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Current therapies for chronic hepatitis B virus infection (CHB) – nucleos(t)ide analogue reverse transcrip-
tase inhibitors and interferons – result in low rates of functional cure defined as sustained off-therapy
seroclearance of hepatitis B surface antigen (HBsAg). One likely reason is the inability of these therapies
to consistently and substantially reduce the levels of viral antigen production. Accumulated evidence
suggests that high serum levels of HBsAg result in exhaustion of the host immune system, rendering it
unable to mount the effective antiviral response required for HBsAg clearance. New mechanistic
approaches are required to produce high rates of HBsAg seroclearance in order to greatly reduce
off-treatment disease progression. Already shown to be a clinically viable means of reducing gene expres-
sion in a number of other diseases, therapies based on RNA interference (RNAi) can directly target hep-
atitis B virus transcripts with high specificity, profoundly reducing the production of viral proteins. The
fact that the viral RNA transcripts contain overlapping sequences means that a single RNAi trigger can
result in the degradation of all viral transcripts, including all messenger RNAs and pregenomic RNA.
Advances in the design of RNAi triggers have increased resistance to degradation and reduced nonspecific
innate immune stimulation. Additionally, new methods to effectively deliver the trigger to liver hepato-
cytes, and specifically to the cytoplasmic compartment, have resulted in increased efficacy and tolerabil-
ity. An RNAi-based drug currently in clinical trials is ARC-520, a dynamic polyconjugate in which the
RNAi trigger is conjugated to cholesterol, which is coinjected with a hepatocyte-targeted,
membrane-active peptide. Phase 2a clinical trial results indicate that ARC-520 was well tolerated and
resulted in significant, dose-dependent reduction in HBsAg for up to 57 days in CHB patients.
RNAi-based therapies may play an important role in future therapeutic regimes aimed at improving
HBsAg seroclearance and eliminating the need for lifelong therapy. This paper forms part of a symposium
in Antiviral Research on ‘‘An unfinished story: from the discovery of the Australia antigen to the develop-
ment of new curative therapies for hepatitis B.’’
� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Globally, an estimated 240 million people are chronically
infected with the hepatitis B virus (HBV) and more than 750,000
deaths are attributed annually to HBV-related complications,
including hepatocellular carcinoma (HCC), cirrhosis of the liver,
and liver failure (Fattovich et al., 2004; Lozano et al., 2012;
Marcellin et al., 2005; Ott et al., 2012). Persons exposed to HBV after
5 years of age through unsterile medical procedures, unsafe injec-
tions, sexual transmission, interfamilial transmission via open cuts
or scratches, or other means have a high propensity for developing
acute hepatitis, but an approximately 93–95% chance of clearing the
virus from the circulation (McMahon, 2005; McMahon et al., 1985).
The best patient outcome is seen with clearance of hepatitis B sur-
face antigen (HBsAg) from the serum, with or without development
of measurable antibodies to HBsAg (Yuen et al., 2004, 2008). For
patients with HBsAg seroclearance, the risk of developing HCC is
markedly reduced yet still modestly elevated relative to background
levels in the general ‘‘healthy’’ population (Liu et al., 2014). For the
5–7% of HBV-infected adults who do not clear HBsAg, there is a sub-
stantially increased risk of developing cirrhosis, hepatic decompen-
sation, and HCC (Fattovich et al., 2004; Ganem and Prince, 2004;
Liaw et al., 1988; Marcellin et al., 2005).

In those individuals with HBsAg seroclearance, the virus is still
present in the liver and occasionally can be measured in the blood
(Yuen et al., 2004). Use of potent immune modulators that sup-
press the immune system can lead to a loss of immunologic control
and reactivation of HBV (Seetharam et al., 2014). For this reason,
any drug that effectively treats HBV and leads to seroclearance will
not be considered a ‘‘sterilizing cure’’ or ‘‘virologic cure’’ but rather
a ‘‘functional cure’’ unless it also leads to complete clearance of
viral DNA from all hepatocytes. Given that the HBV genome is
not only present in the hepatocyte nucleus in the form of
cccDNA but also integrates into the host genome, a full, complete
cure seems unlikely with current technologies (see reviews in
the present symposium by (Gish et al., 2015; Block et al., 2015;
Gozuacik et al., 2001; Mason et al., 2010; Murakami et al., 2005;
Saigo et al., 2008)).

Ongoing experience with approved HBV therapies, including
interferons (IFNs) and nucleos(t)ide analogue reverse transcriptase
inhibitors (NUCs), while showing clear antiviral activity, including
reduction in circulating viral DNA often to an undetectable level,
high levels of clearance of the hepatitis B e antigen (HBeAg) from
the circulation, normalization of liver transaminases, and improve-
ment in hepatic necroinflammation on biopsy, has been disap-
pointing to the hepatology community and patients due to low
rates of HBsAg clearance and a high rate of viral rebound after
NUC discontinuation (Frenette and Gish, 2009; Fung et al., 2009;
Jafri and Lok, 2010; Lok and McMahon, 2009; Seto et al., 2015).
Of greater concern, it has been learned that even with effective
NUC therapy and good response on the above discussed parame-
ters, these patients remain at increased risk of developing HCC
(Hadziyannis et al., 2006).

