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a b s t r a c t

Defects of the mitochondrial protein synthesis cause a subgroup of mitochondrial diseases, which are
usually associated with decreased activities of multiple respiratory chain (RC) enzymes. The clinical pre-
sentations of these disorders are often disabling, progressive or fatal, affecting the brain, liver, skeletal
muscle, heart and other organs. Currently there are no effective cures for these disorders and treatment is
at best symptomatic. The diagnosis in patients with multiple respiratory chain complex defects is particu-
larly difficult because of the massive number of nuclear genes potentially involved in intra-mitochondrial
eywords:
itochondrial respiratory chain
itochondrial translation
uman mitochondrial disease
issue specific presentation

protein synthesis. Many of these genes are not yet linked to human disease. Whole exome sequencing
rapidly changed the diagnosis of these patients by identifying the primary defect in DNA, and preventing
the need for invasive and complex biochemical testing. Better understanding of the mitochondrial protein
synthesis apparatus will help us to explore disease mechanisms and will provide clues for developing
novel therapies.
ytosolic translation

Organelle facts

• Mitochondrial protein synthesis requires several mitochon-
drial and nuclear-encoded factors for optimal translation.

• The clinical presentation of diseases due to defective mito-
chondrial protein synthesis is very variable and tissue
specific presentations are common.

• The reasons behind the tissue specificity are largely
unknown.

• Besides mitochondrial tRNA mutations and mtDNA dele-
tions or depletion, autosomal recessive mutations have
been reported in genes encoding ribosomal proteins, ribo-
some assembly proteins, mitochondrial aminoacyl-tRNA
synthetases, tRNA modifying enzymes and initiation, elon-
gation and termination factors of translation.

•
 Frequent and clinically recognisable genetic causes of
human diseases due to impaired mitochondrial translation
are caused by mutations in mitochondrial tRNA synthetase
and tRNA modifying genes.

• The potential interaction between cytosolic and mitochon-
drial translation requires further investigations.
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1. Introduction

Mitochondrial diseases affect at least 1 in 5000 of the popu-
lation and produce diverse clinical phenotypes often presented
as multi-systemic disorders (DiMauro et al., 2013; Ylikallio and
Suomalainen, 2012; Vafai and Mootha, 2012). In addition to
the nucleus, human cells also harbour DNA in the mitochon-
dria (mtDNA), which is essential for cell viability (Tuppen et al.,
2010). This small (16.5 kb) genome is found in multiple copies in
mitochondria, the subcellular organelles that often constitute more
than 20% of the total cell volume. OXPHOS (oxidative phosphor-
ylation) is responsible for the production of ATP by generating
a proton gradient across the inner membrane of the mitochon-
dria which is used by the mammalian cells (Greaves et al., 2012).
The mitochondrial OXPHOS system comprises around 150 different
proteins out of which only 13 polypeptide subunits are encoded by
the mtDNA. In addition, the mtDNA encodes the small and large
rRNAs, and 22 distinct mitochondrial tRNAs that are necessary for
the translation of only the mitochondrial-encoded proteins (Smits
et al., 2010; Rötig, 2011; Chrzanowska-Lightowlers et al., 2011). The
nuclear-encoded subunits of the respiratory chain (RC) complexes
as well as proteins that are inevitable for normal mitochondrial
protein synthesis (such as OXPHOS assembly, mtDNA metabolism
and maintenance, mitochondrial cofactor biosynthesis, mitoribo-
somal subunits and assembly factors, regulators of mitochondrial

Open access under CC BY license.
expression and translation, etc.) are encoded by the nuclear genome
(nDNA) and synthetised in the cytosol before transported into the
organelle (Vafai and Mootha, 2012). The mitochondrial ribosomal
proteins assemble with mitochondrial ribosomes 12S rRNA and 16S
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RNA to form the mitochondrial ribosome (Pietromonaco et al.,
991). Lately it was also reported that import of 5S rRNA is also
ransported to the mitochondria being an essential component of
he mitochondrial ribosomes (Smirnov et al., 2011).

. Organelle function

The components responsible for the proper mitochondrial
ranslation are different from their cytosolic counterparts and they
re more related to those of bacteria however the mechanisms of
he translation follows the same major steps: initiation, elongation,
ermination and recycling of the ribosome (Christian and Spremulli,
012) (Fig. 1).

