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Abstract Copper delivery to Ccc2 – the Golgi Cu+-ATPase –
was investigated in vivo, replacing the Cu+-chaperone Atx1 by
various structural homologues in an atx1-D yeast strain. Various
proteins, displaying the same ferredoxin-like fold and (M/L)(T/
S)CXXC metal-binding motif as Atx1 and known as Cu+-,
Cd2+- or Hg2+-binding proteins were able to replace Atx1.
Therefore, regardless of their original function, these proteins
could all bind copper and transfer it to Ccc2, suggesting that
Ccc2 is opportunistic and can interact with many different pro-
teins to gain Cu+. The possible role of electrostatic potential sur-
faces in the docking of Ccc2 with these Atx1-homologues is
discussed.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Copper is a transition metal shuttling between the Cu+ and

Cu2+ redox states in the cell. Although toxic, it is required for

life. To overcome copper toxicity, organisms have developed

various means to have virtually no free copper in their cyto-

plasm, for instance intracellular sequestration by thiol-rich

proteins or extrusion out of the cytoplasm by membrane trans-

port proteins. Copper is also a key element for cell life because

it participates in many enzyme activities. Among the Cu+-

binding proteins in the cytoplasm, the Cu+-chaperone Atx1

delivers Cu+ to Ccc2, a P1-type ATPase imbedded in the

trans-Golgi membrane, which in turn transfers Cu+ to newly

synthesised proteins [1,2]. Transportation of Cu+ through the

Atx1-Ccc2 route is therefore responsible for Cu+ delivery to

the secretory pathway.

Yeast two-hybrid experiments showed an interaction be-

tween Atx1 and Ccc2 N-terminus [2]. One interesting feature
Abbreviations: Mbd, metal-binding domain; EPS, electrostatic poten-
tial surface
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of the Atx1-Ccc2 route is that the Ccc2 N-terminus encloses

two Atx1-like metal-binding domains (Mbds), denoted as

Mbd1 and Mbd2 in this study. Structural studies of Atx1

and Mbd1 have demonstrated that these proteins have the

same ferredoxin-like fold with the same CXXC metal-binding

motif [3,4]. NMR studies of Atx1 and Mbd1 interactions have

suggested that their electrostatic potential surface (EPS) may

optimize their relative orientation for Cu+-transfer to occur

[5]. The capacity for Atx1 and Mbd1 to exchange Cu+ was evi-

denced in vitro and a mechanism was proposed for this ex-

change [2,6]: (i) in Atx1, Cu+ is coordinated by two sulfurs

belonging to the CXXC thiols and by a third atom (sulfur or

oxygen) presumably exogenous; (ii) while docking with

Mbd1, an event that is favoured by complementary electro-

static interactions at the surfaces of the proteins [7], the exog-

enous ligand is replaced by one CXXC thiol of Mbd1, linking

Atx1 and Mbd1 in a Cu+-bridged heterodimer; (iii) Cu+-trans-

fer is then ensured by its coordination by the second CXXC

thiol of Mbd1 and (iv) finally apo-Atx1 is released.

Genes for Atx1-like proteins and target Cu+-ATPases with

one to six Mbds at their N-terminus have been identified in

many genomes. Up to now, all metallo-chaperones and Cu+-

ATPase Mbds that have been studied as soluble proteins, dis-

play the same ferredoxin-like fold and the same (M/L)(T/

S)CXXC metal-binding motif (Table 1). Many other metal

transporting proteins and ATPase Mbds have or are predicted

to have similar folds and metal-binding sites, even though they

are not Cu+-proteins [8]. This was actually proved for MerP

from Shigella flexneri [9], a periplasmic protein involved in

Hg2+-resistance [10] and for the Mbd of ZntA from Esche-

richia coli [11], an ATPase involved in Zn2+-resistance [12].

From these similarities arose the idea that all these proteins

or Mbds could possibly be functional homologues of Atx1.

A similar idea is found in a phylogenetic analysis of Mbds

from Cu+-chaperones and -ATPases [13].

