise by 90◦.
(Note that VV

′ = VV′.) Let

D(2) = D(2)(V) = 1n1′
n diag(XX′ + YY′) − 2(XX′ + YY′)

+ diag(XX′ + YY′)1n1′
n

= 1n1′
n diag(Ss) − 2Ss + diag(Ss)1n1′

n, (5)

and

D
(2) = D(2)(V, V) = 1n1′

ndiag(XX′ + YY′) − 2(YX′ − XY′)
+ diag(XX′ + YY′)1n1′

n

= 1n1′
ndiag(Ss) − 2Ssk + diag(Ss)1n1′

n. (6)
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Then, H = (−1/2)Jn(D(2) + iD
(2)

)Jn = (XX′ + YY′) + i(YX′ − XY′) = Ss + iSsk
(this is an instance of the polar identity in the finite dimensional complex Hilbert
space) is PSD of rank p.

Conversely, if H formed from A by H = Ss + iSsk where A = Ss + Ssk is PSD
of rank p, a set of stimuli whose “similarities” are defined by A can be represented
as points in the irreducible p-dimensional complex Hilbert space, where interpoint
distances are given by (5).

Let θij denote the angle (in radian) between points i and j with respect to the
origin (0) of the space for a particular (real–imaginary) pair of corresponding di-
mensions. Then, hij = di0dj0(cos θij + i sin θij ) = di0dj0 exp(−iθij ). Thus, θij =
(−1/2)i log(hij /hji).

MDS of asymmetric data began only 20 years ago or so and is still in a maturing
stage. There are still a lot of things left to be done, including developments of fitting
procedures under various distributional assumptions on observed data, under various
measurement characteristics of the data, etc.

3. Singular value decomposition

Singular value decomposition (SVD) [2,14,37,47,59] continues to play a central
role in many multivariate data analysis techniques used in psychometrics. Although
there are many proofs of optimalities of SVD (e.g., [54]), we will briefly discuss ten
Berge’s [78] proofs based on the notion of sub-orthogonal (s.o.) matrices.

There are two major uses of SVD: (1) finding the best reduced-rank approxima-
tion to a matrix and (2) finding the best orthogonal approximation to a matrix. The
first kind of optimality has been widely recognized in statistics, while the second
kind is not well known outside the psychometric community. ten Berge [78] proves
both kinds of optimality quite elegantly.

Kristof [40] obtained an upper bound of the following function:

f (B1, . . . , BT ) = tr

 T∏
j=1

Bj Cj

 , (7)

where Cj and Bj (j = 1, . . . , T ) are a diagonal matrix and an orthogonal matrix
of order n, respectively. Kristof’s result is a generalization of von Neumann’s [89]
theorem for T = 1 and T = 2. Only the case of T = 1 is necessary for the present
purpose. For T = 1, Neumann’s theorem can be stated as follows:

Let C1 = C be NND, and write B1 = B. Then, f (B) = tr(BC) � tr(C) because
tr(BC) = ∑n

i=1 biici �
∑n

i=1 ci = tr(C). Note that bii � 1 for all i since B is
orthogonal.

ten Berge [77] generalized this theorem to a s.o. matrix B.
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Definition 3.1. A matrix is s.o. if it can be completed to an orthogonal matrix by
appending rows or columns, or both. Every s.o. matrix can be viewed as a submatrix
of some orthogonal matrix.

Property 3.1. Every columnwise or rowwise orthogonal matrix is s.o. This is be-
cause it can readily be completed to be orthogonal.

Property 3.2. The product of any two s.o. matrices is also s.o.

