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Abstract With respect to the ergonomic evaluation and optimization in the mental task design of

the aircraft cockpit display interface, the experimental measurement and theoretical modeling of

mental workload were carried out under flight simulation task conditions using the performance

evaluation, subjective evaluation and physiological measurement methods. The experimental results

show that with an increased mental workload, the detection accuracy of flight operation signifi-

cantly reduced and the reaction time was significantly prolonged; the standard deviation of R-R

intervals (SDNN) significantly decreased, while the mean heart rate exhibited little change; the score

of NASA_TLX scale significantly increased. On this basis, the indexes sensitive to mental workload

were screened, and an integrated model for the discrimination and prediction of mental workload of

aircraft cockpit display interface was established based on the Bayesian Fisher discrimination and

classification method. The original validation and cross-validation methods were employed to test

the accuracy of the results of discrimination and prediction of the integrated model, and the average

prediction accuracies determined by these two methods are both higher than 85%. Meanwhile, the

integrated model shows a higher accuracy in discrimination and prediction of mental workload

compared with single indexes. The model proposed in this paper exhibits a satisfactory coincidence

with the measured data and could accurately reflect the variation characteristics of the mental work-

load of aircraft cockpit display interface, thus providing a basis for the ergonomic evaluation and

optimization design of the aircraft cockpit display interface in the future.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

With the development of flight automation, the main role
played by pilot in the human–machine interaction system of

aircraft cockpit has changed from the manual operator to
the supervisor of aircraft operational state. The role change
has significantly increased the mental workload for pilots. In

particular, when encountering special situations during the
flight, the pilot will face an extremely strict requirement for
processing information, i.e., the pilot is required to process a
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Fig. 1 Equipment and environment set up for the experiment.
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large amount of flight information instantly and make a deci-
sion in response to the situation.1,2 As a result, high mental
workload or even overload may occur, thereby significantly

influencing pilots’ work efficiency, reliability of flight opera-
tion as well as the physiological and psychological health of
pilots.2 Relevant research on accident analysis showed that

60% to 90% of aviation flight accidents and incidents occurred
in the flight task with high mental workload intensity and
stress level.3 Therefore, in the design stage of human–machine

interface of aircraft cockpit, the accurate evaluation, quantita-
tive classification and even prediction of mental workload of
pilot under different display interfaces would play an essential
role in optimizing the mental task design of human–machine

interface and the allocation of human–machine functions,
and have important practical significance in preventing avia-
tion accident and ensuring aviation safety.

Many studies have been carried out on the measurement
and evaluation of mental workload on human–machine inter-
face of aircraft cockpit, which mainly employed the subjective

evaluation method, performance measurement method (includ-
ing main task evaluation and sub-task evaluation methods) and
physiological evaluation method.4 Studies have shown that dif-

ferent evaluation methods should be applied to different task
situations and mental workload levels, and it is unrealistic to
attempt to comprehensively reflect the mental workload condi-
tions under different task situations by using one indicator.

Therefore, using multiple techniques to comprehensively evalu-
ate mental workload is a reasonable method as an alternative to
the single method or index-based evaluation. Meanwhile, the

multi-dimensional characteristic of mental workload also
emphasizes the necessity of comprehensive evaluation. In
recent years, some researchers have employed multi-index com-

prehensive evaluation method to study the measurement of
mental workload related to flight.5,6 These studies were mostly
based on the results of single-index measurement and applied

certain modeling technique to realize comprehensive evalua-
tion.6–8 At present, the modeling techniques commonly used
in this field mainly include factor analysis, regression analysis
and artificial neural network modeling, etc.9 Compared with

other modeling techniques, Bayesian Fisher discrimination
analysis method can realize class discrimination and prediction,
effectively preserve the selected indexes, prevent information

loss, and obtain a stable discrimination result.10 In this study
we employed the Bayesian Fisher discrimination analysis
method for theoretical modeling.