2. Fundamentals of RNAi

RNA interference (RNAi) is an evolutionarily conserved set of
mechanisms that utilize small, non-coding RNAs to regulate the
expression of genetic information (Carthew and Sontheimer,
2009). Depending on the precise structure of the non-coding
RNAs and their biological context, different modes of regulation
by RNAi are induced. This review focuses on the mode of RNAi that
results in the degradation of the mRNA target as this is the mode
most commonly employed in RNAi-based drugs, including those
designed to target chronic HBV infection (CHB).

The agents used to induce RNAi are short double-stranded
oligonucleotides composed of a guide strand that is base-paired
to a passenger strand. The guide strand has perfect, or near perfect,
complementarity to a sequence in the targeted mRNA. The first
demonstration that such a molecule could induce RNAi in mam-
malian cells involved introduction of synthetic 21mer,
double-stranded RNA (dsRNA), named small interfering RNA
(siRNA), into cultured cells (Elbashir et al., 2001a). This resulted
in sequence-specific reduction of expression of the targeted gene.
Since then, the molecular and biochemical mechanisms by which
siRNAs trigger RNAi have become better understood (Meister and
Tuschl, 2004; Wilson and Doudna, 2013). Briefly, introduction of
siRNA into the cell cytoplasm results in its association with protein
components of the RNA-induced silencing complex (RISC) (Fig. 1).
Once RISC is loaded with the siRNA, the passenger strand is nicked
by the RISC component Argonaute2 (AGO2), and further degraded
by component 3 promoter of RISC (C3PO) (Matranga et al., 2005;
Miyoshi et al., 2005; Rand et al., 2005; Ye et al., 2011). This results
in the exposure of nucleotide bases of the guide strand, enabling
them to base pair with the complementary target mRNA sequence.
If the guide strand is sufficiently base-paired with the target
mRNA, the phosphodiester linkage in the target mRNA is cleaved
by the ‘‘slicer’’ activity of AGO2 between the nucleotides
base-paired with nucleotides at positions 10 and 11 relative to
the 50 end of the guide strand (Liu et al., 2004; Meister et al.,
2004). The cleaved mRNA is further degraded by general 50 and
30-exonucleases. Active RISC is a multiple turnover enzyme
(Haley and Zamore, 2004; Liu et al., 2011). Thus, incorporation of
a single siRNA into RISC can result in the degradation of multiple
mRNA molecules.

Results of a structure–activity study of the original (canonical)
siRNAs found them to have an optimal length of 21 nucleotides
with two nucleotide 30 overhangs when tested in Drosophila
embryo lysates (Elbashir et al., 2001b). Subsequently, it was
reported that double-stranded RNAs (dsRNAs) without 30 over-
hangs were also highly effective in mammalian cells (Czauderna
et al., 2003). A large degree of flexibility in the length of the
dsRNAs has also been demonstrated. Indeed, duplexes 27 base
pairs in length were found to be even more effective at gene silenc-
ing than the canonical siRNAs when transfected into mammalian
cells in culture (Kim et al., 2005). This was true whether these
27mers were blunt-ended or contained 50 or 30 two-nucleotide
overhangs. These 27mers could act as substrates for the cellular
enzyme Dicer, which generated a variety of 21mers.
Interestingly, none of the possible 21mers were as potent as the
27mer, leading to speculation that more efficient loading of RISC
via Dicer was responsible for their increased potency. However,
Dicer-independent gene silencing activity of 25 and 26mers has
also been demonstrated (Salomon et al., 2010). In this study, the
full-length guide strand was shown to be bound to RISC, indicating
that RISC can accommodate longer guide strands than that in the
canonical 21mer. This is consistent with structural studies of bac-
terial AGO bound to a 21 nucleotide guide strand DNA which show
that the nucleotides from positions 12 to 17 are disordered and do
not make strong contact with the protein (Wang et al., 2009). It is



Fig. 1. Schematic of the RNAi mechanism and three clinically relevant delivery technologies used to deliver RNAi triggers to liver hepatocytes. The DPC delivery system
utilizes a chemically masked amphipathic peptide (top left) containing N-acetylgalactosamine as a hepatocyte targeting ligand (orange balls). This is coinjected with an siRNA
or RNAi trigger conjugated to cholesterol (middle). Unmasking of the peptide in the acidic environment of the endosome allows it to interact with the endosomal membrane
to facilitate release of the RNAi trigger. The lipid nanoparticle system (left) encapsulates the RNAi trigger in a lipid composition that allows hepatocyte uptake and endosomal
escape. The siRNA conjugate system (middle) utilizes a highly nuclease resistant siRNA conjugated to N-acetylgalactosamine (orange ball) and does not utilize an active
endosomal escape component. All three delivery technologies result in delivery of the siRNA or RNAi trigger to the cytoplasm. Once in the cytoplasm, the siRNA is loaded into
RISC and the passenger strand is cleaved and removed. RISC containing the remaining guide strand scans mRNAs until a thermodynamically favorable base pairing occurs. A
perfect or near perfect base pair match of the guide strand and mRNA results in mRNA cleavage and subsequent further degradation by cellular nucleases. RISC is then free to
engage additional target mRNA molecules.
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possible that RISC accommodates longer guide strands by allowing
a larger loop in this region, with the 30 end of the guide strand still
contacting the pocket of the AGO2 PAZ domain (named after the
proteins Piwi/Argonaute/Zwille). Other structural variants of
canonical siRNAs have also been described including shorter
duplexes and highly asymmetric designs with short passenger
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strands that possess 30 blunt ends, or both 50 and 30 overhangs
(Chang et al., 2009; Chu and Rana, 2008; Sun et al., 2008). It is clear
that many types of dsRNA molecules besides canonical siRNAs are
effective at eliciting RNAi. These are herein referred to as RNAi trig-
gers in order to capture this structural diversity.