This question was addressed herein by determining whether

Cu+ could be delivered to Ccc2 by various metallo-chaperones

or ATPases� Mbds, which would all act as Atx1. For this pur-

pose, we performed complementation assays in an atx1-D
yeast strain, i.e., a strain in which the ATX1 gene was dis-

rupted, and investigated the ability of different proteins to re-

place Atx1 in Cu+-transfer to the secretory pathway. We chose

both Mbd1 and Mbd2 from Ccc2, the Cu+-chaperone CopZ

from Bacillus subtilis, the Hg2+-binding protein MerP from
blished by Elsevier B.V. All rights reserved.
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Table 1
Alignment of various Atx1-like proteins. MerP, Mbd2 and Ntk sequences were aligned with those of 12 apo-proteins with available structures

Left column, PDB ID of the structure, right column, protein name as defined in the text. Ccs-dI structure 1QUP\ was extracted from Ccs-Sod
heterodimer structure 1QUP.
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Ralstonia metallidurans CH34 and the Mbd of the Cd2+-ATP-

ase from Listeria monocytogenes, denoted here as Ntk.

We show here that these proteins are all functional homo-

logues of Atx1 in yeast. Therefore, whether they are eukaryotic

or prokaryotic, metallo-chaperones or Mbds initially found in

a Cu+- or a Cd2+-ATPase, they all restore Cu+-homeostasis in

yeast. Our results support the idea that the interactions be-

tween the metallo-chaperone and Ccc2 are not highly specific

in vivo. Rather, Ccc2 is an opportunistic protein, interacting

with many different proteins having the right fold and the right

(M/L)(T/S)CXXC metal-binding motif. Interestingly enough,

the proteins that were able to act as Atx1 displayed various

EPSs, from predominantly positive as Atx1 [5] to predomi-

nantly negative as CopZ [14], raising the issue of the validity

of EPS calculations to predict in vivo interactions.
2. Materials and methods

An atx1-D yeast strain denoted DATX1 was created by disrupting
the ATX1 gene with a deletion cassette bearing the TRP1 gene as a
selection marker. DATX1 was grown in yeast extract-peptone-dextrose
medium.
All the constructions for expressing Atx1, Mbd1, Mbd2, CopZ,

MerP and Ntk were generated by PCR amplifying the nucleotide se-
quences encoding the amino acid sequences shown in Table 1 from
yeast genomic DNA, from B. subtilis genomic DNA (given by A.-E.
Foucher and J.-M. Jault), from pET-3a (given by E. Rossy and J.
Coves) and from pQE60NTK (given by P. Catty), respectively. The
products were checked and subcloned in a multi-copy vector pYEp181,
denoted as pY [15] or a low-copy vector pLeu (derived from pRS315
[16]). Both pYEp181 and pLeu vectors without insert were used as con-
trols. Another control was obtained by changing the cysteines of the
CXXC metal-binding motif into serines in Atx1, Mbd1 and Ntk.
DATX1 was transformed with construction vectors encoding Atx1

or homologues and transformants were selected on DO-Leu plates.
Randomly selected clones were grown for 3 days (pY-) or 4 days
(pLeu-) at 30 �C in iron- and copper-limited medium [17]. For each
protein, three independent transfections were carried out and the phe-
notypic tests were performed on at least five different clones.

2.1. Atx1 detection
Yeast cells transformed by pY- or pLeu-Atx1 were grown overnight

in DO-Leu and collected 24 h later. Harvested cells were washed and
broken by glass bead homogenization in 60 mM Tris–HCl (pH 7.5),
2 mM EDTA, 0.3 M sorbitol, 60 mM NaCl and Roche complete pro-
tease inhibitor mixture. The homogenate was spun down for 1 h at
90 000 · g, the supernatant collected and reacted with DEAE Sephar-
ose for 2 h at 4 �C. The mixture was spun down, the supernatant con-
centrated and submitted to SDS–PAGE. Protein expression was
assessed by Coomassie staining.