Theorem 3.1 [77]. If B is an n × n s.o. matrix of rank p � n, and C is diagonal,
with diagonal elements c1 � c2 � · · · � cn � 0, then

f (B) = tr(BC) � c1 + · · · + cp, (8)

which is the sum of the p largest elements in C. This upper bound is attained for the

s.o. matrix B =
(

Ip 0
0 0

)
.

ten Berge [78] used the above theorem to show the following two results:
(1) Let Z denote an m by n matrix of rank p, and consider the problem of approx-

imating Z by another matrix Z0 of the same size but of a lower rank. That is, find-
ing Z0 such that f (Z0) = SS(Z − Z0) is minimized subject to rank(Z0) = q � p.
Since rank(Z0) = q, it can be written as Z0 = FA′, where F (m by q) is columnwise
orthogonal, and A is an n by q matrix of rank q. Minimizing f (Z0) with respect to
A for fixed F leads to A = F′Z. Then,

f ∗(F) = min
A|F f (Z0) = SS(Z − FF′Z). (9)

The minimum of f (Z0) can be obtained by minimizing f ∗(F) with respect to F.
This is equivalent to maximizing tr(F′ZZ′F) with respect to F. Let the (incom-
plete) SVD of Z be denoted by Z = UDV′. Then, ZZ′ = UD2U′ and tr(F′ZZ′F) =
tr(F′UD2U′F) = tr(U′FF′UD2) � tr(D2) by ten Berge’s theorem. The maximum is
attained when F = UqT, where Uq is the portion of U pertaining to the q largest
singular values of Z, and T is an arbitrary orthogonal matrix of order q. Note that

when F = UqT, U′FF′U = U′UqTT′U′
qU =

(
Iq 0
0 0

)
.

(2) Let Z denote an m by n nonsingular matrix, and consider the problem of
approximating Z by a columnwise orthogonal matrix Z1 of the same order. That
is, finding Z1 such that f (Z1) = SS(Z − Z1) is minimized subject to Z′

1Z1 = I.
First, note that minimizing f (Z1) is equivalent to maximizing tr(Z′Z1). Let the (in-
complete) SVD of Z be denoted by Z = UDV′. Then, tr(Z′Z1) = tr(VDU′Z1) =
tr(U′Z1VD) � tr(D). The maximum is attained by Z1 = UV′ = Z(Z′Z)−1/2.

This second use of SVD is popular in psychometrics where the best orthogonal
transformation (rotation) of a stimulus configuration and of a factor loading matrix
is looked for that facilitates interpretation.
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4. Reduced-rank regression models

SVD plays one of the two most crucial roles in constrained PCA (CPCA) pro-
posed by Takane and Shibayama [72] (see also [35,67]). This technique incorporates
external information into PCA by first decomposing the data matrix according to the
external information, and then applying PCA to decomposed matrices. The former
amounts to orthogonal projections of the data matrix onto the spaces spanned by the
matrices of external information (often called design matrices, constraint matrices,
etc.), while the latter involves SVD or generalized SVD (GSVD). CPCA subsumes
a number of existing techniques as its special cases.

Let Z be an m by n data matrix, and let G and H be m by u and n by v matrices
of external information on rows and columns of the data matrix, respectively. CPCA
postulates the following model for Z,

Z = GMH′ + BH′ + GC + E, (10)

where M (u by v), B (m by v), and C (u by n) are matrices of unknown parameters,
and E (m by n) a matrix of residuals. To identify the model, it is convenient to require

G′KB = 0, (11)

and

CLH = 0, (12)

where K and L denote the row and column metric (weight) matrices, respectively.
For simplicity, it is assumed that both K and L are symmetric PD. (Takane and
Hunter [67] discuss the more general case in which K and L are possibly singular.)
The first term in model (10) pertains to the portions of the data matrix that can be
explained by both G and H, the second term to what can be explained by H but not
by G, the third term to what can be explained by G but not by H, and the last term
to what can be explained by neither G nor by H.

Model parameters are estimated in such a way that the following extended (weight-
ed) LSs criterion is minimized:

f = SS(E)K,L = tr(E′KEL). (13)

This leads to the following LS estimates M, B, C, and E:

M̂ = (G′KG)−G′KZLH(H′LH)−, (14)

B̂ = QG/KZLH(H′LH)−, (15)

Ĉ = (G′KG)−G′KZQ′
H/L, (16)