In the present study, we apply the multi-index comprehen-
sive evaluation method to mental workload measurement.
Meanwhile, the comprehensiveness of NASA_TLX scale in
evaluating mental workload,11 the non-invasive and instanta-

neous characteristics of electrocardiogram (ECG)measurement
technology,12,13 and the directness of performance measure-
ment were taken into account.4 In combination with the

characteristics of abnormal information processing under spe-
cial flight conditions, we carried out the experiment using a
flight simulator, and studied the diagnostic of three types of

evaluation indexes, namely performance measurement (reac-
tion time and accuracy), subjective evaluation (NASA_TLX
scale) and physiological measurement (heart rate and HRV)

to themental workload variation in the flight operation process.
After that, based on the evaluation results of selected metal
workload evaluation indexes, the discrimination model of
mental workload state was established using Bayesian Fisher
discrimination method to realize the scientific evaluation, quan-
tities classification and prediction of the mental task in the
design of human–machine interface of aircraft cockpit.

2. Experimental measurement

2.1. Subjects

Sixteen flying cadets from Beihang University were recruited to

participate in the present study, ranging in age from 21 to
28 years (age = 24.6 ± 3.2 years). All subjects were healthy,
right-handed, with normal or corrected vision and normal

color vision. For ensuring the objectivity of experimental
ECG data, all subjects were asked to refrain from caffeine,
alcohol, tobacco, and drugs, and from any vigorous physical

activity 12 h before the experiment. They were also required
not to take any cold food or do any intense exercise, and
report no subjective discomfort 1 h before the experiment.
Despite of the good training at simulated flight operations,

prior to performing the experimental task, each subject was
given instructions about the task and completed a training
session to insure that he was well acquainted with the task

procedure, operation and requirements.

2.2. Equipment and environment

The subjects were tested in a flight simulator located in Beihang
University. Equipment and environment set up for the experi-
ment were shown in Fig. 1. Throughout the experiment, the

cockpit door was closed and the experimental environment
was kept quiet. The experimental environment inside the cock-
pit was with favorable lighting conditions, stable temperature
(25 ± 2) �C and low noise 20–30 dB. The experiment did not

begin until subjects were with a steady heartbeat after sitting
for at least 5 min in the laboratory bench.

2.3. Experimental task

The subjects were asked to perform the whole dynamic process
of flight simulation in a flight simulator, including take-off,

climb, cruise, approach and landing. Each flight simulation
task lasted for 13 min, and mental workloads were manipu-
lated in separate conditions by adjusting the quantity of flight

indicators and refresh frequencies (present time and interval



Table 1 Scope set up for abnormal flight indicators.

Flight parameter Abnormal flight indicator Mental workload

Baseline Low Moderate High

Pitch Exceed 20� 0 1 1 1

Indicated air speed Exceed 740.8 km/h 0 1 1 1

Altitude Exceed 3.048 km 0 1 1 1

Heading Exceed 50� 0 0 1 1

Roll Exceed 20� 0 0 1 1

Rudder Abnormal 0 0 1 1

Aileron Abnormal 0 0 0 1

Landing gear Abnormal 0 0 0 1

Engine status Abnormal 0 0 0 1

Note: ‘‘0’’ denotes that under the mental workload level, the flight indicators is normal; ‘‘1’’ denotes that under the mental workload level, the

flight indicators is randomly abnormal.
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time) of abnormal information. The duration of abnormal
information was 2 s and inter-stimulus interval between abnor-

mal information was random. During the simulation flight,
each subject was instructed to monitor the flight indicators
presented on the head-up display, and had to detect and

respond to abnormal information quickly and accurately.
The scope set up for abnormal flight indicators and the mon-
itoring requirements under different mental workloads were

shown in Table 1.

2.4. Experimental procedure

In the present study, mental workloads were manipulated into

three levels, including high, moderate, and low. Prior to the
three levels mental workloads tasks, each subject completed
a normal flight simulation task as the baseline. Within-subject

factorial design was implemented in the experiment, and all the
subjects completed the flight simulation task at the three levels
of the mental workloads, respectively. An experimental design

method, similar to that of Latin square design, was adopted to
counterbalance the sequence of the flight simulation tasks to
reduce the effects of sequence to the experiment results.14 In

order to record the ECG data, all the participants were asked
to wear ECG electrodes throughout the study. After each
session, each subject was instructed to take a 30 min rest,
meanwhile completed self-report assessments of mental

workload using the NASA_TLX.