3. Overcoming the in vivo delivery challenge

The demonstration that RNAi could be used to potently silence
the expression of a mammalian gene set off a flurry of activity to
harness this cellular pathway for therapeutic uses. However, deliv-
ery of siRNAs or other types of RNAi triggers to the appropriate cell
or tissue type in a clinically relevant manner proved to be challeng-
ing (Akhtar and Benter, 2007; Wang et al., 2010). This is largely due
to the fact that RNAi triggers are essentially small, double-stranded
oligonucleotides with a highly negatively charged, hydrophilic
phosphate backbone. This makes them unable to interact with
and transverse cell membranes, and subjects them to rapid filtration
from the bloodstream by the kidneys. Those RNAi triggers that do
make contact with the cell type of interest are taken up via endocy-
tosis and remain trapped in the endosome where they are subject to
degradation by nucleolytic enzymes. This represents a final barrier
to effective delivery. Strategies to facilitate escape of intact RNAi
triggers from the endosome to the cytoplasm where RISC resides
are needed. For a therapy designed to inhibit production of HBV,
delivery specifically to hepatocytes would be preferred.

Today, three technologies that allow productive delivery of par-
enterally administered RNAi triggers to liver hepatocytes in
humans with resultant silencing of the target gene expression
are in development (Haussecker and Kay, 2015; Lorenzer et al.,
2015). These are liposomes or lipid nucleic acid particles (LNPs),
in which the RNAi trigger payload is encapsulated or associated
with a mixture of cationic and neutral lipids; RNAi trigger conju-
gates which utilize attachment of a hepatocyte targeting moiety
to the RNAi trigger; and dynamic polyconjugates (DPCs) in which
the RNAi trigger is conjugated to cholesterol and is coinjected with
a hepatocyte-targeted, membrane-active peptide (Fig. 1) (Coelho
et al., 2013; Nair et al., 2014; Wooddell et al., 2013). Although very
different in their physical constituency and mechanism of delivery,
all three technologies have in common the ability to alter the
biodistribution properties of the RNAi trigger and enhance its
uptake by hepatocytes.

All of these technologies result in hepatocyte uptake of the RNAi
trigger via endocytosis (Fig. 1). Localization in the endosome sub-
jects the RNAi trigger to high levels of nuclease activity which is
able to quickly degrade dsRNA. In LNPs, the RNAi trigger is encap-
sulated and thus protected against digestion (Li and Szoka, 2007).
For conjugate and DPC systems, the RNAi trigger is not in a com-
plex and therefore must be chemically modified to increase nucle-
ase resistance. The most commonly used modifications involve
substitution of the 20OH group on the ribose ring with 20OMe
and/or 20F, and limited phosphorothioate substitutions in the sugar
phosphate backbone (Allerson et al., 2005; Choung et al., 2006;
Czauderna et al., 2003; Volkov et al., 2009). The use of chemical
modifications has the added benefit of reducing the likelihood of
innate immune system stimulation and other off-target effects that
have been described for unmodified RNAi triggers (Jackson et al.,
2006; Judge et al., 2006). Protection from nuclease digestion
enables the RNAi trigger to remain intact prior to its release from
the endosome which is thought to be the rate-limiting step for suc-
cessful RNAi delivery.

The endosomal release step has been the subject of intensive
technological development and evaluation (Dominska and
Dykxhoorn, 2010). For LNPs, it is thought that the cationic lipid
component interacts with anionic phospholipids in the endosomal
membrane to form nonbilayer ion pairs, thus disrupting the
structure and integrity of the endosomal membrane (Hafez et al.,
2001; Semple et al., 2010; Torchilin, 2006). The DPC system utilizes
the amphipathic peptide melittin-like peptide (MLP) which has
demonstrated membrane interactive ability (Wooddell et al.,
2013). This activity is inhibited by conjugating it with acid labile
chemical masking groups (Rozema et al., 2003). The masking agent
is bifunctional and is also used as a linker to attach the hepatocyte
targeting ligand N-acetylgalactosamine (GalNAc or NAG) to the
peptide. Once inside the endosome, the low pH environment trig-
gers unmasking, allowing the peptide to interact with and disrupt
the endosomal membrane which allows release of the co-injected
RNAi trigger (Wong et al., 2012). The mechanism of endosomal
release of RNAi trigger conjugates, when conjugated to GalNAc
for hepatocyte targeting, is not known. However, these are typi-
cally heavily chemically modified and extremely nuclease resis-
tant. Thus, it is possible that they may take advantage of, or
enhance, a tendency for endosomes to release their contents at
low frequency (Ohya et al., 2009; Starai et al., 2007). Once the
RNAi trigger is released from the endosome to the cytoplasm, it
is able to engage with RISC and elicit RNAi.

