Nonexistence of Positive Solutions to a Quasilinear Elliptic System and Blow-Up Estimates for a Non-Newtonian Filtration System

Zuodong Yang and Qishao Lu
Department of Applied Mathematics
Beijing University of Aeronautics and Astronautics
Beijing, 100083, P.R. China
(Received December 2000; revised and accepted February 2002)

Abstract

The prior estimate and decay property of positive solutions are derived for a system of quasilinear elliptic differential equations first. Then the result of nonexistence for a differential equation system of radially nonincreasing positive solutions is implied. By using this nonexistence result, blow-up estimates for a class of quasilinear reaction-diffusion systems (non-Newtonian filtration systems) are established to extend the result of semilinear reaction-diffusion (Fujita type) systems. (c) 2003 Elsevier Science Ltd. All rights reserved.

Keywords-Blow-up, Quasilinear parabolic system, Nonexistence.

1. INTRODUCTION

The aim of this paper is to derive some estimates near the blow-up point for positive solutions of a class of quasilinear reaction-diffusion systems (non-Newtonian filtration systems)

$$
\begin{align*}
u_{t} & =\operatorname{div}\left(|D u|^{p-2} D u\right)+v^{\alpha}, \\
v_{t} & =\operatorname{div}\left(|D v|^{q-2} D v\right)+w^{\beta}, \tag{1.1}\\
w_{t} & =\operatorname{div}\left(|D w|^{m-2} D w\right)+u^{\gamma}, \quad(x, t) \in \Omega \times(0, T),
\end{align*}
$$

as well as the nonexistence of positive solutions of the related elliptic systems

$$
\begin{align*}
-\operatorname{div}\left(|D u|^{p-2} D u\right) & =v^{\alpha}, \\
-\operatorname{div}\left(|D v|^{q-2} D v\right) & =w^{\beta}, \tag{1.2}\\
-\operatorname{div}\left(|D w|^{m-2} D w\right) & =u^{\gamma}, \quad x \in \Omega,
\end{align*}
$$

where $\Omega \subset \mathbf{R}^{N}, p, q, m>1, \alpha \beta \gamma>(p-1)(q-1)(m-1)$. For $p=q=m=2,(1.1)$ is the classical reaction-diffusion system of Fujita type. If $p \neq 2, q \neq 2, m \neq 2$, (1.1) appears

[^0]in the theory of non-Newtonian fluids $[1,2]$ and in nonlinear filtration theory [3]. In the nonNewtonian fluids theory, the pair (p, q, m) is a characteristic quantity of the medium. Media with $(p, q, m)>(2,2,2)$ are called dilatant fluids and those with $(p, q, m)<(2,2,2)$ are called pseudoplastics. If (p, q, m) $=(2,2,2)$, they are Newtonian fluids.

The main result of the present paper is a natural extension of the results given by Weissler and Caristi [4,5], which concern the single equation

$$
u_{t}(x, t)=\Delta u+u^{m}(x, t), \quad(x, t) \in \Omega \times(0, T)
$$

and the semilinear reaction-diffusion systems (Newtonian filtration systems)

$$
u_{t}(x, t)=\Delta u(x, t)+v^{m}(x, t), \quad v_{t}(x, t)=\Delta v(x, t)+u^{n}(x, t) .
$$

Throughout this paper, let $\Omega=B_{R}=\left\{x \in \mathbf{R}^{N}:|x|<R\right\}(R>0)$. In Section 2, we give sufficient conditions under which the nonexistence of positive solutions of the elliptic system (1.2) holds in \mathbf{R}^{N} for $N \geq \max \{p, q, m\}$. Then in Section 3, by using the nonexistence result, we get the desired blow-up estimates for the reaction-diffusion system (1.1) with some additional assumptions.

2. NONEXISTENCE FOR SYSTEM (1.2)

Consider radially symmetric solutions of the elliptic system (1.2), that is, suppose that $u=$ $u(r), v=v(r), w=w(r)$ with $r=|x|$.

Let

$$
\begin{aligned}
& z_{1}=\frac{p(q-1)(m-1)+\alpha q(m-1)+\alpha \beta m}{\alpha \beta \gamma-(p-1)(q-1)(m-1)}-\frac{N-p}{p-1}, \\
& z_{2}=\frac{q(p-1)(m-1)+\beta m(p-1)+p \beta \gamma}{\alpha \beta \gamma-(p-1)(q-1)(m-1)}-\frac{N-q}{q-1}, \\
& z_{3}=\frac{m(p-1)(q-1)+\gamma p(q-1)+q \alpha \gamma}{\alpha \beta \gamma-(p-1)(q-1)(m-1)}-\frac{N-m}{m-1} .
\end{aligned}
$$

We have the following theorems.

