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Abstract—The prior estimate and decay property of positive solutions are derived for a system
of quasilinear elliptic differential equations first. Then the result of nonexistence for a differential
equation system of radially nonincreasing positive solutions is implied. By using this nonexistence
result, blow-up estimates for a class of quasilinear reaction-diffusion systems (non-Newtonian filtration
systems) are established to extend the result of semilinear reaction-diffusion (Fujita type) systems.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

The aim of this paper is to derive some estimates near the blow-up point for positive solutions
of a class of quasilinear reaction-diffusion systems (non-Newtonian filtration systems)
u = div (|Dul*~2 Du) + v®,
vy = div (| Dv|?72 Do) +wP, (1.1)
wy = div (| Dw|™ 2 Dw) + 7, (z,t) e @ x (0,T),
as well as the nonexistence of positive solutions of the related elliptic systems
—div (|DulP~2 Du) = v,
—div (|Dv|?"2 Dv) = wP, (1.2)
—div (|[Dw|™?Dw) =u", z€Q,

where @ C RM, pgm > 1, a8y > - 1)(g-1)(m —1). Forp=¢qg=m = 2, (1.1) is
the classical reaction-diffusion system of Fujita type. If p # 2,q # 2,m # 2, (1.1) appears
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in the theory of non-Newtonian fluids [1,2] and in nonlinear filtration theory [3]. In the non-
Newtonian fluids theory, the pair (p,q,m) is a characteristic quantity of the medium. Media
with (p,q,m) > (2,2,2) are called dilatant fluids and those with (p,¢,m) < (2,2,2) are called
pseudoplastics. If (p, g, m) = (2,2,2), they are Newtonian fluids.

The main result of the present paper is a natural extension of the results given by Weissler and
Caristi [4,5], which concern the single equation

ug(z,t) = Au + u™(z, ), (z,t) e 2 x (0,T)
and the semilinear reaction-diffusion systems (Newtonian filtration systems)
u(z, t) = Aufz,t) + v™(z,1), ve(z,t) = Av(z, t) + u™(z,t).

Throughout this paper, let § = B = {x € R¥ : |z| < R} (R > 0). In Section 2, we give
sufficient conditions under which the nonexistence of positive solutions of the elliptic system (1.2)
holds in RV for N > max{p,q,m}. Then in Section 3, by using the nonexistence result, we
get the desired blow-up estimates for the reaction-diffusion system (1.1) with some additional
assumptions.

2. NONEXISTENCE FOR SYSTEM (1.2)

Consider radié,lly symmetric solutions of the elliptic system (1.2), that is, suppose that u =
u(r),v = v(r),w = w(r) with r = |z|.

Let
g =Pa-bm-1)+agm-1)+afm N-p
afy—(p-1)(¢g-1)(m-1) p-1’
= =M -1 +pmp-1)+pfy N-g
afy - (p-1){g-1)(m-1) g-1’
Lo mp-1)@-D+yplg-1)+gey N-m
T T apy-(-1g-Hm-1) ~ m-1

We have the following theorems.

THEOREM 2.1. Assume that

(i) N> max{p,q,m}, afy > (p—1)(¢ —1)(m ~1) withp,g,m > 1;
(ii) 21 > 00rz >00rz3 >0

Then system (1.2) has no positive radially symmetric solution.

To prove Theorem 2.1, system (1.2) can be written in radial coordinates as

(B (W) + T 8y () + 0% =0, 2.)

(®q (v) + N—T——l B, (v) + wP =0, (2.2)

(@ () + 2 B () 07 =0, 23)

u(0) >0, v(0)>0, w(0)>0, w(0)=01v'(0)=uw'(0)=0, (2.4)

in RN with N > max{p, g, m}, where ®,(x) = [ulP~%u, ®4(v) = |[v|7%v, Bpn(w) = |w|™ w.
By the similar argument of Lemma. 2 in [6], we can prove the following.
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LEMMA 2.1. Let (u,v,w) be a positive and radially symmetric solution of equations (2.1)-(2.4).
Then for r > 0,

p\ 1/(p—-1) _
(L) v < oyt < V2P iy

N p-1
rq 1/(q— ) N q (2.5)
m\ 1/(m—1) _

(%) W/ =D < ' < I;Jl _T w(r). (2.6)

From (2.5),(2.6), we see the following lemma.