There is potential for short dsRNAs such as RNAi triggers to
induce the innate immune response given the similarity of their
molecular signatures to viral RNA (Hornung et al., 2005; Judge
et al., 2005). Because of this, clinical trials conducted with RNAi
triggers formulated in LNP have incorporated pre-treatment with
corticosteroids such as dexamethasone in order to reduce the risk
of inflammatory reactions (Coelho et al., 2013; Fitzgerald et al.,
2014). However, this is likely more of a concern with LNP formula-
tions than delivery approaches using RNAi-trigger conjugates or
the DPC approaches described above due to the relatively large size
of LNPs, the potential for cross-linking of immune receptors when
multiple siRNAs are presented in a complex, and the propensity of
immune cells to take up LNPs (Judge and MacLachlan, 2008).
Substitution of the 20OH group with 20OMe on the sugar of the
RNAi triggers also aids in minimizing the potential for eliciting
an innate immune response (Judge et al., 2006). This type of mod-
ification is currently being employed in the latest generation of
RNAi triggers designed for therapeutic intent.

4. Molecular biology of HBV and its susceptibility to RNAi

In order to understand how a therapeutic agent based in RNAi
might be suited to the treatment of CHB, it is important to first con-
sider the genetic makeup and organization of HBV. There are several
excellent and extensive reviews on the molecular biology and life
cycle of HBV; thus we focus here on those most relevant to develop-
ment of an RNAi-based drug (Seeger and Mason, 2015; Seeger et al.,
2007). The HBV genome is remarkable in its compactness and com-
plexity, consisting of a circular, partially double-stranded DNA just
3.2 kilobase pairs (kb) in length (Fig. 2). After viral entry into the cell
and uncoating and deposition of the genome into the nucleus, the
host DNA repair system converts the partially double-stranded viral
DNA into covalently closed circular DNA (cccDNA). The cccDNA is
used as a template by the cellular mRNA transcriptional machinery
to generate the four families of viral transcripts. All HBV transcripts
are overlapping, differing in their 50 initiation sites but sharing a
common 30region and utilizing the same polyadenylation signal.
The longest transcripts are approximately 3.5 kb in length and
include the pre-C mRNA used in production of the pre-core protein,
also known as HBeAg, and a slightly shorter version (pgRNA) that is
initiated�30 base pairs downstream. The pgRNA is used in the pro-
duction of the core protein and the polymerase-reverse transcrip-
tase which is translated from a different reading frame than core.
The pgRNA also represents the pre-genomic RNA and is used as
the template by the polymerase-reverse transcriptase during viral
replication. This ultimately results in the production of infectious



Fig. 2. Organization of the HBV transcriptome. The map coordinates shown are based on the unique EcoRI site at position 3182/1 (inner dial). The major HBV transcripts are
shown (outer black lines) along with their 50 initiation sites (black arrowheads) and 30 poly A tails (AAAA). All HBV transcripts utilize the same polyadenylation signal located
in the core coding region and thus have overlapping sequences. Coding regions for the HBV proteins are indicated with colored bars. The relaxed circular DNA genome of HBV
is also shown with the partially completed + strand (inner black circles) as well as the positions of enhancer 1 (Enh1), enhancer 2 (Enh2), and the direct repeat 1 (DR1) and
direct repeat 2 (DR2). The polymerase-reverse transcriptase covalently linked to the 50 end of the – strand DNA is also shown (yellow ball).
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viral particles as well as additional copies of cccDNA that are trans-
ported back to the nucleus. An alternative priming event can also
result in the generation of double-stranded linear (DSL) forms of
the viral genome (Staprans et al., 1991). These linear forms are pro-
duced at a frequency of about 5–20% and often contain deletions of
50 and 30 genomic sequences that make them defective for replica-
tion. Being linear, the DSL form has a higher propensity to integrate
into the host genome; integrated HBV DNA is often found in cells of
patients with HCC (Fallot et al., 2012; Riviere et al., 2014; Yang and
Summers, 1995). It is very likely that HBV integrants are transcribed
in a way that can support production of viral antigens (Koshy and
Caselmann, 1998). An HBV-specific 2.3-kilobase RNA was detected
in human hepatoma cell line PLC/PRF/5 which produced HBsAg
(Pourcel et al., 1982). In addition, certain HCC cell lines grown in cul-
ture that contain integrated HBV DNA can support the production of
HBsAg-containing hepatitis D virus (HDV) virions, suggesting that
these cells can produce at least low levels of functional HBsAg
(Freitas et al., 2014). HBV integrants have also been detected in
normal-appearing hepatocytes in both chimpanzees and humans
with CHB (Mason et al., 2009, 2010; Tu et al., 2015). Regardless of
their origin, transcripts containing HBV sequences could still be tar-
geted using RNAi-based approaches.
Further downstream of the initiation sites for the 3.5 kb family
of transcripts are the initiation sites for the mRNAs used to produce
the three forms of the surface protein, L, M and S, which differ in
their length at the N-termini. The 2.4 kb transcript (pre-S1
mRNA) is used in the translation of the large surface antigen (L).
The 2.1 kb transcripts (pre-S2 mRNA) are initiated downstream
of the pre-S1 mRNA and are used to produce the M and S surface
antigens. The pre-S2 mRNAs have functional heterogeneity in their
50 ends flanking the initiation codon used to produce M; those ini-
tiated upstream are used to produce M and those downstream are
used to produce S. A 0.7 kb transcript is initiated the most down-
stream and is used in the production of the X protein.