2.5. Data recording and analysis

2.5.1. Performance data recording

The accurate operation rate and reaction time (the time inter-

val between the occurrence of the abnormal information and
correct responding) as indicators of performance evaluation
were automatically recorded by the system through computer
programming.

2.5.2. ECG data recording

FX-7402 12-channel automatic analysis of ECG machine was

adopted to synchronously record the ECG signals. The ECG
data recorded included the heart rates of subjects measured
every 5 min, time series during R-R intervals, ECG within this
period and the electrode placement arranged as lead II. The
heart rate value range was 20–300 beat per minute (bpm),
the heart rate detection accuracy was ±2 bpm, the sampling

frequency was 0.05–150 Hz, and the waveform recording speed
was 25 mm/s.

Relevant studies showed that both heart rate and heart rate

variability (HRV) indexes can effectively reflect the different
levels of mental workload.15–17 However, there was some lim-
itation for using frequency-domain index of HRV to reflect the

physiological change, because it is affected by the length of
data extraction period, and the essence of physiological change
reflected still needs further study.18 Besides, relevant studies
also indicated that within a certain period of time (5 min),

there is a significant correlation between time-domain related
indexes and frequency-domain related indexes in R-R inter-
val.18 Therefore, the present study identified the time series

in R-R period as a key index of ECG signal measurement. It
is assessed by heart rate (HR) and analyzed by HRV in the
time domain, including mean heart rate (mean HR), count

of normal R-R intervals (RRI count), mean of normal R-R
intervals (mean RRI), maximum of normal R-R intervals
(maximum RRI), minimum of normal R-R intervals (mini-
mum RRI), the ratio of the maximum RRI and minimum

RRI (max/min RRI), and standard deviation of normal R-R
intervals (denoted ‘‘SDNN’’).

2.5.3. Subjective data recording and analysis

In order to eliminate the influence of short-term memory, the
subjects were asked to complete NASA_TLX scale within
30 min after they completed each of the three (high, moderate

and low) mental workload flight tasks.19 The NASA_TLX uses
six dimensions to assess mental workload, namely detailed
description of the mental demand, physical demand, temporal

demand, performance, effort and frustration, for each dimen-
sion, are provided.20,21 For the convenience for the subjects to
accurately and effectively complete subjective evaluation, in

the present study, the NASA_TLX scale was presented in
numerical value, i.e. scoring from 0 to 100, with 0 representing
no effort and 100 representing maximum effort. First, a score

(from 0 to 100) was obtained on each dimension according to
the subjects’ subjective feelings on the flight related mental
workload. Then, a paired comparison task was performed
for all pairs of the six dimensions, which required the subjects

to choose which dimension had a greater relevance to the over-
all mental workload. After that, each of the six dimensions was
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given a specific weight according to the number of times that
each dimension was chosen in pared comparison. The final
mental workload score was obtained by multiplying each indi-

vidual dimension scale score by its respective weight and divid-
ing the total score of all dimensions by 15 (the total number of
paired comparisons). Repetitive measure analysis of variance

(ANOVA) was employed for the analysis of the above data
by using SPSS 17.0 statistical package.
3. Experimental results

3.1. Result of performance measurement

At three different mental workload levels (high, moderate and
low levels), the accurate operation rate and reaction time of

subjects towards abnormal flight information were shown in
Table 2. Single-factor ANOVA showed there were significant
(P < 0.001) main effects of mental workload for both accurate
operation rate and reaction time. As the mental workload level

increased, the accuracy rate of subjects decreased successively
(P < 0.001), and the reaction time increased successively
(P < 0.001).