2.2. Molecular modelling by homology and electrostatic calculations
MerP, Mbd2 and Ntk sequences were aligned using Clustalw [18]

against the sequences of 12 homologous apo-proteins (Table 1) with
known structures and ferredoxin-like folds (Fig. 4A). Starting from
these alignments, 10 models of each protein were built with the pro-
gram Modeller [19]. The model with the lowest energy was retained
(see the secondary structures in Table 2) and used in the following elec-
trostatic calculations. Partial charges were assigned to all atoms of the
proteins listed in Table 1 using the CHARMM force field [20]. Next,
instead of calculating the electrostatic potential at the surface of the
proteins, we designed a calculation allowing to get the overall electro-
static potentials at one glance, as a plani-sphere allows to look at the
whole earth surface at one glance. To do so, proteins were all oriented
with their centre of mass in position (0, 0, 0) and their axes aligned in
the x, y and z directions of the coordinate system, hence defining the
maximum length of the proteins in each direction (�a/2 < x < a/2,
�b/2 < y < b/2, �c/2 < z < c/2). Then, each protein was enclosed in a
box 2 Å larger than its maximum dimensions (�a/2 � 2 and a/2 + 2
on x, �b/2 � 2 and b/2 + 2 on y, �c/2 � 2 and c/2 + 2 on z). The elec-
trostatic potential was calculated on the faces of the box and the box
was ‘‘opened’’ as sketched in Fig. 4B, which reveals the whole EPS at
one glance. For the sake of comparison, the electrostatic potential val-
ues (�298 to 189 kcal/mol) are all shown with the same scale, from
black for the most negative potentials to white for the most positive
potentials.
3. Results

3.1. The reliability of complementation assays on DATX1
In yeast, Fet3, an iron multi-copper-oxidase involved in

high-affinity iron uptake at the plasma membrane incorporates

copper in the Golgi, prior to be sent to the plasma membrane.

Because yeast cells lacking Atx1 are defective in delivering Cu+

to the Golgi, Fet3 is not activated and an atx1-D yeast strain

such as DATX1 cannot grow in an iron- and copper-limited

medium. However, this phenotype can be rescued by adding

excess copper or iron [1]. This is illustrated by the phenotypic

tests in Fig. 1 which show that the DATX1 strains transformed

with the empty plasmids, denoted pY- and pL-, did not grow

under copper- and iron-limiting conditions and were rescued

upon addition of iron. Another negative control was obtained

by producing Atx1-SXXS, which bears serines instead of cyste-

ines in its metal-binding motif and was previously shown not



Fig. 1. Atx1 expression rescues the growth of DATX1 in an iron- and copper-limited medium: 0.1 lM CuSO4, 2 mM ferrozine and iron ammonium
sulfate as indicated. Under each condition, the drops shown in the first column contained 105 cells and 104 in the next column. DATX1 was
transformed with: (A) high-copy plasmids and (B) low-copy plasmids. pY- and pL- are strains transformed with empty plasmids, pY- and pL-Atx1-
SXXS express Atx1-SXXS, pY- and pL-Atx1 express wild type Atx1.

Table 2
The ferredoxin-like fold obtained by homology modelling
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to interact with the Ccc2 N-terminus [7]. Finally, overexpres-

sion of wild-type Atx1 (pY- and pL-Atx1) did restore yeast

growth under copper- and iron-limiting conditions. This shows

the expected requirement of Atx1 cysteines for recovery of

Cu+-transfer, hence the reliability of these phenotypic tests.

Complementation was therefore achieved by Atx1, even at a

low expression level. Atx1 and Atx1-SXXS were detected by

SDS–PAGE analysis (Fig. 2). Although pY-Atx1 and pY-

Atx1-SXXS produced high levels of proteins (Fig. 2; lanes 3

and 4), only Atx1 expression enabled DATX1 to grow under

iron-limiting conditions (Fig. 1). pL-Atx1 produced Atx1 at

such a low level that it was hardly detected on a Coomassie-

stained gel (Fig. 2, lane 5). This was also the case with endog-

enous Atx1 in YPH499 (data not shown). Although low, the

expression level of pL-Atx1 was enough to restore the growth

defect of DATX1 in 4 days (Fig. 1). The reliability of the phe-
Fig. 2. Protein expression in yeast. Cytosolic proteins were isolated
from various cells and purified: Atx1 from E. coli is shown in lane 1 to
identify Atx1 in the yeast extracts (black arrow, lanes 2–5): lane 2,
DATX1 shown as a negative control; lane 3 pY-Atx1; lane 4 pY-Atx1-
SXXS; lane 5 pL-Atx1.
notypic tests led us to use them further to assess the ability of