The organization of the HBV transcriptome presents an attrac-
tive target for the use of RNAi from a molecular standpoint
(Fig. 3). The fact that the viral RNA transcripts contain overlapping
sequences means that a single RNAi trigger can theoretically result
in the degradation of all viral transcripts, thereby directly prevent-
ing the production of viral proteins. Such an RNAi trigger would
also be expected to directly target pgRNA and impact viral replica-
tion levels through an orthogonal mechanism of action to
polymerase-reverse transcriptase inhibitors. The cccDNA reservoir
in the nucleus may also be decreased due to inhibition of viral



Fig. 3. Target points of NUC and RNAi-based therapies in the HBV lifecycle. NUCs directly inhibit the polymerase-reverse transcriptase (left panel). This results in reduction of
viral DNA synthesis, leading to reduced virion production and decreased replenishment of cccDNA in the nucleus. NUCs do not directly affect the production of viral proteins
and thus can only gradually reduce HBV protein levels over many years of therapy. In contrast, RNAi-based therapies would directly reduce levels of the targeted viral
transcripts, leading to a rapid reduction in viral protein synthesis. The levels of pgRNA can also be affected, resulting in decreased levels of viral DNA synthesis and reduced
virion secretion and cccDNA production.
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replication, although it would not be directly acted upon by RNAi.
Thus, by directly inhibiting viral protein production as well as
affecting viral replication, an RNAi-based therapy would affect
most aspects of the viral life cycle. This is in contrast to existing
direct acting HBV drugs such as NUCs which only directly inhibit
HBV replication (Fig. 3).

In addition to these direct antiviral effects, reduction of viral
antigens by RNAi may aid in restoration of the immune system,
thus enabling it to mount an effective attack on HBV. One hallmark
of CHB is the poor immune response to viral antigens (Ferrari,
2015; Ferrari et al., 1990; Jung et al., 1991). A major contributor
to this is thought to be the persistent exposure of T cells to high
levels of soluble viral antigens, resulting in a stepwise functional
impairment and a phenomenon known as T-cell exhaustion
(Bertoletti et al., 2009; Chisari and Ferrari, 1995; Kondo et al.,
2013). Reducing the level of viral proteins may be one therapeutic
strategy to overcome this. One recent study showed that a reduc-
tion of viral antigens while under NUC therapy was associated with
recovery of T-cell function (Boni et al., 2012). However, while NUCs
are highly effective at decreasing viral titer, they are much less
effective at lowering key viral antigens in most patients (Chang
et al., 2010; Seto et al., 2013). This is because NUCs block only
the polymerase-reverse transcriptase, which inhibits viral DNA
synthesis, but do not directly affect cccDNA levels or transcription
(Takkenberg et al., 2011; Werle-Lapostolle et al., 2004). In contrast,
RNAi-based approaches would directly target the mRNAs used in
the production of viral proteins, theoretically resulting in faster
and more robust lowering of viral antigens compared to NUC ther-
apy (Fig. 3). A relatively rapid decline in HBsAg levels can be a pre-
dictor of sustained virological response (SVR) in CHB patients
receiving IFN (Moucari et al., 2009; Sonneveld et al., 2013).
Unfortunately, there is a dearth of animal models that could be
used to test whether antigen reduction using RNAi aids in the
restoration of a specific T-cell response. Clinical data will likely
be required.
5. Preclinical development of ARC-520

One RNAi-based drug currently in Phase 2 clinical trials for
patients with CHB is ARC-520 (Arrowhead Research Corporation,
Pasadena, California, USA). This drug is based on the DPC technol-
ogy described above and contains a hepatocyte targeted, reversibly
masked membrane active peptide (NAG-MLP) to facilitate endoso-
mal release of two synthetic RNAi triggers directed towards HBV
transcripts. The sequence diversity of HBV genomes is substantial
and comprises nine major genotypes (A–I) with greater than 7.5%
intergroup nucleotide divergence (Kramvis, 2014). This makes
designing an RNAi trigger with broad genotype coverage some-
what of a challenge as perfect or near perfect match to the target
sequence in the mRNA is required for maximal activity (Elbashir
et al., 2001b; Huang et al., 2009). The substitution rate varies in dif-
ferent regions of the HBV genome. Regions that contain overlap-
ping reading frames or secondary RNA structures required for
processes such as HBV replication in non-overlapping regions tend
to be more highly conserved (Mizokami et al., 1997; Torres et al.,
2013). In the development of ARC-520, by creating an alignment
of 2754 full-length HBV genomes present in GenBank, conserved
sequences were identified that could be used to generate RNAi trig-
gers cross-reactive with >90% of known HBV genomes (Wooddell
et al., 2013). These were then subjected to a specificity filter to
eliminate those that could potentially cross-react with human
mRNAs in order to avoid sequence-dependent off-target effects.
This process resulted in identification of approximately 140
sequences. These sequences were used to generate an initial
screening set of RNAi triggers that were tested in cells in culture
for potency against a reporter gene harboring HBV sequences.
The four most potent sequences were selected for further testing
in vivo.