Ê = QG/KZQ′
H/L, (17)

where QG/K = I − PG/K and PG/K = G(G′KG)−G′K are orthogonal projectors
onto Ker(G′) (the null space of G′) and Sp(G) (the range space of G), respectively, in
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the metric of K, and QH/L = I − PH/L and PH/L = H(H′LH)−HL are orthogonal
projectors onto Ker(H′) (the null space of H′) and Sp(H) (the range space of H),
respectively, in the metric of L [56,94]. Putting the above expressions in (10) leads
to the following decomposition of the data matrix, Z:

Z = PG/KZP′
H/L + QG/KZP′

H/L + PG/KZQ′
H/L + QG/KZQ′

H/L. (18)

The four terms on the right hand side of (18) correspond to the four terms in model
(10). Because of the trace-orthogonality of the four terms in (18), the total SS in Z is
uniquely decomposed into the sum of component sums of squares, namely

SS(Z)K,L = SS(PG/KZP′
H/L)K,L + SS(QG/KZP′

H/L)K,L

+ SS(PG/KZQ′
H/L)K,L + SS(QG/KZQ′

H/L)K,L. (19)

Two matrices, X and Y, are said to be trace-orthogonal, when tr(X′KYL) = 0 for
given metric matrices, K and L.

The decomposed matrices in (18) are subjected to PCA either separately or jointly
(i.e., recombining some of them together). This leads to the (GSVD/SVD) of a matrix
with certain metric matrices.

Definition 4.1 (GSVD). Let K and L denote PD matrices of orders m and n, respec-
tively. Let A be an m by n matrix of rank p. Then,

A = UDV′ (20)

is called the (incomplete) GSVD of A under the metric matrices K and L and is
written as GSVD(A)K,L, where U′KU = Ip = V′LV, and D is diagonal and PD.

GSVD(A)K,L can be obtained as follows. Let K = RKR′
K and L = RLR′

L be
any square root decompositions of K and L. Let the usual SVD of R′

KARL (i.e.,
GSVD(R′

KARL)Im,In ) be denoted by

R′
KARL = ŨD̃Ṽ′. (21)

Then, U, D, and V in GSVD(A)K,L can be obtained by U = (R′
K)−1Ũ, V = (R′

L)−1Ṽ,
and D = D̃.

The following theorems (given without proofs) are very useful in facilitating com-
putations of SVD and GSVD in CPCA.

Theorem 4.1. Let T (m by u; m � u) and W (n by v; n � v) be columnwise
orthogonal matrices. Let the usual SVD of A (u by v) be denoted by A = UADAV′

A,

and that of TAW′ by TAW′ = ŨD̃Ṽ′. Then, Ũ = TUA (or UA = T′Ũ), Ṽ = WVA

(or VA = W′Ṽ), and D̃ = D.

Theorem 4.2. Let T and W be matrices of orders specified above but not nec-
essarily orthogonal. Let GSVD(TAW′)K,L be denoted by TAW′ = UDV′, and let



352 Y. Takane / Linear Algebra and its Applications 388 (2004) 341–361

GSVD(A)T ′KT,W ′LW be denoted by A = UADAV′
A. Then, U = TUA (or UA =

(T′KT)−T′KU), V = WUA (or VA = (W′LW)−W′LV) and DA = D.

PCA of the first term in (18) amounts to GSVD(PG/KZP′
H/L)K,L. This can be com-

puted as follows: Notice that R′
KPG/KZP′

H/LRL = PG̃Z̃PH̃ , where Z̃ = R′
KZRL,

and PG̃ = G̃(G̃′G̃)−G̃′ with G̃ = R′
KG and PH̃ = H̃(H̃′H̃)−H̃′ with H̃ = R′

LH are
orthogonal projectors. Since orthogonal projectors can be written as products of
a columnwise orthogonal matrix and its transpose (i.e., PG̃ = FGF′

G and PH̃ =
FH F′

H , where F′
GFG = I and F′

H FH = I), R′
KPG/KZP′

H/LRL = FGF′
GZ̃FH F′

H ,

whose SVD can be easily derived from SVD of F′
GZ̃FH which is much smaller

in size than R′
KPG/KZP′

H/LRL.