.1. Initiation

The process of mitochondrial translation starts with the for-
ation of the initiation complex. The separation of the two
itochondrial ribosomal subunits (28S and 39S) (Kuzmenko et al.,

013) allow this complex to be formed which consists of the 28S
ubunit, mRNA and fMET-tRNA and IF2/3mt (Koc and Spremulli,
002; Christian and Spremulli, 2009). This is followed by the
ntrance of the mRNA into the IF3mt:28S subunit complex. IF3mt

s thought to support the correct position of mRNA to bind the
mall subunit at the peptidyl (P) site of the mitoribosome. When the
ppropriate start codon is present, the formylmethionin-tRNA can
ind to the first codon with the help of IF2mt. The association of the
itoribosome stimulates the release of the initiation factors and

he elongation on the 55S ribosome commence. MTFMT is critical
or efficient human mitochondrial translation and reveal a human
isorder of Met-tRNA(Met) formylation (Tucker et al., 2011; Neeve
t al., 2013).

.2. Elongation

To coordinate accurate and specific codon anti-codon pairing,
itochondrial elongation factor (EF-Tumt-GTP) and an amino-

cylated tRNA arrives to the A-site of the mitoribosome. Upon
orrect codon-anticodon pairing the EF-Tumt-GDP leave the
itoribosome and the aminoacyl-tRNA moves into the P site
here peptide bond formation is catalysed extending the growing
olypeptide chain. EF-Tsmt plays a role as a nucleotide exchange
actor and converts EF-Tumt to an active form (EF-Tumt-GTP). The
TP bound EFG1mt catalyses the translocation of the ribosome
uring the A and P site tRNAs move to the P and exit (E) sites
f the mitoribosome. This elongation step repeats itself until

he stop codon (UAA, UAG, AGA or AGG) is encountered in the
-site. Mutation of the mitochondrial elongation factors typically
ssociated with encephalopathy and other organ involvement
liver, heart). Clinical symptoms are present in early infancy and

ig. 1. Schematic overview of human genes involved in mitochondrial protein synthesis d
nd correctly replicated and transcribed. Mutations within nDNA-encoded genes respon
roteins also have to be imported into the mitochondria for accurate mitochondrial transl
ased on their role in the translational machinery. The first group of genes (highlighte
uclear genes (GARS, KARS (marked with black stars)) are transported to the mitochondr
enes involved in mt-tRNA modification are: MTO1, PUS1, TRMU and MTFMT (highlighted
itochondrial ARSs have been found to cause translational deficiencies in humans. Thes

ARS2 (highlighted in dark blue) (2). Nuclear genes encoding for ribosomal proteins and in
nd MRPL44 (light blue) (3). Genes represented in green are responsible for the mitocho
SFM, GFM1, C12orf65. Nuclear genes such as translational activators and mRNA stability f
ynthesis (5). For the formation of the respiratory chain (RC) complexes both nuclear and m
actors need to be synthetised, transported to the mitochondrial matrix and assembled i
roteins are represented within each complex (CI: ND1, ND2, ND3, ND 4L, ND4, ND5, ND6
f the mitochondrial genome (7) showing the 13 proteins, 2 r-RNA, 22 t-RNA regions an
hown in the diagram. Associated clinical phenotypes with the gene mutations mentione
f Biochemistry & Cell Biology 48 (2014) 77–84 79

the affected children die early (Valente et al., 2007; Smeitink et al.,
2006; Coenen et al., 2004; Smits et al., 2011a,b).

2.3. Termination

The mitochondrial release factor (mtRF1a) recognises the stop
codon and binds to the mitoribosome, induces hydrolysis of the
peptidyl-tRNA bond in the A-site releasing the mature protein from
the site. Other termination release factors such as mtRF1, C12orf65
and ICT1 are also thought to play an essential role in the termination
(Richter et al., 2010). As a last step mitochondrial recycling factors
(mtRRF1 and mtRRF2) translocate to the A-site to induce the release
of the mRNA (Chrzanowska-Lightowlers et al., 2011). Up to date
only the C12orf65 has been identified as a disease causing gene.
Affected patients develop optic atrophy and ophthalmoplegia with
Leigh syndrome (Antonicka et al., 2010).