Prior to in vivo testing, these RNAi triggers were chemically
modified using sugar and backbone analogues designed to increase
nuclease resistance and minimize the potential for induction of an
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innate immune response (Allerson et al., 2005; Choung et al., 2006;
Czauderna et al., 2003; Judge et al., 2006; Volkov et al., 2009).
These include substitution of the 20OH of the sugar with 20OMe
or 20F groups and a phosphorothioate linkage between the terminal
30 nucleotides of the guide strand. A cholesterol moiety was also
conjugated to the RNAi triggers to enhance liver uptake
(Soutschek et al., 2004; Wong et al., 2012). Two mouse models of
CHB were used in these studies. The first was a transiently trans-
genic pHBV model generated by hydrodynamic tail vein injection
of a plasmid harboring the terminally redundant full-length HBV
genome (HBV 1.3) (Yang et al., 2002). Typically 5–20% of hepato-
cytes are transfected using this technique (Zhang et al., 1999).
This model expresses all viral RNAs and is competent for HBV repli-
cation and production of virions and allows the effects of the RNAi
triggers on HBsAg, HBeAg, and viral DNA levels in the serum and
viral RNA levels in the liver to be monitored. The second was a
transgenic mouse harboring a single chromosomally integrated
copy of the HBV 1.3 genome resulting in HBV gene expression
and production of virions in the vast majority of hepatocytes
(Guidotti et al., 1995). The levels of the 3.5 kb pgRNAs, the
2.4/2.1 kb preS1/S mRNAs, and the HBeAg levels as well as the pro-
duction of HBV DNA replicative intermediates were monitored
using this model. The presence and distribution of hepatitis B core
antigen (HBcAg) was also evaluated using immunohistochemistry
of liver sections.

All four RNAi trigger candidates were highly active in the pHBV
mouse model when co-injected with NAG-MLP, with decreases in
HBsAg expression of between 2 and 3 log10 after a single intra-
venous injection. HBeAg and serum HBV DNA levels, as well as
liver levels of HBV RNA, were also dramatically decreased
(Wooddell et al., 2013). Two of the RNAi triggers, chol-siHBV74
and chol-siHBV77, elicited the greatest level of knockdown.
Further testing of these two RNAi triggers in the pHBV mouse
model showed dose-dependent knockdown of HBsAg after coinjec-
tion with an equal dose of NAG-MLP on a mg/kg basis (Fig. 4)
(Wooddell et al., 2013). Both gave similar levels of knockdown at
the two doses evaluated, with the nadir occurring on Day 8 after
injection. The duration of effect for formulations containing
chol-siHBV74 was slightly longer than with the formulations con-
taining chol-siHBV77, with >1 log10 knockdown of HBsAg lasting
approximately 1 month in mice receiving chol-siHBV74. Injection
of an equimolar mixture of chol-siHBV74 and chol-siHBV77 with
NAG-MLP resulted in a similar level of knockdown at the nadir
with a similar duration of effect. No knockdown was observed
when the RNAi triggers were injected without NAG-MLP. This indi-
cated that NAG-MLP was required for effective delivery, presum-
ably by enabling endosomal escape of the RNAi triggers. In
Fig. 4. Dose response comparison of chol-siHBV74 and chol-siHBV77 in the pHBV mouse
given a hydrodynamic tail vein injection with 10 lg minicircle HBV1.3 (MC-HBV1.3). Th
(n = 8) or 6 mg/kg NAG-MLP alone (n = 7); an injection of 6 mg/kg chol-siHBV74 plus cho
MLP with 6 mg/kg chol-siF7p (primate F7) (n = 4); or a coinjection of the indicated doses
chol-siHBV77 (n = 4–11). HBsAg was measured in serum at the indicated time points befo
et al. (2013).
addition, no knockdown was observed when NAG-MLP was
injected without the HBV RNAi triggers or with a control RNAi trig-
ger, demonstrating that knockdown was also HBV RNAi
trigger-dependent, as expected.

The chol-siHBV74 and chol-siHBV77 triggers were further
tested in the transgenic HBV mouse model (Wooddell et al.,
2013). Coinjection of these RNAi triggers, either alone or in combi-
nation, with NAG-MLP resulted in steep reductions in the levels of
the 2.4/2.1 kb preS1/S transcripts (encoding HBsAg) in the liver
1 week after dosing as determined by Northern blot (Fig. 5a). The
levels of the 3.5 kb transcripts (encoding pre-core, core,
polymerase-reverse transcriptase and pgRNA) were also strongly
reduced, although to a slightly lesser extent than the 2.4/2.1 kb
transcripts. Knockdown of transcripts encoding core, the poly-
merase, and the pgRNA would be expected to adversely affect
HBV replication. Indeed, analysis of HBV replication intermediates
by Southern blotting revealed a dramatic reduction in treated mice
to below the limit of detection (Fig. 5b). Steep reductions of viral
RNA and DNA replication intermediates in whole liver lysates sug-
gested that coinjection of the chol-siHBV74 and chol-siHBV77
RNAi triggers with NAG-MLP was active in at least a majority of
hepatocytes. Immunohistochemical staining of liver sections for
the presence of core protein confirmed this, as uniform reduction
of the cytoplasmic core antigen was observed (Fig. 5c).

The demonstrated efficacy of coinjection of chol-siHBV74 and
chol-siHBV77 with NAG-MLP for knockdown of HBV transcripts
in the mouse models of HBV infection prompted us to consider
using both RNAi triggers in a therapeutic designed to treat CHB.
This would enable more extensive genotype coverage than
obtained using a single RNAi trigger. Chol-siHBV74 is an identical
match to its target sequence in 96.4% of all surveyed HBV genomes
and chol-siHBV77 is an identical match to 92.6%. Together they
would provide coverage of 99.64% of all genomes (Wooddell
et al., 2013). Another possible benefit of using two RNAi triggers
would be a theoretical reduction in the frequency of escape
mutants that might arise while under therapy as such mutants
would need to accumulate at least two resistance mutations, one
in each target sequence (Wu et al., 2005). Thus, ARC-520, a thera-
peutic for treatment of patients with CHB, contains both
chol-siHBV74 and siHBV77 in addition to NAG-MLP.