various proteins to act as Cu+-chaperones.
3.2. Both metal-binding domains of Ccc2 are efficient

copper-chaperones in yeast

In vivo, Cu+-transfer is thought to occur through direct

interactions between Atx1 and the Ccc2 N-terminus. Indeed,

no interaction has been detected between Atx1 and other cyto-

solic domains of Ccc2 by the yeast two-hybrid system [2]. The

Ccc2 N-terminus can be divided into two Atx1-like domains,

Mbd1 and Mbd2, which are 34% and 29% identical to Atx1,

respectively (Table 1). To check their potential role as Atx1-

homologues, both domains were expressed as soluble proteins

in DATX1. Overexpression of Mbd1 and Mbd2 rescued the de-

fect of growth in an iron- and copper-limited medium (Fig. 3,

pY-Mbd1 and pY-Mbd2), whereas Mbd1-SXXS did not (data

not shown). Therefore, both Mbd1 and Mbd2 can be consid-

ered as Atx1 functional homologues.

The three-dimensional structures of Atx1 and Mbd1 have al-

ready been described (Table 1) and that of Mbd2, which is 43%

identical to Mbd1, was calculated here by molecular modelling

(Table 2). The corresponding EPS were calculated as described

in Section 2 and the patterns of Atx1, Mbd1 and Mbd2 EPS

are shown in Fig. 4. The whole Atx1 EPS is positive, whereas

Mbd1 appears negatively charged, in agreement with previous

work [5] and Mbd2 displays the same pattern as Mbd1, i.e., al-

most entirely negatively charged. Therefore, we can assume

that Mbd1 and Mbd2 can be considered as Atx1-homologues

in yeast, despite their different EPS.
3.3. The Cu+-chaperone does not need to be eukaryotic

In bacteria, Cu+-homeostasis is regulated by the cop operon

which encodes among other proteins the metallo-chaperone

CopZ and the Cu+-ATPase CopA [21]. These two proteins

have been shown to interact with each other [22] and the struc-

tures of CopZ and CopAb, the second Mbd of CopA, have



Fig. 3. Expression of Atx1 structural homologues rescues the growth
of DATX1 in the same iron- and copper-limited medium as in Fig. 1.
DATX1 was transformed with various high-copy plasmids: pY- and
pY-Atx1 as in Fig. 1, pY-Mbd1, pY-Mbd2, pY-CopZ, pY-Ntk and
pY-MerP are DATX1 strains expressing Mbd1, Mbd2 (from Ccc2),
CopZ, Ntk and MerP, respectively. Similar results were obtained with
the low-copy plasmids.

1 See Axelsen�s database on P-type ATPases at http://biobase.dk/~axe/
patbase.html.
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been described. CopZ binds copper, has a ferredoxin-like fold

and its EPS pattern is predominantly negative (see Fig. 4)

[14,23]. However, overexpression of CopZ in DATX1 restored

the growth in an iron- and copper-limited medium (pY-CopZ

in Fig. 3), showing that CopZ is another Atx1 functional

homologue.

3.4. The Atx1 functional homologue does not need to be

originally involved in Cu+-homeostasis

Among the P1-type ATPases which are specific for heavy-

metal transport and have an N-terminus made of one or more

Mbds, some were shown to be responsible for bacterial resis-

tance to cations other than Cu+. For instance, in Escherichia

coli, the activity of the P1-type ATPase ZntA is stimulated

by Cd2+, Zn2+, Pb2+ and Hg2+ [24] and its N-terminus Mbd

has a ferredoxin-like fold [11]. Herein, we focused on CadA,

a Cd2+-ATPase from Listeria monocytogenes which has one

single Mbd at its N-terminus. Ntk is made of the first 71 amino

acids of CadA (Table 1) and shares enough homologies with

the metallo-chaperones to allow molecular modelling (Table

2). The EPS pattern of Ntk is a mixture of negative and posi-

tive patches, markedly different from that of CopZ, Mbd1 and

Mbd2 (Fig. 4). To assess the ability of Ntk to act as Atx1, it

was expressed in DATX1 and found to restore DATX1 growth

in a copper- and iron-limited medium (Fig. 3). We also

checked the requirement for the CXXC thiols in Ntk by

expressing Ntk-SXXS, which did not restore DATX1 growth

(data not shown). Thus, Ntk, the N-terminal Mbd of CadA,

produced as a soluble protein in yeast, was able to restore

Cu+-homeostasis in DATX1.