Theorem 2.1. Assume that

(i) $N>\max \{p, q, m\}, \alpha \beta \gamma>(p-1)(q-1)(m-1)$ with $p, q, m>1$;
(ii) $z_{1} \geq 0$ or $z_{2} \geq 0$ or $z_{3} \geq 0$.

Then system (1.2) has no positive radially symmetric solution.
To prove Theorem 2.1, system (1.2) can be written in radial coordinates as

$$
\begin{gather*}
\left(\Phi_{p}\left(u^{\prime}\right)\right)^{\prime}+\frac{N-1}{r} \Phi_{p}\left(u^{\prime}\right)+v^{\alpha}=0 \tag{2.1}\\
\left(\Phi_{q}\left(v^{\prime}\right)\right)^{\prime}+\frac{N-1}{r} \Phi_{q}\left(v^{\prime}\right)+w^{\beta}=0 \tag{2.2}\\
\left(\Phi_{m}\left(w^{\prime}\right)\right)^{\prime}+\frac{N-1}{r} \Phi_{m}\left(w^{\prime}\right)+u^{\gamma}=0 \tag{2.3}\\
u(0)>0, \quad v(0)>0, \quad w(0)>0, \quad u^{\prime}(0)=v^{\prime}(0)=w^{\prime}(0)=0, \tag{2.4}
\end{gather*}
$$

in \mathbf{R}^{N} with $N \geq \max \{p, q, m\}$, where $\Phi_{p}(u)=|u|^{p-2} u, \Phi_{q}(v)=|v|^{q-2} v, \Phi_{m}(w)=|w|^{m-2} w$.
By the similar argument of Lemma 2 in [6], we can prove the following.

Lemma 2.1. Let (u, v, w) be a positive and radially symmetric solution of equations (2.1)-(2.4). Then for $r>0$,

$$
\begin{align*}
& \left(\frac{r^{p}}{N}\right)^{1 /(p-1)} v^{\alpha /(p-1)} \leq-r u^{\prime} \leq \frac{N-p}{p-1} u(r), \\
& \left(\frac{r^{q}}{N}\right)^{1 /(q-1)} w^{\beta /(q-1)} \leq-r v^{\prime} \leq \frac{N-q}{q-1} v(r), \tag{2.5}\\
& \left(\frac{r^{m}}{N}\right)^{1 /(m-1)} u^{\gamma /(m-1)} \leq-r w^{\prime} \leq \frac{N-m}{m-1} w(r) . \tag{2.6}
\end{align*}
$$

From (2.5),(2.6), we see the following lemma.
Lemma 2.2. Suppose that the conditions in Theorem 2.1 are satisfied. Let (u, v, w) be a positive and radially symmetric solution of equations (2.1)-(2.4). Then

$$
\begin{aligned}
u(r) & \leq C r^{-(p(q-1)(m-1)+\alpha(m-1) q+\alpha \beta m) /(\alpha \beta \gamma-(p-1)(q-1)(m-1))}, \\
v(r) & \leq C r^{-(q(p-1)(m-1)+\beta m(p-1)+p \gamma \beta) /(\alpha \beta \gamma-(p-1)(q-1)(m-1))}, \\
w(r) & \leq C r^{-(m(p-1)(q-1)+\gamma p(q-1)+q \gamma \alpha) /(\alpha \beta \gamma-(p-1)(q-1)(m-1))} .
\end{aligned}
$$

Proof of Theorem 2.1. Let (u, v, w) be a nontrivial positive and radially symmetric solution of equations (2.1)-(2.4). We consider first the case $z_{1}>0$ or $z_{2}>0$ or $z_{3}>0$.
By Lemma 2.1,

$$
\left(r^{N-p} u^{p-1}(r)\right)^{\prime}=r^{N-p-1} u^{p-2}\left[(p-1) r u^{\prime}(r)+(N-p) u(r)\right] \geq 0,
$$

we have $u(r) \geq c r^{-(N-p) /(p-1)}$ and $\left(u r^{(N-p) /(p-1)}\right),\left(v r^{(N-q) /(q-1)}\right),\left(w r^{(N-m) /(m-1)}\right)$ are nondecreasing on $(0,+\infty)$. From Lemma 2.2 and for $r>r_{0}>0$, we obtain that

$$
r^{z_{1}} \leq C \quad \text { or } \quad r^{z_{2}} \leq C \quad \text { or } \quad r^{z_{3}} \leq C .
$$

Since $z_{1}>0$ or $z_{2}>0$ or $z_{3}>0$, this leads to a contradiction for r sufficiently large.
Suppose next that $z_{1}=0$ (the case $z_{2}=0$ or $z_{3}=0$ being similar). From (2.1), it follows that for $r \geq r_{0}>0$,

$$
r^{N-1}\left|u^{\prime}(r)\right|^{p-1}-r_{0}^{N-1}\left|u^{\prime}\left(r_{0}\right)\right|^{p-1}=\int_{r_{0}}^{r} s^{N-1} v^{\alpha}(s) d s
$$