2.4. Regulatory mechanisms

The expression of mitochondrial proteins is regulated by their
own translational activators that bind mitochondrial mRNAs usu-
ally to their 5‘-untranslated regions, and each mitochondrial mRNA
has its own translational activator(s), which has been first shown
in yeast (Herrmann et al., 2013). Recent studies showed that these
translational activators can be part of a feedback control loops
which only permit translation if the downstream assembly of
nascent translation products can occur (Herrmann et al., 2013).
Recently mutations in nuclear-encoded translational activators of
mitochondrial proteins such as TACO1 were also implicated in
human disease (Weraarpachai et al., 2009). A regulatory role of
aminoacyl-tRNA synthetases has been suggested in both cytosolic
and mitochondrial translation (Yao and Fox, 2013) and other fac-
tors, such as MTERF3 has been implicated to coordinate crosstalk
between transcription and translation for the regulation of mam-
malian mtDNA (Wredenberg et al., 2013).

3. Cell Physiology

Impaired mitochondrial translation usually results in severe
combined respiratory chain dysfunction through deficient func-
tion of all mtDNA-encoded proteins however some nuclear genes
have been shown to alter the translation of single mitochondrial-
encoded proteins. The defective mitochondrial proteins lead to
deficient ATP production, and cellular energy deficit.

Human cells contain 17 cytoplasmic ARS polypeptides, includ-
ing the bifunctional glutamyl-prolyl-tRNA synthetase (EPRS), and

18 mitochondrial ARS2 enzymes. Three ARS genes encode proteins
with dual localisation, present both in the cytoplasm and mitochon-
dria (GARS, KARS, QARS), and the transport of the mitochondrial
isoforms is ensured by a mitochondrial targeting signal.

efects. Prior to mitochondrial protein synthesis the mtDNA needs to be maintained
sible for these functions lead to mtDNA deletion(s) and depletion. Several other

ation processes. These nuclear encoded genes are categorised into different groups
d in red) are the genes that are involved in cytosolic translation. Some of these
ia and also function as mitochondrial aminoacyl t-RNA synthetase (ARS). Nuclear
in purple) (the functions of the genes are shown and labelled as (1). Up to date 10
e genes are DARS2, RARS2, EARS2, MARS2, FARS2, AARS2, YARS2, SARS2, HARS2 and
volved in impaired mitochondrial translation are MRPL3, MRPS16, MRPS22, MRPL12
ndrial translation steps: initiation, elongation and termination (4): RMND1, TUFM,
actors (LRPPRC, TACO1 and MTPAP) also involved in impaired mitochondrial protein

itochondrial DNA are required. nDNA-encoded RC subunit genes and RC assembly
nto functional enzyme complexes with the 13 mDNA-encoded proteins. These 13
; CIII: CYTB; CIV: COX1, COX2, COX3; CV: ATPase6, ATPase8) (6). Schematic drawing
d the control region. Mutations for MELAS, MERRF and for common deletions are
d above are detailed in Table 1.



80 V. Boczonadi, R. Horvath / The International Journal of Biochemistry & Cell Biology 48 (2014) 77–84

Table 1
Nuclear DNA mutations involved in impaired mitochondrial translation and associated diseases in human. Sources: OMIM (Online Mendelian Inheritance in Man).

Nuclear genes involved in impaired cytosolic translation

Gene Protein Clinical presentation Age of onset OMIM References

EIF2AK1-5 eIF2B subunits �–� Vanishing white matter;
childhood ataxia with
central nervous system
hypomyelination (chronic
progressive, an episodic
encephalopathy)

Childhood to adult
age

604032 Leegwater et al.
(2001); van der Knaap
et al. (2002)

EIF2AK3 eIF2 � kinase PERK Wolcott–Rallison
syndrome (diabetes
mellitus, epiphyseal
dysplasia, kidney and liver
dysfunction, mental
retardation, central
hypothyroidism and
dysfunction of the exocrine
pancreas)

Neonatal or early
childhood

604032 Delépine et al. (2000)

GARS YARS
KARS AARS

Glycyl-tRNA synthetase
tyrosyl-tRNA synthetase
lysyl-tRNA synthetase
alanyl-tRNA synthetase.