Finally, MerP, a protein involved in Hg2+-resistance which

also displays a ferredoxin-like fold and the right metal-binding

motif [9], has been predicted to be a metallo-chaperone [13].

The ability of MerP from Ralstonia metallidurans CH34 [25]

to act as a Cu+-chaperone was indeed demonstrated here, as

its expression in DATX1 restored Cu+-homeostasis (Fig. 3).

Therefore, we found that both Ntk and MerP, which are not

involved in Cu+-homeostasis in their native organism, were

able to act as a Cu+-chaperone in yeast.
4. Discussion

Over the past 10 years, considerable interest has been ex-

pressed in the literature for the CXXC motif as a heavy-metal

binding motif. On the one hand, Cu+-chaperones bearing this

motif were identified for their ability to interact with their Cu+-

ATPase targets in eukaryotes as well as in prokaryotes and on

the other hand, the target Cu+-ATPases 1 were identified as

having the same CXXC motif at their N-terminus. In addition,

non-Cu+ heavy-metal ATPases were also found, which bear

the same CXXC motif at their N-terminus and are involved

in Cd2+, Zn2+ or Pb2+ resistance of prokaryotes [26,27]. It

was therefore tempting to examine whether exogenous metal-

lo-chaperones and Mbds could fulfil the role of Atx1 in yeast,

regardless of their origin.

Since Atx1 was discovered, the role of putative metallo-

chaperones from various organisms was demonstrated because

they were able to replace Atx1 in atx1-D strains. This method

has been used in plants [28], fungi [29], worms [30], rats [31]

and humans [32,33] and the involvement of these proteins in

Cu+-homeostasis in their own organism was confirmed. There-

fore, the well-established atx1-D phenotype is an appropriate

tool for assessing the ability of various proteins to act as

Atx1, allowing DATX1 to recover Cu+-homeostasis.

4.1. Proteins of different specificity and origin can play the role

of Atx1 in Cu+-homeostasis

We show here that Mbd1 and Mbd2 were able to replace

Atx1 when individually expressed as cytosolic proteins in

DATX1 (Fig. 3). This demonstrates that the same domain

can play both roles in Cu+-transfer, that of the soluble me-

tal-binding protein and that of the Mbd tethered to an integral

membrane protein, in agreement with phylogenetic studies

[13]. CopZ from B. subtilis was also able to replace Atx1 in

DATX1 (Fig. 3), suggesting that the Cu+-chaperone function

is independent of eukaryotic-prokaryotic separation. How-

ever, Mbd1, Mbd2 and CopZ were expected to bind Cu+, as

genuine Cu+-binding proteins. Ntk, the Mbd of a cadmium

ATPase and MerP, a Hg2+-binding protein were both able to

replace Atx1 when expressed as a cytosolic protein in DATX1

(Fig. 3), suggesting that they both act as functional Cu+-chap-

erones in yeast, as well as Mbd1, Mbd2 and CopZ.

At this point, it is tempting to generalize and suggest that all

known metallo-chaperones and P1-type ATPase Mbds could

mimic Atx1 in yeast. If it were the case, they would all be able

to bind Cu+-and transfer it to Ccc2. Inasmuch as Cu+-binding

is concerned, this is not surprising, because of the high affinity

of CXXC thiols for Cu+. In the same way, but in vitro, Atx1

and Mbd1 were shown to bind Hg2+ [3], Atox1, Hg2+ and

Co2+ [34], the Wilson ATPase N-terminus, Zn2+ [35] and

Enterococcus hirae CopZ, Cd2+ [36]. Ntk and MerP used in

this study are probably also able to bind various cations and

hence, Cu+ in the yeast cytoplasm. However, the next step,

that is Cu+-transfer from any of these proteins to Ccc2 is

not as straightforward.