In some cases, GSVD(M̂)G′KG,H ′LH may be of direct interest [72]. Let
PG/KZP′

H/L = UDV′ and M̂ = UMDMV′
M denote GSVD(PG/KZP′

H/L)K,L, and

GSVD(M̂)G′KG,H ′LH , respectively. Then, U, V and D, and UM, VM and DM are
related by U = GUM (or UM = (G′KG)−G′KU), V = HVM (or VM = (H′LH)−
H′LV), and D = DM .

It is of interest to further explore relationships among various kinds of SVD [66]
including OSVD (ordinary SVD), GSVD, PSVD (product SVD) [16], QSVD (quo-
tient SVD) [86], and RSVD (restricted SVD) [13,97].

CPCA subsumes a number of interesting techniques as its special cases:
(1) When B = 0, C = 0, and no rank restrictions are imposed on M̂, CPCA re-

duces to the growth curve models [50], where some additional linear constraints such
as R′MT = 0 may be imposed [55]. If in addition H = I, the ordinary multivariate
multiple regression analysis model results.

(2) When B = 0, C = 0, H = I, and rank(M) = p (< rank(PG/KZ)), CPCA re-
duces to the reduced-rank regression analysis model [1], which is variously called
PCA of instrumental variables [52] and redundancy analysis [85]. Yanai [93] pro-
posed FA with external criteria, which analyses the residual term from redundancy
analysis. When H /= I, CPCA specializes into two-way CANDELINC [6] or the
reduced-rank growth curve models [57]. This case involves the minimization of
SS(Z − GMH′)K,L, which can be decomposed into

SS(Z − GMH′)K,L = SS(PG/KZP′
H/L − GMH′)K,L

+ SS(Z − PG/KZP′
H/L)K,L

= SS(G(M̂ − M)H′)K,L

+ SS(Z)K,L + SS(GM̂H′)K,L. (22)

It can be minimized by minimizing the first term, which can be done by GSVD
(M̂)G′KG,H ′LH . When additionally Z = I, this case reduces to CANO between G
and H.
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(3) When B = 0, C = 0, G = I, and H = I, CPCA reduces to (unconstrained)
correspondence analysis (CA). Set Z = D−1

R FD−1
C , K = DR , and L = DC , where F

is a two-way contingency table, DR and DC are diagonal matrices of row and column
sums of F, respectively. (This case can also be obtained by CANO of two matrices,
G and H, of dummy variables, where F = G′H, DR = G′G, and DC = H′H. As
mentioned in (2) above, CANO is also realized by setting Z = I in CPCA.) When G
and/or H are nonidentity matrices, this case leads to canonical correspondence anal-
ysis [81] which amounts to GSVD(G(G′DRG)−G′FH(H′DCH)−H′)DR,DC

, and ca-
nonical analysis of contingency tables with linear constraints (CALC) [3] which
amounts to GSVD(D−1

R Q
S/D−1

R
FQ′

T/D−1
C

D−1
C )DR,DC

, where S and T are such that

Ker(S′) = Sp(X) and Ker(T′) = Sp(H) [76]. (Recall that Ker(A) and Sp(A) indicate
the null and range spaces of matrix A, respectively.)

The decomposition of the data matrix given in (18) is a very basic one. When
G and/or H consist of more than one distinct set of variables, PG/K and/or PH/L

may be further decomposed in various ways, depending on how the subsets of G
and/or those of H are related with each other. Takane and Yanai [73] (see also [56])
present a variety of such decompositions. With decompositions into finer and finer
components, model (18) can be ultimately written as

Z =
(∑

i

PGi/K

)
Z

∑
j

PHj /L

′
, (23)

where
∑

i PGi/K = Im, and
∑

j PHj /L = In. Matrices Gi and Hj are subsets of G
and H, respectively.

A closely related technique for structured component analysis has been proposed
by Takane et al. [70]. Their method is called DCDD (Different Constraints on Differ-
ent Dimensions). Let Gi and Hi be T sets of row and column information (constraint)
matrices, not necessarily mutually orthogonal. Consider approximating the data ma-
trix Z by the sum of GiMiH′

i (i = 1, . . . , T ), where it is assumed that rank(Mi ) =
qi . (In most cases, it is assumed that qi = 1 for all i.) This leads to the minimization
problem of

f = SS

(
Z −

T∑
i=1

GiMiH′
i

)
K,L

(24)

with respect to Mi (i = 1, . . . , T ) subject to rank(Mi ) = qi , where K and L are
metric matrices (assumed to be PD). Unfortunately, this minimization problem has
no closed-form solutions except for a few special cases. Efficient algorithms have
been developed, although they are iterative.