3.2. Result of subjective evaluation

Result of NASA_TLX was also shown in Table 2. Result of

the single-factor repeated measure ANOVA suggested a
remarkable (P < 0.001) main effect of mental workload. With
the increase of mental workload, the scores of NASA_TLX

gradually increased (P < 0.001). Result of paired comparison
showed that the subjective mental workload score at low men-
tal workload level was obviously lower (P < 0.001) than that
at moderate mental workload level which was in turn obvi-

ously lower (P < 0.001) than that at high mental workload
level.

3.3. Result of ECG evaluation

Table 2 provided the results of various HR and HRV indexes
of subjects at different mental workload levels (baseline, low,

medium, and high levels).
Seen from Table 2, as mental workload increased, Mean

HR, RRI count and max/min RRI presented an increasing

trend, while maximum RRI, minimum RRI and SDNN
Table 2 Means and standard errors of performance measures, NA

Measure Mental workload

Baseline Low

Accuracy (%) 97.49 ±

Respond time (ms) 769.20

NASA_TLX total score 55.02 ±

Mean HR (bpm) 74.88 ± 10.90 74.88 ±

RRI count 374.00 ± 56.71 375.31

Maximum RRI 958.50 ± 152.29 955.50

Minimum RRI 660.00 ± 80.89 648.50

Mean RRI 796.75 ± 105.22 801.44

Max/min RRI 1.45 ± 0.12 1.51 ±

SDNN 53.38 ± 17.35 49.06 ±
presented a decreasing trend. Result of repeated measure
ANOVA showed that at four different mental workload levels,
only maximum RRI and SDNN revealed a significant

difference.
For the maximum RRI index, the result of the single-factor

repeated measure ANOVA showed a remarkable (P = 0.032)

main effect of mental workload. The result of a further paired
comparison suggested that the maximum RRI value at base-
line mental workload level was significantly (P = 0.032) higher

than that at high mental workload level, and the maximum
RRI value at low mental workload level was significantly
(P= 0.040) higher than that at high mental workload level.
Paired comparison among maximum RRI values at other

mental workload levels showed no significant (P > 0.05)
difference.

For the SDNN index, the single-factor repeated measure

ANOVA showed a remarkable (P < 0.001) main effect of
mental workload. The result of a further paired comparison
suggested that the SDNN value at baseline mental workload

level was significantly higher than those at low (P = 0.033),
moderate (P < 0.001) and high (P = 0.001) mental workload
levels; the SDNN value at low mental workload level was sig-

nificantly higher than those at moderate (P = 0.001) and high
(P= 0.006) mental workload levels; the SDNN value at
moderate mental workload level was higher than that at high
mental workload level, however, no significant (P = 0.385)

difference was observed.
Therefore, the SDNN index and maximum RRI index in

HRV are indexes sensitive to mental workload change, while

the SDNN index demonstrates a better diagnostic to different
mental workloads than maximum RRI index and can be
further used for division of different mental workload levels.

4. Theoretical modeling

4.1. Modeling methods

Based on the results of experimental measurement, the Bayes-

ian Fisher discrimination analysis method was employed to
construct the mental workload discrimination model of the air-
craft cockpit display interface and determine the mental work-
load level of the display interface. Bayesian Fisher’s linear

discrimination analysis method is a typical discrimination
method for data classification.10 Based on classification and
feature variables of the observations, this method aims to
SA_TLX measures and physiological measures.

Moderate High

2.80 81.09 ± 6.86 73.12 ± 6.05

± 63.99 969.79 ± 54.26 1045.90 ± 54.63

10.20 65.63 ± 6.96 75.41 ± 7.05

11.03 76.19 ± 12.76 78.06 ± 13.15

± 55.39 382.06 ± 64.31 390.75 ± 64.45

± 151.18 925.00 ± 144.44 906.50 ± 143.56

± 119.70 642.75 ± 167.78 614.75 ± 153.48

± 112.56 794.63 ± 120.76 770.38 ± 110.27

0.41 1.56 ± 0.67 1.60 ± 0.68

18.53 43.31 ± 18.22 40.88 ± 19.34
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optimize classifications and reduce the feature dimensions. In
the process of analysis, it projects the observations to lower
dimensional space, following the direction of maximizing the

ratio of the between-class variance to the within-class variance.
Its linear discrimination function is

y ¼ a1x1 þ a2x2 þ � � � þ anxn ð1Þ

where y refers to the value of the observation in the lower

dimensional space; x1, x2, . . ., xn denote the feature variables
of the observation; a1, a2, . . ., an refer to discrimination coeffi-
cient of each variable.