http://biobase.dk/~axe/patbase.html
http://biobase.dk/~axe/patbase.html


Fig. 4. (A) Atx1 ferredoxin-like fold, successively b1 a1b2b3a2b4. The two Cys of the CXXC motif are shown. (B) The box enclosing the protein (see
definition in Section 2) is opened following two different patterns, as a reminder of the protein origin (T for genuine chaperones, up-side down T for
Mbds). (C) EPS patterns of various Atx1-like proteins (units are Å). Positive potentials – hence positive charges – appear in white and negative
charges in black. EPS were calculated from experimental structures when available, otherwise from structures obtained from homology modelling.
EPS patterns were also calculated from the Cu+-bound structures of Atx1 (1FD8) and Mbd1 (1FVS) and found to be similar to those of the apo-
proteins, Atx1 being still positive and Mbd1 still negative.
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4.2. Cu+-transfer between the metallo-chaperones and their

targets: the role of the EPS

Based on the original proposition from O�Halloran�s labo-

ratory [2], Cu+-transfer from Atx1 to Mbd1 is thought to oc-

cur via an interaction which allows Cu+ to exchange its

coordinations by the thiols of Atx1 for those of Mbd1

through a Cu+-bridged heterodimer. Solution structures of

Atx1 and Mbd1 on the one hand [5] and of CopZ and Co-

pAb on the other hand [14] showed that in both pairs, dock-

ing could be favoured by electrostatic forces allowing the

CXXC motifs to face each other. Such docking would there-

fore favour heterodimer formation and hence Cu+-transfer.

In addition, NMR studies of the whole N-terminus of CopA

which comprises two Mbds have led to the idea that although

linked to each other, each Mbd could be independently

folded and, therefore, be a target for CopZ and Cu+-transfer

[37].

Given these similarities, the Ccc2 N-terminus can be seen

as two similar Mbds, displaying predominantly negative

EPS patterns (Fig. 4). The Atx1 EPS pattern being predom-

inantly positive, it can be assumed that docking is favoured

by electrostatic attraction. This also holds for MerP, which

displays a predominantly positive EPS pattern and might

hold for Ntk, which has a mixed EPS (Fig. 4). However,

we face a major difficulty in explaining docking of Mbd1,

Mbd2 or CopZ with tethered-Mbd1 or -Mbd2, according
to their EPS. The diversity of the EPS displayed by these

molecules suggests that complementary electrostatic interac-

tions may not be the predominant property for docking of

any of these Atx1 functional homologues with Ccc2. A rea-

sonable explanation is that Cu+-transfer involving these

homologues does not depend on electrostatic interactions in

vivo. Recent results on the Wilson ATPase which N-terminus

bears 6 Mbds show that complementary electrostatic interac-

tions do not allow to predict which Mbd Atox1 interacts with

[38].

Up to now, the characteristics of a functional Atx1-like pro-

tein can be summarized as having a ferredoxin-like fold and

containing an intact (M/L)(T/S)CXXC motif in the first loop

(Table 2). All the proteins tested here succeeded in replacing

Atx1. The only protein that was previously shown to fail to re-

place Atx1 is Ccs-dI (Table 1), the first domain of the yeast

superoxide dismutase Cu+-chaperone [39], and the reasons

for this are still unclear. Indeed, Ccs-dI has a predominantly

positive EPS pattern (Fig. 4). In conclusion, straightforward

growth tests of an atx1-D strain showed that Atx1 can be func-

tionally replaced by several proteins which all display a ferre-

doxin-like fold and a common metal-binding motif.

Interestingly enough, there was no requirement for eukaryotic

origin or involvement in Cu+-homeostasis for these proteins to

act as Atx1, once expressed in yeast. According to their EPS,

the variety of the proteins acting as Atx1 precludes for most
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of them that electrostatic interactions favour docking with

Ccc2. Ccc2 thus appears as an opportunistic protein, able to

scavenge Cu+ from a large variety of partners by a mechanism

which remains to be elucidated.
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