Verbyla and Venables [88] proposed a model similar to DCDD but without the
rank restrictions on Mi . They also developed an iterative algorithm for parameter
estimation. von Rosen [90,91] proposed a model similar to that by Verbyla and Ven-
ables as an extension to the growth curve models. He derived a closed-form solution
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for the maximum likelihood estimators under the normality assumption on Z, but
under the additional assumption that Hi’s had special nested structures. More re-
cently, Fujikoshi et al. [18] developed some inferential procedures for von Rosen’s
model. Velu [87] (see also [57]) considered a special case of DCDD, where T = 2,
K = I, and L = I. Hwang and Takane [36] have recently extended DCDD to fit
structural equation models (SEM) specifying a set of assumed relationships between
observed and latent variables. SEM has been traditionally (and predominantly) fitted
via ACOVS (Analysis of Covariance Structures). Hwang and Takane’s approach, on
the other hand, relies on the structured reduced-rank regression analysis approach.

Ramsay and Silverman [51] proposed structured analysis of functional data. Many
of the mathematical tools used in functional data analysis such as reproducing ker-
nels and Green’s function, etc. have clear analogues in matrix algebra. It is of inter-
est to explore further correspondence between terminologies used in functional data
analysis and multivariate data analysis.

5. Multiple-set (T -set) canonical correlation analysis

CANO is used to explore linear relationships between two sets of multivariate
data. Multiple-set CANO, on the other hand, explores relationships among T (� 2)
sets of multivariate data. A number of techniques have been proposed for multiple-
set CANO. Only one of them due to Horst [32] will be discussed here because it is
the only technique with a closed form solution (see also [4]). See Gifi [19] for more
comprehensive review of multiple-set CANO and related technique.

Let Zk (k = 1, . . . , T ) denote the set of T data matrices. Consider minimizing

f =
T∑

k=1

SS(Y − ZkWk) (25)

with respect to Wk (k = 1, . . . , T ) and Y subject to Y′Y = I, where Wk is the ma-
trix of weights applied to Zk , and Y is the matrix of hypothetical variables closely
related to canonical variates. The above criterion is called homogeneity criterion
[19]; it attempts to make ZkWk (k = 1, . . . , T ) as homogeneous as possible among
themselves by making each of them as close as possible to Y. Assume temporarily
that Y is known, and minimize f with respect to Wk . Then,

Wk = (Z′
kZk)

−Z′
kY (26)

for k = 1, . . . , T . Putting this estimate of Wk in the above criterion leads to

f ∗ = min
Wk |Y

f =
K∑

k=1

SS(Y − PZk
Y) = tr

(
Y′

(
K∑

k=1

QZk

)
Y

)
, (27)

where PZk
= Zk(Z′

kZk)
−Z′

k , and QZk
= I − PZk

. Minimizing f ∗ with respect to Y
subject to Y′Y = I is equivalent to maximizing
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g = tr

(
Y′

(
K∑

k=1

PZk

)
Y

)
(28)

with respect to Y subject to the same restriction. This amounts to obtaining the ei-
genvalue decomposition of R = ∑K

k=1 PZk
, or equivalently obtaining the SVD of

Z̃ = [Z̃1, . . . , Z̃T ], where Z̃k = Zk(Z′
kZk)

−1/2 (k = 1, . . . , T ).
Multiple-set CANO is interesting partly because it subsumes a number of existing

techniques as its special cases:
(1) PCA: When each Zk consists of a single continuous variable, say zk , gener-

alized CANO reduces to PCA. In this case R = ∑T
k=1 zk(z′

kzk)
−1z′

k = Z̃Z̃′, where
Z̃ is the standardized data matrix (i.e., Z̃ = [z1(z′

1z1)
−1/2, . . . , zT (z′

T zT )−1/2]). The

eigenvalue decomposition of matrix R is equivalent to the SVD of Z̃.
(2) Multiple correspondence analysis (MCA) [23]: When each Zk denotes a ma-

trix of dummy variables, multiple-set CANO specializes into MCA (e.g., [23]), var-
iously known as the quantification method of the third kind [28], dual scaling [48],
etc. In this case R = Z(D′

ZDZ)−1Z′, where Z = [Z1, . . . , ZT ], and DZ is a block
diagonal matrix with Zk (k = 1, . . . , T ) as the kth diagonal block.