Dominant intermediate
Charcot–Marie–Tooth type
C (slowly progressive
mixed
demyelinating-axonal
neuropathy) or hereditary
motor neuropathy

Childhood to adult
age

600287 603623 601421 601065 Antonellis et al. (2003)
Jordanova et al. (2006)
Rossor et al. (review)
(2013)

RPS19 RPS24 Ribosomal protein S19
ribosomal protein S24

Diamond–Blackfan
anaemia (abnormalities of
the thumb, short stature,
ventricular septal defects,
kidney hypoplasia and
congenital glaucoma)

From birth 603474 602412 Draptchinskaia et al.
(1999); Gazda et al.
(2006)

RMRP Mitochondrial RNA proc.
endoribonuclease

Cartilage-hair hypoplasia Neonatal, infantile 157660 Ridanpää et al. (2001)

DKC1 Dyskerin X-linked dyskeratosis
congenita (ectodermal
abnormalities, bone
marrow failure and
susceptibility to cancer)

From birth 300126 Heiss et al. (1998)

SBDS Shwachman–Bodian–Diamond
syndrome protein

Shwachman–Diamond
syndrome (exocrine
pancreatic insufficiency,
bone marrow dysfunction,
skeletal abnormalities and
short stature)

From birth 607444 Boocock et al. (2003)

Nuclear genes involved in impaired mitochondrial translation – tRNA-modifying enzymes

Gene Protein Clinical presentation Age of onset OMIM References

PUS1 Pseudouridine synthase Myopathy, lactic acidosis
and sideroblastic anaemia
(MLASA1)

Early childhood 608109 Bykhovskaya et al.
(2004)

TRMU tRNA 5-methylaminome-
thyl-2-thiouridylate
methyl-transferase

Reversible infantile liver
failure

Infantile 613070 Zeharia et al. (2009);
Gaignard et al. (2013)
Schara et al. (2011);

MTO1 Mitoch. translation
optimisation 1 homolog

Hypertrophic
cardiomyopathy and lactic
acidosis

Infantile 614702 Ghezzi et al. (2012)

MTFMT Mitoch. methionyl-tRNA
formyltransferase

Leigh syndrome Early childhood 611766 Tucker et al. (2011)
Neeve et al. (2013)

Nuclear genes involved in impaired mitochondrial translation – ribosomal proteins

Gene Protein Clinical presentation Age onset OMIM References

MRPL3 Mitochondrial ribosomal
protein L3

Hypertrophic
cardiomyopathy and
psychomotor retardation

Infantile 614582 Galmiche et al. (2011)

MRPS16 Mitochondrial ribosomal
protein S16

Corpus callosum agenesia,
hypothonia and fatal
neonatal lactic acidosis

Neonatal 610498 Miller et al. (2004)

MRPS22 Mitochondrial ribosomal
protein S22

Cornelia de Lange-like
syndrome oedema,
cardiomyopathy and
tubulopathy

Neonatal 611719 Saada et al. (2007);
Smits et al. (2011a,b)

MRPL12 Mitochondrial ribosomal
protein L12

Growth retardation and
neurological deterioration

Neonatal 602375 Serre et al. (2013)
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Table 1 (Continued)

Nuclear genes involved in impaired mitochondrial translation – ribosomal proteins

Gene Protein Clinical presentation Age of onset OMIM References

MRPL44 Mitochondrial ribosomal
protein L44

Hypertrophic
cardiomyopathy

Neonatal 611849 Carroll et al. (2013)

Nuclear genes involved in impaired mitochondrial translation – aminoacyl-tRNA synthetases

Gene Protein Clinical presentation Age onset OMIM References

DARS2 Aspartyl-tRNA sythetase 2 Leukoencephalopathy with
brainstem and spinal cord
involvement (LBSL)

Childhood or
adulthood

610956 Scheper et al. (2007)

RARS2 Arginyl-tRNA synthetase 2 Pontocerebellar hypoplasia
type 6 (PCHD-6)

Neonatal 611523 Edvardson et al. (2007)

EARS2 Glutamyl-tRNA synthetase 2 Leukoencephalopathy with
thalamus and brainstem
involvement and high
lactate (LTBL)

Infantile 612799 Steenweg et al. (2012)

MARS2 Methionyl-tRNA synthetase
2

Autosomal recessive
spastic ataxia with
leukoencephalopathy

Juvenile or
adulthood

609728 Bayat et al. (2012)

FARS2 Phenylalanyl-tRNA
synthetase 2

Alpers syndrome,
encephalopathy, epilepsy,
lactic acidosis

Neonatal and
infantile

611592 Elo et al. (2012);
Shamseldin et al.
(2012)

AARS2 Alanyl-tRNA synthetase 2 Hypertrophic
cardiomyopathy

Infantile 614096 Götz et al. (2011)