By Lemma 2.1, we have

$$
v^{\alpha}(s) \geq C s^{(q \alpha) /(q-1)} w^{(\alpha \beta) /(q-1)} \geq C s^{(q \alpha(m-1)+\alpha \beta m) /((m-1)(q-1))} u^{(\alpha \beta \gamma) /((m-1)(q-1))},
$$

and hence,

$$
r^{N-1}\left|u^{\prime}(r)\right|^{p-1} \geq C \int_{r_{0}}^{r} s^{N-1+(q \alpha) /(q-1)+(\alpha \beta m) /((q-1)(m-1))} u^{(\alpha \beta \gamma) /((q-1)(m-1))}(s) d s
$$

Now taking into account that $u(s) \geq C s^{(p-N) /(p-1)}$, we obtain

$$
\begin{aligned}
r^{N-1}\left|u^{\prime}(r)\right|^{p-1} & \geq C \int_{r_{0}}^{r} s^{N-1+(q \alpha) /(q-1)+(\alpha \beta m) /((q-1)(m-1))+(\alpha \beta \gamma(p-N))) /((p-1)(q-1)(m-1))} d s \\
& =C \int_{r_{0}}^{r} s^{-1} d s
\end{aligned}
$$

where we have used the assumption $z_{1}=0$.

Then

$$
\begin{equation*}
r^{N-1}\left|u^{\prime}(r)\right|^{p-1} \geq C \ln \left(\frac{r}{r_{0}}\right) \tag{2.7}
\end{equation*}
$$

On the other hand, from

$$
r u^{\prime}(r)+\frac{N-p}{p-1} u(r) \geq 0, \quad \text { for } r>0
$$

we find that

$$
\begin{equation*}
\left(\frac{N-p}{p-1}\right)^{p-1} u^{p-1}(r) \geq\left|u^{\prime}(r)\right|^{p-1} r^{p-1} \tag{2.8}
\end{equation*}
$$

Together with (2.7), this implies that

$$
r^{(N-p) /(p-1)} u(r) \geq C\left(\ln \left(\frac{r}{r_{0}}\right)\right)^{1 /(p-1)}
$$

This is impossible, however, since from Lemma 2.2 estimate implies that

$$
r^{(N-p) /(p-1)} u(r) \leq C r^{z_{1}}=C
$$

This contradiction concludes the proof of the theorem.

2. BLOW-UP ESTIMATES FOR SYSTEM (1.1)

Motivated by $[4,5]$, we impose the following initial and boundary value conditions to equations (1.1):

$$
\begin{array}{ll}
u(x, 0)=u_{0}(x), & v(x, 0)=v_{0}(x), \quad w(x, 0)=w_{0}(x), \quad x \in \Omega=B_{R} \subset \mathbf{R}^{N} \\
& u=v=w=0, \quad(x, t) \in \partial \Omega \times(0, T) \tag{3.2}
\end{array}
$$

Theorem 3.1. Let (u, v, w) be a solution of equations (1.1), (3.1), and (3.2). Assume that
(i) $u(\cdot, t), v(\cdot, t)$, and $w(\cdot, t)$ are nonnegative, radially, decreasing, and symmetric functions of $r=|x|$,
(ii) $u_{t}(x, t), v_{t}(x, t)$, and $w_{t}(x, t)$ attain the maxima at $x=0$ for every $t \in(0, T)$,
(iii) $u_{t}(x, t) \geq 0, v_{t}(x, t) \geq 0, w_{t}(x, t) \geq 0$ for $(x, t) \in Q_{T}=B_{R} \times(0, T)$,
(iv) u, v, w have a blow-up time $T<+\infty$,
(v) integer $N \geq \max \{p, q, m\}, \alpha \beta \gamma>(p-1)(q-1)(m-1)$, and $p, q, m \geq 2$ with

$$
z_{1} \geq 0 \quad \text { or } \quad z_{2} \geq 0 \quad \text { or } \quad z_{3} \geq 0
$$

(vi) there are positive constants $k_{1}, k_{2}, k_{3}, k_{4}$ and $\eta<T$ such that

$$
\begin{aligned}
& k_{2}(u(0, t))^{\delta_{2} / \delta_{1}} \leq v(0, t) \leq k_{1}(u(0, t))^{\delta_{2} / \delta_{1}} \\
& k_{4}(u(0, t))^{\delta_{3} / \delta_{1}} \leq w(0, t) \leq k_{3}(u(0, t))^{\delta_{3} / \delta_{1}}, \quad \text { for } t \in(\eta, T)
\end{aligned}
$$