LEMMA 2.2. Suppose that the conditions in Theorem 2.1 are satisfied. Let (u,v,w) be a positive
and radially symmetric solution of equations (2.1)—(2.4). Then

u(r) < Cr~(P-D(m-1)+a(m-1)g+afm)/(afy-(p-1)(g-1)(m-1))
v(r) < Cr~@E-m-1)+8m(p-1)+pyB)/(aBy-(p-1)(q-1)}(m-1))

w(r) < Cr—(mp—1){g-1)+vp(g— ) +gva)/(aBy—(p-1)(g-1){m-1))

PROOF OF THEOREM 2.1. Let (u,v,w) be a nontrivial positive and radially symmetric solution
of equations (2.1)-(2.4). We consider first the case z; > 0 or z3 > 0 or z3 > 0.
By Lemma 2.1,

(M =Pu=1(1))’ = ¥N=P1u2 (p — D) () + (N = pJu(r)] 20,

we have u(r) > cr"(N_P)/(P_l) and (ur(N—P)/(p_l))’ (UT(N‘Q)/(Q_I)), (wT(N"m)/(m_l)) are non-
decreasing on (0, +00). From Lemma 2.2 and for r > ry > 0, we obtain that

ra < C or r®2 < C or r® < C.
Since 21 > 0 or 22 > 0 or 23 > 0, this leads to a contradiction for r sufficiently large.

Suppose next that z; = 0 (the case 23 = 0 or 23 = 0 being similar). From (2.1), it follows that
forr > ro >0,

T
A UG T i PO / sN 1o (s) ds.
To
By Lemma 2.1, we have

v (s) > C5(99)/(a=1)gy(B)/(a-1) > Cs(qa(m—'1)+aﬂm)/((m—1)(q—1))u(aﬂ*1)/((m—1)(q—1)),
and hence,

T
PN )P > © / §N=1+(q@)/(a=1) +(@Bm)/(a=1)(m=1)) y @8/ (a-1)(m=D)(5) .

Now taking into account that u(s) > Cs®~N)/(P-1) we obtain

pN- 1|u (f,-)l” 1 >C'/ N=-1+(ga)/(g-1)+(aBm)/((g-1)(m~1))+(aB¥(p-N))/((p-1)(a-1)(m=-1)) 4,

—C/ s~ lds,

where we have used the assumption z; = 0.
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Then
rM4qu*zcm(i). ‘ (2.7)
To
On the other hand, from
ru'(r) + ]z\::lp u(r) >0, for r > 0,
we find that ;
— p_
(322) vz wmrt e, (29

Together with (2.7), this implies that

r\\ V-0
r(N=P)/e=D)y(y > C (m (r_)) .
0

This is impossible, however, since from Lemma 2.2 estimate implies that
r(N"”)/(p'l)u(r) <Cra =C.
This contradiction concludes the proof of the theorem.

2. BLOW-UP ESTIMATES FOR SYSTEM (1.1)

Motivated by [4,5], we impose the following initial and boundary value conditions to equa-
tions (1.1):

u(z,0) = uo(x), v(z,0)= vo(:c), w(z,0) = wy(x), z€Q=BpCRY, (3.1)
: u=v=w=0, (z,t) € 892 x (0, T). (3.2)

THEOREM 3.1. Let (u,v,w) be a solution of equations (1.1), (3.1), and (3.2). Assume that
(i) u(-t), v(-,t), and w(-,t) are nonnegative, radially, decreasing, and symmetric functions
of r = |z, .
(il) we(z,t), ve(z,t), and w(z,t) attain the maxima at = 0 for every t € (0,T),
(i) us(z,t) >0, ve(z,t) > 0, wy(z,t) > 0 for (z,t) € Qr = Br x (0,T),
(iv) u,v,w have a blow-up time T < +o0,
(v) integer N > max{p,q,m}, afy > (p — 1)(g — 1)(m — 1), and p,q,m > 2 with