The ability of ARC-520 to reduce viremia and the production of
viral antigens in a chimpanzee chronically infected with human
HBV has also been examined. This animal had been infected since
1979, was HBeAg(+), and had a very high viral titer of HBV geno-
type B (10 log10 genome equivalents/ml serum). A single intra-
venous injection of 2 mg/kg of ARC-520 was well-tolerated and
resulted in decreases in serum levels of HBsAg, HBeAg and HBV
model. Nonobese diabetic/severe combined immunodeficient (NOD SCID) mice were
ree weeks later, mice were given one 200 lL IV injection of isotonic glucose alone
l-siHBV77 (3 mg/kg each) without NAG-MLP (n = 4); a coinjection of 6 mg/kg NAG-
of NAG-MLP with equal doses of chol-siHBV74, chol-siHBV77, or chol-siHBV74 plus
re and after injection, mean ± SD. Figure reproduced with permission from Wooddell



Fig. 5. Efficacy of chol-siHBV74 and chol-HBV77 in transgenic HBV mice. HBV1.3.32 transgenic mice were injected twice, 1 week apart, (c–f, females) with 6 mg/kg NAG-MLP
and 3 mg/kg of the indicated chol-siRNA or a combination of 3 mg/kg chol-siHBV-74 plus 3 mg/kg chol-siHBV-77 (n = 2–4). The mice were euthanized 7 days after the second
injection for evaluation of HBV RNA (a) and HBV DNA (b) in liver. Tg, transgene; HBV RC DNA, HBV relaxed circular DNA; HBV SS DNA, HBV single-stranded DNA. (f)
Immunohistochemical detection of HBcAg in hematoxylin-stained sections of liver. Scale bar = 100 lm. Figure reproduced with permission from Wooddell et al. (2013).

104 R.G. Gish et al. / Antiviral Research 121 (2015) 97–108
DNA. A subsequent injection of 3 mg/kg 2 weeks after the first
injection correlated with increased pharmacological effect, giving
81–96% reductions in these HBV parameters at nadir (Day 29).
These reductions were similar in magnitude and duration of effect
to those observed in the mouse HBV models receiving similar
doses as described above.

6. Clinical experience using ARC-520

ARC-520 has been evaluated in a Phase 1 clinical trial
(Clinicaltrials.gov ID NCT01872065) in healthy volunteers and in
a single dose Phase 2 trial in CHB patients (Clinicaltrials.gov ID
NCT02065336). Interim results from the Phase 1 study showed
that single doses of ARC-520 were well tolerated up to 2 mg/kg
when administered intravenously (Schluep et al., 2013). Adverse
event frequency and severity did not differ between placebo and
ARC-520; all adverse events were reported to be mild or moderate.
Preliminary results from a Phase 2a, randomized, double-blind,
placebo-controlled study to assess depth and duration of HBsAg
reduction and safety after a single, intravenous dose of ARC-520
are also available (Yuen et al., 2014). This study was conducted
in HBeAg-negative adult CHB patients receiving long-term ente-
cavir. Good tolerability at single doses up to 3 mg/kg and a
dose-dependent reduction in HBsAg were observed. When com-
pared to placebo, serum HBsAg was reduced by up to 50% after a
single dose of 2 mg/kg and statistically significant reductions were
observed for up to 43–57 days. This was the first time that a reduc-
tion in HBsAg mediated through RNA interference has been shown
in CHB patients. Neither trial has reported any changes in clinical
laboratory measurements indicative of end organ toxicity, nor
were drug-related adverse effects reported for vital signs, electro-
cardiograms or physical examinations.

7. RNAi-based therapeutics as part of the armamentarium for
treating CHB

An attractive feature of an RNAi-based therapeutic for the treat-
ment of CHB is the ability of RNAi to directly target HBV transcripts
and thus profoundly reduce the production of proteins. Viral anti-
gens are not only required for competent viral reproduction but are
also thought to be responsible for the impaired adaptive immune
response observed in CHB. Numerous studies have shown that per-
sistent exposure of T cells to viral antigens is a major determinant
of functional T-cell impairment in CHB (Bertoletti and Gehring,
2006; Boni et al., 2007; Op den Brouw et al., 2009; Wherry and
Ahmed, 2004; Ye et al., 2015). HBsAg in particular may directly
suppress monocytes, dendritic cells, and natural killer cells and
lead to exhaustion of CD8+ and CD4+ T cells (Kondo et al., 2013).
Evidence has also been gathered demonstrating the roles of
HBeAg and, to a lesser extent, HBcAg in immune suppression
(Milich et al., 1998; Riordan et al., 2006; Shimizu, 2012). These data
suggest that antigen reduction will be essential to allow functional
reconstitution of antiviral T-cell responses. The observation that
the RNAi triggers contained in ARC-520 can inhibit the production
of circulating HBsAg, HBeAg and intrahepatic core protein in ani-
mal models, and HBsAg in HBeAg-negative CHB patients, makes
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RNAi an attractive approach for achieving this. Whether or not
reduction of viral antigens alone will be sufficient to allow the
immune system to recover and clear HBV in CHB patients remains
to be seen. Given the experience with HIV and HCV, it would be
unsurprising if achieving HBsAg seroclearance in HBV were to
require combination therapy, perhaps including an agent targeting
direct action on the immune system.