4.2. Establishment of the model and instructions

In order to ensure the comprehensiveness of the discrimina-

tion, the general discrimination analysis method (all-factor
analysis method) was employed in the present study, i.e., the
discrimination model includes flight operation performance,

NASA_TLX subjective evaluation and the time-domain index
SDNN of HRV. The discriminating model constructed in this
paper is shown in Fig. 2 and the discriminating functions are

y1¼ 1:019x1þ1:010x2þ574:625x3þ601:659x4�568:158 ð2Þ

y2¼ 1:106x1þ1:196x2þ622:427x3þ571:071x4�597:648 ð3Þ

y3¼ 1:174x1þ1:418x2þ633:388x3þ549:668x4�610:753 ð4Þ

where y1, y2, y3 represent the discriminating function value of

the low, moderate and high levels of mental workloads respec-
tively, and x1 represents the SDNN value, x2 the score of
NASA_TLX, x3 the reaction time of processing abnormal

information, and x4 the accuracy operation of processing
Fig. 2 Discriminating model.

Table 3 Results of predicted mental workload accuracy.

Method Mental workload Predicted m

Low

Original Low 93.75

Moderate 0

High 0

Cross-validated Low 93.75

Moderate 12.50

High 0
abnormal information during flight. According to the values

of x1, x2, x3 and x4, the values of y1, y2, y3 were calculated
and compared. If the y1 value is maximum, it considers that
participants are at a low level of mental workload. If the y2
value is maximum, it means that participants are at a moderate
level of mental workload. If the y3 value is maximum, it con-
siders that participants are at a high level of mental workload.

Fig. 2 shows the distribution of all experimental samples at

the three different levels of mental workloads in the con-
structed Bayesian Fisher discrimination model. As seen in this
figure, samples at different levels of mental workload were rel-

atively concentrated, respectively, which suggests that the dis-
crimination effect of the model was satisfying. By comparison,
the disparity of distribution was the largest between samples at

low level and high level mental workload, followed by the sam-
ples at low level and moderate level mental workload, and the
distribution disparity between samples at moderate and high
level mental workload was the smallest.

4.3. Validity check of the model

There are general two methods to check the discrimination and

prediction accuracy of Bayesian Fisher discrimination func-
tion, i.e., the original validation and cross validation methods.
For both methods, the higher the accuracy level of discrimina-

tion and prediction, the better the constructed discrimination
function.10 To ensure the effectiveness, both the original vali-
dation and cross validation methods were employed to check

the discrimination and prediction accuracy of the constructed
Bayesian Fisher discrimination function. In the case of the ori-
ginal check method, the 48 groups of subject sample data (3
levels data from each of the 16 subjects) measured were substi-

tuted back into the constructed discrimination function to
evaluate the accuracy level of discrimination and prediction,
and the check results are shown in Table 3. In the case of

the cross check method, the discrimination model was con-
structed on the basis of 47 groups of sample data, and used
to predict the variable value of the rest one group of sample

data, all the samples would go through the circular check once
in succession, 48 times in total, and the check results are also
shown in Table 3.