(3) CANO, DISC, and MANOVA: Multiple-set CANO reduces to the usual 2-set
CANO when T = 2 (and the two sets of variables both consist of sets of continuous
variables), which in turn specializes into canonical discriminant analysis (DISC) and
MANOVA when one of the two sets of variables consists of dummy variables and
the other a set of continuous variables. When T = 2, the eigenvalue decomposition
of R reduces to

(PZ1 + PZ2)Y = Y�, (29)

where Y is the matrix of eigenvectors, and � is the diagonal matrix of eigenvalues
of R = PZ1 + PZ2 . Premultiplying both sides of (29) by PZ2 leads to

V2 = PZ2 V1(� − I)−1, (30)

where V1 = PZ1 Y, and V2 = PZ2 Y. Similarly, premultiplying both sides of (29) by
PZ1 leads to

PZ1 V2 = V1(� − I). (31)

Substituting V2 in (30) for V2 in (31) leads to

(PZ1 PZ2)V1 = V1(� − I)2. (32)

This is essentially the same eigenequation encountered in the two-set CANO. Matr-
ices V1 and V2 should be normalized to obtain the canonical scores obtained in the
two-set CANO.

(4) CA: When T = 2, and both data sets consist of dummy variable matrices, sim-
ple CA of single two-way contingency tables results, which amounts to the GSVD
of D−1

R FD−1
C with metrics DR and DC , where DR = Z′

1Z1, and DC = Z′
2Z2 are di-

agonal matrices of row and column sums of F = Z′
1Z2.
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It is interesting to see that CA can also be derived from unfolding analysis (Sec-
tion 2.2) [29,64]. Let U and V denote matrices of coordinates of row and column
points in a two-way contingency table, F. Then, the matrix of squared Euclidean
distances between row and column points is obtained by (2). Minimize

f = tr(F′D2(U, V)) = tr(F′1m1′
n diag(VV′) − 2F′UV′ + F′ diag(UU′)1m1′

n)

= tr(V′DCV) − 2tr(V′F′U) + tr(U′DRU), (33)

with respect to U and V subject to U′DRU = I, where m and n are the numbers of
rows and columns of the contingency table, respectively. Minimizing f with respect
to V for fixed U yields

V = D−1
C FU. (34)

Putting this estimate of V into the above criterion leads to

f ∗ = min
V |U f = −tr(U′FD−1

C F′U) + tr(U′DRU). (35)

Minimizing this criterion with respect to U subject to U′DRU = I is equivalent to
maximizing tr(U′FD−1

C F′U) under the same restriction. This can be obtained by the
generalized eigenvalue decomposition of FD−1

C F′ with respect to DR , or equivalently
by GSVD(D−1

R FD−1
C )DR,DC

.
Let G and H be matrices of dummy variables such that F = G′H. It is interesting

to note that linear transformations of G and H into canonical variates by GU and
HV provides best nonlinear transformations of arbitrarily quantified categories of G
and H. This was shown by Otsu [49] who used a variational method to find optimal
nonlinear transformations of the predictor variables in discriminant analysis. As it
has turned out, Otsu’s results are closely related to the Bayesian decision rule for
classification that requires classifying subjects (cases) into the group associated with
the maximum posterior probabilities (see also [19]).

Multiple-set CANO can also be viewed as a method for information integration
from T concurrent sources. Takane and Oshima-Takane [71] proposed a nonlinear
extension of multiple-set CANO using multilayered feed-forward neural network
models. Takane et al. [69] proposed another extension of multiple-set CANO based
on a kernel method. See Herbrich [31] for a general account of kernel methods.
This technique allows nonlinear multivariate analyses by a series of linear matrix
operations.