YARS2 Tyrosyl-tRNA synthetase 2 Myopathy, lactic acidosis,
and sideroblastic anaemia
(MLASA2)

Infantile 613561 Riley et al. (2010)

SARS2 Seryl-tRNA synthetase 2 HUPRA syndrome
(hyperuricemia,
pulmonary hypertension,
renal failure in infancy and
alkalosis)

Infantile (4
months)

613845 Belostotsky et al.
(2011)

HARS2 Histidyl-tRNA synthetase 2 Perrault syndrome
(sensorineural deafness,
ovarian dysgenesis)

Juvenile or
adulthood

600783 Pierce et al. (2011)

LARS2 Leucyl-tRNA synthetase 2 Perrault syndrome
(sensorineural deafness,
ovarian dysgenesis)

Juvenile 604544 Pierce et al. (2013)

Nuclear genes involved in impaired mitochondrial translation – initiation, elongation and termination factors

Gene Protein Clinical presentation Age onset OMIM References

RMND1 RMND Deafness, myopathy, renal
involvement and a severe
biochemical defect

Neonatal 614917 Garcia-Diaz et al.
(2012): Janer et al.
(2012)

TUFM Elongation factor Tu,
mitochondrial (EF-TUmt)

Lactic acidosis,
leukoencephalopathy and
polymicrogyria

Neonatal 610678 Valente et al. (2007)

TSFM Elongation factor Ts,
mitochondrial (EF-Tsmt)

Encephalomyopathy,
hypertrophic
cardiomyopathy

Neonatal 610505 Smeitink et al. (2006)

GFM1 Elongation factor G 1,
mitochondrial (EFG1mt)

Encephalopathy with or
without liver involvement

Neonatal 609060 Coenen et al. (2004);
Smits et al. (2011a);
Valente et al. (2007)

C12orf65 Chromosome 12 open
reading frame 65

Leigh syndrome, optic
atrophy, ophthalmoplegia

Infantile 613559 Antonicka et al. (2010)

Nuclear genes involved in impaired mitochondrial transaltion – translation activators and mRNA stability factors

Gene Protein Clinical presentation Age onset OMIM References

LRPPRC Leucine-rich PPR-motif
containing protein

Leigh syndrome
French–Canadian variant
(LSFC)

Infantile 220111 Mootha et al. (2003)

TACO1 Translational activator of Late-onset Leigh syndrome Juvenile 612958 Weraarpachai et al.

ataxia

e
(
s
a

cytochrome c oxidase 1
MTPAP Mitochondrial poly-A

polymerase
Progressive spastic
with optic atrophy

Beside disorders due to impaired mitochondrial translation, sev-

ral human disorders are caused by altered cytosolic translation
Yao and Fox, 2013). Interestingly these diseases also lead to tissue
pecific clinical presentations mainly affecting brain, spinal cord
nd peripheral neurons, illustrated by clinical presentations such as
(2009)
Juvenile (early
childhood)

613672 Crosby et al. (2010)

Charcot–Marie–Tooth disease (CMT), distal hereditary motor neu-

ropathies (dHMN) or leukoencephalopathy with vanishing white
matter (VWM). Further implications of altered translation are high-
lighted by variable and complex clinical presentations, including
diseases of eye, cartilage, skin, hair and even cancer (Table 1).
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. Organelle pathology

As it was predicted, mutations in the nuclear genes coding for
arious components of the translation machinery could give rise
o a wide spectrum of diseases and phenotypes (Chrzanowska-
ightowlers et al., 2011) (Table 1). Mitochondrial protein synthesis
equires several nuclear-encoded factors, such as ribosomal pro-
eins, ribosome assembly proteins, aminoacyl-tRNA synthetases,
RNA modifying enzymes and initiation, elongation and termi-
ation factors of translation (Rötig, 2011) (Fig. 1). Autosomal
ecessive mutations have been reported in several of these factors
n association with variable clinical presentations (Chrzanowska-
ightowlers et al., 2011). Here we note, that disorders of
itochondrial protein synthesis usually result in combined RC

eficiencies and associated with abnormal mitochondria (ragged
ed fibres, COX negative fibres) on histology. However a defect of
ranslation activation factors or post-transcriptional regulators of

ammalian mtDNA expression may cause impairment in the sta-
ility of certain mitochondrial transcripts, as reported in patients
ith TACO1 and LRPPRC deficiency, respectively (Weraarpachai

t al., 2009; Harmel et al., 2013). Because these defects appear to
ffect only a single OXPHOS enzyme (COX), these patients show
solated COX deficiency.