It could be known from the comparative results of Table 3
that when employing the general discrimination analysis
method, the average discrimination and prediction accuracies
of original check method and cross check method were respec-

tively 89.58% and 85.42%. Specifically, the discrimination and
prediction accuracies between low workload and other work-
loads were both 93.75%; the discrimination and prediction

accuracies between moderate workload and other workloads
ental workload accuracy (%)

Moderate High Total

6.25 0 100

87.50 12.50 100

12.50 87.50 100

6.25 0 100

75.00 12.50 100

12.50 87.50 100
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were respectively 87.50% and 75.00%; the discrimination and
prediction accuracies between high workload and other work-
loads were both 87.50%; the discrimination and prediction

accuracy between moderate workload and high workload was
slightly lower than that on low workload, which are consistent
with the single-factor repeated measure ANOVA conducted in

the previous section. Such discrimination results are consistent
with the study conclusions drawn by Fishel et al.22

5. Discussion

5.1. Differentiation of the three types of evaluation indexes
among different mental workloads

In the present study, the difficulty of the flight task was chan-

ged to control the mental workload level and measure the three
types of evaluation indexes of the subjects under various
mental workload levels, i.e., flight operation performance
(including accuracy and reaction time), physiological indexes

(mean HR and six indexes of HRV) and subjective evaluation
(NASA_TLX scale). The relationship between mental work-
load and various evaluation indexes was also explored on such

basis, the results of which show that four indexes, i.e., flight
operation accuracy, reaction time, SDNN and NASA_TLX
scale, were significantly sensitive to the change of flight task-

related mental workload.
Some studies demonstrate that both HR and HRV-related

indexes can effectively reflect the mental workload level of

flight.23,24 However, the results of the present study show that
HR detection might not be able to effectively reflect the mental
workload, while HRV detection could be able to effectively
reflect the mental workload, which is consistent with the con-

clusions drawn by Muth et al.17 This might have been caused
by the fact that the main factor influencing HR is physical
workload, while the experimental task of the present study is

to induce the occurrence of mental workload. The present
study also explores the differentiation of the forementioned
six time-domain indexes of HRV among different flight task-

related mental workloads, the results of which showed that
only the time-domain index SDNN was significantly sensitive
to the change of flight task-related mental workload, as specif-
ically demonstrated by the progressive decrease of the SDNN

value with the increase of mental workload. Such a conclusion
is consistent with the results obtained by both DiDomenico
Table 4 Results of single assessment index and multidimensional s

Validate method Assessment index Predicte

Low

Original Multidimensional 93.75

SDNN 37.50

NASA_TLX total score 68.75

Respond time 100.00

Accurate 93.75

Cross-validated Multidimensional 93.75

SDNN 37.50

NASA_TLX total score 68.75

Respond time 93.75

Accurate 93.75
and Nussbaum et al. in studying the influence of various flight
operation tasks on mental workload and performance,12 and
also consistent with the results obtained by Lehrel et al. in their

studies on Boeing 737-800 simulator,11 which suggests that the
time-domain index SDNN can effectively evaluate the mental
workload. However, compared with the two studies, the pres-

ent study focuses on mental workload, and comprehensively
compares 6 time-domain indexes of HRV to confirm the effec-
tiveness of SDNN in evaluating the mental workload.

5.2. Comparison of single assessment index and

multidimensional synthetic assessment

Each single measurement index of the subjects was extracted in
three different mental workload states to discriminate the men-
tal workload, and the comprehensive evaluation model based
on the three types of measurement indexes was also employed

for the discrimination of mental workload. The Bayesian
Fisher discrimination analysis method was employed to deter-
mine the discrimination and prediction accuracies of mental

workload level by both approaches respectively under the cor-
responding experimental conditions. All the results are shown
in Table 4.

The verification by the original check method shows that the
comprehensive evaluation model had the highest discrimina-
tion and prediction accuracy (89.58%), followed in succession
by reaction time index (81.25%), accuracy index (77.08%),

NASA_TLX scale (64.58%) and physiological indexes SDNN
(39.58%). The verification by the cross check method shows
that the comprehensive evaluation model had the highest dis-

crimination and prediction accuracy (85.42%), followed in suc-
cession by reaction time index (79.17%), accuracy index
(77.08%), NASA_TLX scale (64.58%) and physiological

indexes SDNN (39.58%). As indicated by the comparative
results of the two check methods, the multi-index-based com-
prehensive evaluation model had a higher overall accuracy in

the discrimination and prediction of mental workload level
than that of any single index, which suggests that the multi-
dimensional comprehensive evaluation model is more effective
than any single index in the discrimination and prediction of

mental workload level. However, when the three types of single
indexes were employed respectively, the reaction time index had
the highest accuracy in the discrimination and prediction of

mental workload level.
ynthetic assessment.