2120 or 220 or z3 >0,
(vi) there are positive constants ky, k2, k3, ks and n < T such that

k2 (u(0, t))ﬂz/é’: < v(0,t) < ki (u(0,t))%/%,
ka(u(0,£))%/% < w(0,t) < ks(u(0,8))%/%,  forte (n,T).

Then there are positive constants ¢y, ¢z, c3, and t; € (0,T) such that

u(z,t) < u(0,t) < (T -t)™%, v(z,t) < v(0,t) < co(T ~t)7%,
w(z,t) < w(0,t) < c3(T —t) ™%,
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for (z,t) € QT x Q,, where

plg—1)(m—1) 4+ ag(m -1} + afm

= 5aBT T (= Da(Em + am - D)~ pd - D = 1)
glp—1)(m — 1)+ Bm(p — 1) + Byp

" pafy + (0 - 2alBm +q(m—1)) —p(g—1)(m - 1)’
5y = mg-1)(p-1) +p(g~1)+axg

pefy + (p - 2a(fm + ¢(m - 1)) - plg — 1)(m - 1)
PROOF OF THEOREM 3.1. Define

w(t) =u(0,)™,  6(t) =v(0,1)/™,  5(t) =w(0,t)*/™,
fort € (0,T), where

pg—1)(m—1)+ag(m~1)+afm
afy—-(@-1)(g-1)(m-1) '
g(p — 1)(m — 1) + Bm(p ~ 1) + pBy

T2 = )

afy - (p-1(g-1)(m-1)

1=

and

_mp-1)(g—1) +vp(g—1) +goy
afy—(p—1)(g-1)(m-1)

By putting p(t) = u(t) + 8(t) + 6(t), r = a|

hy(r,t) = u(:/(,gg 4 Cha(rt) = 1’_(1”/_)/_(_/32_:'5)’ hs(r,t) = ——w(;/(f)(fz’t).

Using the symmetry and Assumptions (ii)-(iii) in this theorem, it follows that:

N-1 u(0,t) v(0,¢) w(0,1)
0< (8, (1)) ®, (b)) +hg < —= i ,
( P( 1) P_( ) (t)p+(p—1)‘rl p(t)\q+(q—1)-rg p(t)m+(m—-1)‘rg (33)
1\ ﬁ ut(O t) vt(O,t) wt(O,t)
0= (@4 (h2)) + 2) +hs < p(t)P+e-0m " p(t)a+(g-1)m + p(tymt(m=1)rs’ (3.4)
N - Y < u:(0,1) v (0,t) we(0, 1)
0% (®m (h )) + CI) (ha) + by p(t)p+(p-1)r1 p(t)atle=1m © p(tym+(m=-1)rs’ (3.5)

for any ¢t € (0,T) and r € [0, Rp(t)).
Since u(z,t), v(x,t), and w(z,t) achieve their maxima at z = 0, we easily see that hq, hs, h3
are bounded. Indeed,

0 < hy(r, t) < <1. (3.6)

Multiplying (3.3) by ki, (where k1, express partial derivation of h; for r), and then integrating
with respect to  on (0,r), we have

% b [P+ hE(r, )ha(r, ) — RS (0, )ha(0,8) — o / he~1hg, by dr < 0. (3.7)
0
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From (3.7) and ho,(r,t) <0, it follows that

2p 1/p
o< (22 .
ol < (52) ©8)

for t € (0,T) and r € [0, Rp(t)). Similarly, we get

2q 1/q om 1/m
hey < [ == , ha,| < ) .
ool < (25) 7 thel < (22 (39)
Now we proceed by contradiction to claim that
P ut(oa t) vt(o’t) wt(Oa t) _
lim inf ( PP+t para=Dm T pimm-nr ) = ¢ >0 (3.10)