The ultimate goal in treating CHB is loss of HBsAg with or with-
out anti-HBs seroconversion indicating that the immune system
has gained control over the virus (Honer Zu Siederdissen and
Cornberg, 2014). Indeed, sustained HBsAg seroclearance is the pre-
ferred endpoint for CHB therapy since loss of HBsAg is associated
with a significant reduction in progression to cirrhosis or HCC
(Chen et al., 2002; Lok and McMahon, 2009). Unfortunately, this
endpoint is rarely achieved with NUC and IFN therapies, the only
therapies currently approved for treating CHB (Wong and Chan,
2013). NUC therapies, while highly effective for reducing viral load,
result in only modest reduction of viral antigens. This is likely due
to their limited mechanism of action (Takkenberg et al., 2011;
Werle-Lapostolle et al., 2004). Nonetheless, patients on long-term
NUC therapy often achieve undetectable viral DNA and a normal-
ization of ALT levels. A subset of these seroconvert to anti-HBeAg
which is associated with decreased risk of liver decompensation
and improved survival, with the incidence of HCC reduced by as
much as 78% (Lok and McMahon, 2009; Rijckborst et al., 2010;
Sung et al., 2008). HBeAg(�) patients with suppressed viral DNA
on NUC therapy also display increased T-cell function. This
becomes more complete as a function of HBsAg decline and is max-
imal in those few patients achieving persistent HBsAg loss (Boni
et al., 2012). Unfortunately, seroclearance of HBsAg rarely occurs
and cessation of therapy results in virological and biochemical
relapse in the majority of patients (Seto et al., 2015). As a result,
lifelong NUC therapy is currently recommended.

Treatment with IFN results in a somewhat greater frequency of
HBsAg seroclearance, with HBsAg loss reported in 23% of HBeAg(+)
patients over an eight-year period (van Zonneveld et al., 2004). The
decline in on-therapy HBsAg levels is more rapid and pronounced
in patients treated with IFN as compared to NUCs, and a more rapid
decline in HBsAg levels in patients undergoing IFN therapy is asso-
ciated with a greater likelihood of HBsAg seroclearance (Moucari
et al., 2009; Reijnders et al., 2011; Sonneveld et al., 2013). This
intriguing finding supports the idea that a rapid and deeper decline
in viral antigens results in better likelihood of HBsAg
seroclearance.

An intriguing approach to treating CHB patients with curative
intent would be to combine therapies that target different aspects
of the HBV lifecycle and/or act on host factors that contribute to
chronicity. Evidence that such an approach may be somewhat
more effective than monotherapies is emerging from clinical trials
in which IFN therapy is added on to patients receiving NUC ther-
apy, or when patients on NUC therapy are switched to IFN after
an 8 weeks overlap period (Kittner et al., 2012; Ning et al., 2014;
Ouzan et al., 2013). Patients who responded to these combinations
showed higher rates of HBeAg and HBsAg seroclearance than those
continuing on NUC therapy alone. Although the reasons why these
combinations may be more effective are as yet unclear, they likely
involve modulations of both host and viral factors, given the mech-
anism of action of these drugs.

As discussed above, there is evidence that persistent exposure
of viral antigens is a major contributor to immune cell exhaustion,
as well as empirical support for the notion that a rapid and deeper
decline in viral antigens results in better likelihood of HBsAg sero-
clearance. The RNAi mechanism is well-suited to reduce viral anti-
gens, as has now been shown in several animal models, including a
chronically infected chimpanzee, as well as in humans in a Phase
IIa clinical trial designed to evaluate ARC-520. Patients in this
Phase IIa trial were on NUC therapy prior to enrollment with con-
tinued usage during treatment with ARC-520. This design allows
the investigation of ARC-520 in patients currently receiving the
most often used standard of care for CHB. Future trials could be
envisioned that would examine the combination of ARC-520 with
IFN. This combination is attractive as it would combine the antigen
reduction activity of ARC-520 through RNAi, thus enhancing the
potential for restoration of T-cell mediated function, with the
pleiotropic effects of IFN on viral and host factors. A drawback to
the use of IFN is its known adverse effects including flu-like syn-
drome, headache, myalgia, fatigue, depression and local injection
site reactions (Marcellin et al., 2004). However, these could poten-
tially be minimized if the combination therapy proved to have
enhanced efficacy, allowing lower doses or shorter treatment
durations.

As discussed in other papers in this special issue, other novel
approaches to CHB treatment are also being investigated (Kapoor
and Kottilil, 2014). Therapies aimed at activating the innate
immune system and restoring adaptive immune responses, includ-
ing TLR agonists, PD-1 inhibitors, and therapeutic vaccines, would
be particularly well suited to act synergistically with therapies
such as RNAi aimed at reduction of viral antigens. CHB is a complex
disease to treat due to its dynamic life cycle and diverse patient
profiles, and it will likely require a multi-pronged approach in
order to identify therapies that are curative across the patient pop-
ulation. RNAi-based therapies may play an important role in future
therapeutic regimes aimed at improving HBsAg seroclearance and
eliminating the need for lifelong therapy.
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