d mental workload accuracy (%)

Moderate High Average

87.50 87.50 89.58

12.50 68.75 39.58

43.75 81.25 64.58

68.75 75.00 81.25

62.50 75.00 77.08

75.00 87.50 85.42

12.50 68.75 39.58

43.75 81.25 64.58

68.75 75.00 79.17

62.50 75.00 77.08
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5.3. Implications and limitations of this research

By means of setting the abnormal posture recovery task of the
human–machine interface of aircraft cockpit in the dynamic
flight process, the present study is devoted to conducting the

flight simulator-based experiment and studying the differentia-
tion of the three types of evaluation indexes, i.e., performance
measurement (including accuracy and reaction time), subjective
evaluation (NASA_TLX scale) and physiological measurement

(HR and HRV), among different mental workloads of pilots in
the flight operation process; then the screened mental workload
evaluation indexes were employed to construct the discrimina-

tion and prediction model of mental workload state based on
the Bayesian Fisher discrimination method. The significance
of the present study lies in screening out the corresponding

sensitive indexes through experimental measurement and then
employing the Bayesian Fisher discrimination method to
gradually establish the comprehensive discrimination and

prediction method of mental workload change in the flight
operation process. The method used in the present study can
be helpful for the relatively accurate classified quantification
of the evaluation and prediction of mental task design in the

human–machine interface design of aircraft cockpit. However,
the discrimination of mental workload evaluation indexes and
their characteristics of change may vary with the nature of

operations and present different situations. So, when employ-
ing the discrimination and prediction modeling method pro-
posed in the present study in practice, the discrimination and

prediction model constructed here should be correspondingly
adjusted according to the nature of the flight operation task
concerned.

However, there are still some limitations in the present

study. Firstly, there are some differences between our subjects
and experienced pilots. Secondly, there are certain differences
between a simulated flight and a real flight, and between flight

stress task setting and a real flight situation. Given that the
above factors may all influence the precision of the prediction
model to certain extents in subsequent studies more realistic

flight environments and flight tasks should be adopted for
mental workload measurement of pilots to establish a more
rational model for the discrimination and prediction of mental

workload of the aircraft cockpit display interface.

6. Conclusions

At present, the common modeling methods for comprehensive
evaluation of mental workload in flight include factor analysis,
regression analysis and artificial neural network modeling, etc.
This study constructs a new comprehensive evaluation model

based on the Bayesian Fisher discrimination and classification
method, by designing flight simulation tasks at different levels
of mental workloads. This model is rarely used in this field

before, and our study proved that it could effectively discrim-
inate and predict the levels of mental workload, preserve the
selected indexes by avoiding information loss, and obtain a

stable discrimination result. The specific conclusions are shown
as follows:

(1) During the dynamic process of flight simulation experi-
ments, mean HR is not sensitive to the change of mental
workload. Among all its six indexes (RRI count,
maximum RRI, minimum RRI, mean RRI, max/min

RRI, and SDNN) of HRV, only SDNN is sensitive to
the flight related mental workload change, which is sig-
nificantly decreased as the mental workload increased.

(2) The dynamic flight simulation experiments show that
four indexes, i.e., flight operation accuracy, reaction
time, SDNN and NASA_TLX scale, are significantly
sensitive to the change of flight task-related mental

workload.
(3) The verification by the original check method show that

the comprehensive evaluation model has the highest dis-

crimination and prediction accuracy (89.58%), followed
in succession by reaction time index (81.25%), accuracy
index (77.08%), NASA_TLX scale (64.58%) and

physiological indexes (39.58%).
(4) The verification by the cross check method show that the

comprehensive evaluation model has the highest dis-
crimination and prediction accuracy (85.42%), followed

in succession by reaction time index (79.17%), accuracy
index (77.08%), NASA_TLX scale (64.58%) and
physiological indexes (39.58%).
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