Otherwise, there exists a sequence {t,} C (0,T") with £, — T such that

Ut(o,tn) ’Ut(o, tn) wt(01 t‘n) =0
o ®-0 * pltyera g meen ) =0

lim inf
t,—T

By using the Ascoli-Arzela theorem, there exists a se(juence (still denoted by {t,}) such that
hl('ytn) _)"_7‘2(')7 h2("tn) - B2(')a and h3('wtn) - 77'3('), asn — +oo (311)

hold uniformly on a compact subset of [0, +c0). Now in the sense of distributions

(@ (B)) + 2L 3, (R) + B = 0, (3.12)
@ () + XL, () + R =0, (3.13)
(@ (B5)) + T2 2,0 (B) 4 5 =0, (3.14)

The absolute continuity of hy, hg, h3 implies that hy, hy, hg are C1(0, +00). By the local existence
and uniqueness of initial value problem for (3.12)-(3.14) and using the arguments in [4,5], we
conclude that Ay, kg > 0,h3 > 0 on (0, +oc) with A7(0) = h4(0) = h4(0) = 0.

If N =2, p> 2, we proceed as follows. From equations (3.12)(3.14), we infer that r®,(h}),
7®4(h%), and r®,,(h}) are decreasing, and that there exist M < 0 and ro > 0 such that

r®, (h}) <M,  for r € (ro, +o0).

The last inequality implies that

t
Ra(s) > Fa(s) = Ra(t) = (=M)Y/®=D / /1) g
s (3.15)
= (-M)Y/®-D (t<p—2)/(p—1) _ s(p—z)/(p—l)) ,

for rg < s < t. Letting t — 400 in (3.15), we obtain a contradiction.
o If N =2, p =2, proceeding similarly as above implies that

ha(s) > hi(s) — ha(t) > (= M)[In(t) — In(s)]

for rg < s < t. Letting t — +o00 in the last inequality, we obtain a contradiction.
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Finally, if N > max{p,q} > 2 holds, we know from Theorem 2.1 that system (3.12)-(3.14)
has no positive solution. We conclude that (3.10) is true. It follows from (3.10) that there exists
t1 € (0,T) such that for any t € (t1,T) we have

c< m(O, t) vt(O, t) ’I.Dg(o, t)
= p(t)pre-1m  p(t)a+(a-1)7m2 p(t)m+(m=1rs (3.16)
Ut (01 t) Ui (Oa t) Wy (01 t) .
= u(0,t)(1+d1)/4 + v(O,t)(1+52)/52 + w(O,t)(H‘a)/‘SS’
Integrating (3.16) on (t,s) C (t1,7) and then letting s — T', we obtain
(T - t) < 61u(0,8)~ Y% 4 §,u(0,)~1/%2 4 3w (0,£) /%, (3.17)

By using Condition (vi) in (3.17), we have

for

u(z, t) < u(0,t) < (T —1)~%,

any (z,t) € Qr \ Qu,-

We have the blow-up estimates for v and w in the same way:

v(z,t) < v(0,t) < (T — t)"s’, w(z,t) < w(0,t) < c3(T — t)'63.

The proof is completed.

REMARK 1. For the special variational parabolic system

uy = Au + v#, vy = Av +ud,

with g,d > 1, Caristi and Mitidieri [5] obtained the following blow-up estimates:

u(z,t) < u(z,0) < (T — t)~W+D/ (=1 v(z,t) < v(z,0) < (T —t)~+D/ W=D (31g)

The single equation case was treated by Weissler [4] with

u(z,t) < u(z,0) < (T —t)~ /6D, (3.19)

Clearly, inequalities (3.18),(3.19) agree with Theorem 3.1 if one takes p =g =m =2, a = p,
B=v=6orp=qg=m=2,a=0=v=0, respectively. Therefore, the result in this paper
extends their results essentially.
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