Yanai and Takane [95] proposed constrained CANO. Takane and Hwang [68]
and Takane et al. [75] extended constrained CANO by incorporating constraints on
both row and column sides of the two matrices to be related. The technique is called
generalized constrained CANO (GCCANO).

There is no analytical procedures for investigating sampling characteristics of
associations among T sets of variables even under the standard multivariate normal
assumptions. This is something to be explored in the future.
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6. The Wedderburn–Guttman theorem

Let Z be a m by n matrix of rank(Z) = p, and let M and N be m by r and n

by r matrices, respectively, such that M′ZN is nonsingular (i.e., rank(M′ZN) = q =
rank(ZN(M′ZN)−1M′Z). Then,

rank(Z − ZN(M′ZN)−1M′Z) = p − q. (36)

This is called Wedderburn–Guttman theorem. It was originally established for q = 1
by Wedderburn [92, p. 69] but was later extended to q > 1 by Guttman [24]. (Gutt-
man is a prominent psychometrician.) Guttman called the case in which q = 1 Lag-
range’s theorem while referring to Wedderburn [92], and Rao [53, p. 69] also calls
it Lagrange’s theorem. However, apparently there is no reference to Lagrange in
Wedderburn [92] according to Hubert et al. [34]. It may thus be more appropriately
called Wedderburn–Guttman theorem. Guttman [25] also showed the reverse of the
theorem, that is, for (36) to hold the matrix to be subtracted from Z must be of the
form ZN(M′ZN)−1M′Z. The theorem has been used extensively in psychometrics
[33] and in computational linear algebra [8] as a basis for extracting components
which are known linear combinations of observed variables.

Both necessity and sufficiency (NS) parts of the theorem follow immediately from
Marsaglia and Styan’s [46] condition (7.9) of Theorem 17 [9], which states that the
NS conditions for rank(A − B) = rank(A) − rank(B) are: (i) Sp(B) ⊂ Sp(A), (ii)
Sp(B′) ⊂ Sp(A′), and (iii) BA−B = B (i.e., A− ∈ {B−}). It is obvious that A = Z
and B = ZN(M′ZN)−1M′Z satisfy these conditions. Conversely, to satisfy (i) and
(ii), B has to be of the form B = ZNRM′Z for some N, M and R. To satisfy (iii), R
must be of the form R = (M′ZN)−1 if M′ZN is nonsingular. Takane and Yanai [74]
further discuss the condition under which (M′ZN)−1 can be replaced by a g-inverse
of M′ZN of some kind.

Two examples of application of the theorem are given:
(1) In the group centroid method of component analysis, components are defined

as centroids of some subsets of observed variables. Suppose there are six observed
variables, and the first three variables define the first component and the last three
the second component. Define

N′ =
[

1 1 1 0 0 0
0 0 0 1 1 1

]
,

and M = ZN. Then, QZNZ = ZQN/Z′Z , where QZN = I − ZN(N′Z′ZN)−1N′Z′
and QN/Z′Z = I − N(N′Z′ZN)−1N′Z′Z, gives the residual matrix.

(2) Rao [52] derived a method of component analysis in which components were
required to be orthogonal to a given matrix G in Sp(Z). This amounts to setting M =
G and N = Z′G, and obtaining the SVD of Q′

G/ZZ′Z = ZQZ′G, where QG/ZZ′ =
I − G(G′ZZ′G)−1G′ZZ′ and QZ′G = I − Z′G(G′ZZ′G)−1G′Z.
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7. Concluding remarks

There are a wide variety of contexts in psychometrics where matrix theory plays
a crucial role. Psychometrics today is requiring more and more advanced mathe-
matical skills with matrix algebra becoming only one of them. This, however, by
no means implies that knowledge in matrix algebra is becoming less important in
psychometrics. On the contrary, its importance has never been greater before than
it is today and perhaps in many years to come. I always keep telling my graduate
students that matrix algebra is the single most important subject to learn if one is to
pursue psychometrics as one’s profession.
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