.1. Defective mitochondrial translation due to mtDNA mutations

Frequent causes of impaired mitochondrial translation are
tDNA rearrangements (e.g. Kearns–Sayre syndrome) that affect
itochondrial tRNA and/or rRNA genes or single mt-tRNA point
utations. About half of the mtDNA mutations causing dis-

ases in humans occur in tRNA genes (MELAS, MERRF, etc.) and
he heterogeneous clinical manifestations usually reflect vari-
ble heteroplasmy (Tuppen et al., 2010; Greaves et al., 2012).
omoplasmic tRNA mutations with variable penetrance and clin-

cal presentations also occur and suggest the role of genetic or
pigenetic modifiers in mitochondrial translation (Taylor et al.,
003). Although most of these conditions are progressive and fatal,
eversible infantile cytochrome c oxidase deficiency myopathy (or
eversible infantile respiratory chain deficiency), due to a homo-
lasmic mt-tRNAGlu mutation stands out by showing spontaneous
ecovery (Horvath et al., 2009).

.2. Defective mitochondrial translation due to nuclear gene
efects

The currently defined disorders caused by nuclear defects of
itochondrial protein synthesis are usually early-onset, severe,

ften fatal diseases (Table 1) with extremely variable clinical pre-
entations, and the reason behind is still unclear. Patients with
ranslation elongation factor or mitochondrial ribosomal protein
efects had an early age of onset and a severe multisystem disease
ith symptoms already present at birth or even prenatal in a few

ases (Table 1).
The extreme variability and relative strict tissue specificity of

he diseases caused by mutations in mitochondrial tRNA synthetase
enes illustrate the importance of understanding the factors influ-
ncing mitochondrial translation in different tissues.

.3. Neurological presentations

Some genes are selectively important in specific neuronal popu-
ations, as exemplified by leukoencephalopathy with brainstem

nd spinal cord involvement (LBSL) due to mutations in the mito-
hondrial aspartyl-tRNA synthetase 2 (DARS2), or pontocerebellar
ypoplasia caused by argynyl tRNA synthetase 2 (RARS2) defect
Scheper et al., 2007; Edvardson et al., 2007). Mutations in the
f Biochemistry & Cell Biology 48 (2014) 77–84

glutamyl-tRNA synthetase (EARS2) cause early onset severe neuro-
logical disease (leukoencephalopathy involving the thalamus and
brainstem with high lactate, LTBL) (Steenweg et al., 2012; Ghezzi
et al., 2012). MTFMT deficiency leads to (relatively mild) Leigh syn-
drome with or without optic atrophy (Tucker et al., 2011; Neeve
et al., 2013).

4.4. Cardiac presentations

Recently autosomal recessive mutations were reported in the
AARS2 and MTO1 genes in patients with infantile hypertrophic
cardiomyopathy. MTO1 encodes the enzyme that catalyzes the
5-carboxymethylamino-methylation of the wobble position in
mt-tRNAGlu, mt-tRNAGln and mt-tRNALys (Ghezzi et al., 2012).
Patents with clinically indistinguishable clinical presentation of
fatal infantile hypertrophic cardiomyopathy had mutations in the
mitochondrial alanyl-tRNA synthetase 2 (AARS2) gene (Götz et al.,
2011).

4.5. Hepatic presentations

Autosomal recessive mutations in the tRNA 5-
methylaminomethyl-2-thiouridylate methyltransferase (TRMU),
which is responsible for 2-thiouridylation of the mt-tRNAGlu,
mt-tRNAGln and mt-tRNALys cause a severe but reversible infantile
hepatopathy (Zeharia et al., 2009; Schara et al., 2011; Sasarman
et al., 2011). Infants with reversible hepatopathy develop symp-
toms between 2 and 4 months of age, but if they survive this
phase of liver failure, they recover and develop normally (Schara
et al., 2011). The disease course and age of manifestation in TRMU
deficiency shows remarkable similarities to reversible infantile
myopathy and recent studies suggest that infantile cysteine con-
centrations may be important for the reversibility of both of these
diseases (Boczonadi et al., 2013).

4.6. Haematological presentations

As a further complication of mt-tRNA synthetase dysfunction,
the involvement of blood cells has been implicated by mutations
in PUS1, resulting in mitochondrial myopathy, lactic acidosis and
sideroblastic anaemia (MLASA) (Bykhovskaya et al., 2004). Mito-
chondrial tyrosyl-tRNA synthetase 2 (YARS2) mutations have been
also identified in families with MLASA, very similar, but earlier
onset compared to the phenotype caused by deficiency of a mt-
tRNA modifying enzyme PUS1 (Chrzanowska-Lightowlers et al.,
2011).

4.7. Other presentations

Other characteristic, rare diseases are HyperUricemia, Pul-
monary hypertension, Renal failure and Alkalosis (HUPRA)
syndrome, which is caused by mutations in the mitochondrial
seryl-tRNA synthetase 2 (SARS2) (Belostotsky et al., 2011) and
Perrault syndrome, characterised by ovarian dysgenesis and sen-
sorineural hearing loss due to mutations in the mitochondrial
histidyl-tRNA synthetase 2 (HARS2) (Pierce et al., 2011) and leucyl-
tRNA synthetase 2 (LARS2) (Pierce et al., 2013).

5. Future outlook

Despite the rapid advances in technologies and the growing
number of human disease genes and studies on mechanisms of

mammalian mitochondrial translation, its regulation still remains
largely unexplored. The variety and intriguing tissue and cell-type
specific clinical presentations in both mitochondrial and cytosolic
translation, and the dual function of some ARS enzymes suggest



rnal o

s
t
D
i
t
g
d
p
d
e
c
t
c
a
i
s
d
d

f
i
(
f
t
m
t
d
I
g
o
c
t
2
f
a
t
s
i
m

R

A

A

B

B

B

B

B

C

C

C

V. Boczonadi, R. Horvath / The International Jou

ubstantial interaction and overlap between these two protein syn-
hesis pathways, which have not been extensively studied to date.
ue to the abundant proteins and factors required for maintain-

ng accurate mitochondrial translation, it is a challenge to identify
he genetic defect in all cases. However rapid development of
enetic technologies (next generation sequencing) resulted in a
ynamic improvement in genetic diagnosis. Although there is a
henotypic diversity in patients with mitochondrial translation
eficiencies, we observed some emerging clinical subgroups (Kemp
t al., 2011), which recently turned out to be associated with spe-
ific genetic defects. In patients with neurological presentation
RNA synthetases or tRNA modifying factors are the most likely
ause of disease. AARS2 and MTO1 mutations are preferentially
ssociated with cardiomyopathy, mutations in TRMU present with
nfantile, reversible liver failure, YARS2 and PUS1 mutations lead to
ideroblastic anaemia and myopathy, and RMND1 deficiency cause
eafness, myopathy, renal involvement and a severe biochemical
efect (Table 1).

Defining the exact pathomechanisms will suggest new avenues
or treatment in these disorders, as it has been recently stud-
ed in reversible COX deficiency myopathy and TRMU deficiency
Boczonadi et al., 2013). Downregulation of TRMU that is required
or 2-thiouriylation in cells from patient with RIRCD led to a reduc-
ion in levels of mt-tRNAGlu thiolation resulting in a defect of

itochondrial protein synthesis. Cysteine is essential for normal
hiolation and supplementation of L-cysteine improved mitochon-
rial gene translation not only in TRMU but also in RIRCD cells.

nteresting experimental progresses are being pursued towards
ene therapeutic approaches for mitochondrial translational dis-
rders. Engineered human mitochondrial tRNAs and mRNAs –
ontaining RP import sequence – can be efficiently imported into
he mitochondria where they restore translation (Wang et al.,
012). The use of exosomes the body’s own vehicle mechanism
or delivering protein and genetic biomarkers are also promising
nd new avenues are being identified. Recently it has been shown
hat mRNAs for most tRNA synthetases can be detected in exo-
omes (Wang et al., 2013). The detection of mutations in factors
nvolved in mitochondrial translation widens our understanding of

itochondrial disease and highlights basic molecular mechanisms.
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