Then there are positive constants c_{1}, c_{2}, c_{3}, and $t_{1} \in(0, T)$ such that

$$
\begin{gathered}
u(x, t) \leq u(0, t) \leq c_{1}(T-t)^{-\delta_{1}}, \quad v(x, t) \leq v(0, t) \leq c_{2}(T-t)^{-\delta_{2}} \\
w(x, t) \leq w(0, t) \leq c_{3}(T-t)^{-\delta_{3}}
\end{gathered}
$$

for $(x, t) \in Q_{T} \times Q_{t_{1}}$, where

$$
\begin{aligned}
\delta_{1} & =\frac{p(q-1)(m-1)+\alpha q(m-1)+\alpha \beta m}{p \alpha \beta \gamma+(p-2) \alpha(\beta m+q(m-1))-p(q-1)(m-1)} \\
\delta_{2} & =\frac{q(p-1)(m-1)+\beta m(p-1)+\beta \gamma p}{p \alpha \beta \gamma+(p-2) \alpha(\beta m+q(m-1))-p(q-1)(m-1)} \\
\delta_{3} & =\frac{m(q-1)(p-1)+\gamma p(q-1)+\alpha \gamma q}{p \alpha \beta \gamma+(p-2) \alpha(\beta m+q(m-1))-p(q-1)(m-1)}
\end{aligned}
$$

Proof of Theorem 3.1. Define

$$
\mu(t)=u(0, t)^{1 / \tau_{1}}, \quad \theta(t)=v(0, t)^{1 / \tau_{2}}, \quad \delta(t)=w(0, t)^{1 / \tau_{3}}
$$

for $t \in(0, T)$, where

$$
\begin{aligned}
& \tau_{1}=\frac{p(q-1)(m-1)+\alpha q(m-1)+\alpha \beta m}{\alpha \beta \gamma-(p-1)(q-1)(m-1)} \\
& \tau_{2}=\frac{q(p-1)(m-1)+\beta m(p-1)+p \beta \gamma}{\alpha \beta \gamma-(p-1)(q-1)(m-1)}
\end{aligned}
$$

and

$$
\tau_{3}=\frac{m(p-1)(q-1)+\gamma p(q-1)+q \alpha \gamma}{\alpha \beta \gamma-(p-1)(q-1)(m-1)}
$$

By putting $\rho(t)=\mu(t)+\theta(t)+\delta(t), r=|x|$

$$
h_{1}(r, t)=\frac{u(r / \rho(t), t)}{\rho(t)^{\tau_{1}}}, \quad h_{2}(r, t)=\frac{v(r / \rho(t), t)}{\rho(t)^{\tau_{2}}}, \quad h_{3}(r, t)=\frac{w(r / \rho(t), t)}{\rho(t)^{\tau_{3}}}
$$

Using the symmetry and Assumptions (ii)-(iii) in this theorem, it follows that:

$$
\begin{align*}
& 0 \leq\left(\Phi_{p}\left(h_{1}^{\prime}\right)\right)^{\prime}+\frac{N-1}{r} \Phi_{p}\left(h_{1}^{\prime}\right)+h_{2}^{\alpha} \leq \frac{u_{t}(0, t)}{\rho(t)^{p+(p-1) \tau_{1}}}+\frac{v_{t}(0, t)}{\rho(t)^{q+(q-1) \tau_{2}}}+\frac{w_{t}(0, t)}{\rho(t)^{m+(m-1) \tau_{3}}} \tag{3.3}\\
& 0 \leq\left(\Phi_{q}\left(h_{2}^{\prime}\right)\right)^{\prime}+\frac{N-1}{r} \Phi_{q}\left(h_{2}^{\prime}\right)+h_{3}^{\beta} \leq \frac{u_{t}(0, t)}{\rho(t)^{p+(p-1) \tau_{1}}}+\frac{v_{t}(0, t)}{\rho(t)^{q+(q-1) \tau_{2}}}+\frac{w_{t}(0, t)}{\rho(t)^{m+(m-1) \tau_{3}}} \tag{3.4}\\
& 0 \leq\left(\Phi_{m}\left(h_{3}^{\prime}\right)\right)^{\prime}+\frac{N-1}{r} \Phi_{m}\left(h_{3}^{\prime}\right)+h_{1}^{\gamma} \leq \frac{u_{t}(0, t)}{\rho(t)^{p+(p-1) \tau_{1}}}+\frac{v_{t}(0, t)}{\rho(t)^{q+(q-1) \tau_{2}}}+\frac{w_{t}(0, t)}{\rho(t)^{m+(m-1) \tau_{3}}} \tag{3.5}
\end{align*}
$$

for any $t \in(0, T)$ and $r \in[0, R \rho(t))$.
Since $u(x, t), v(x, t)$, and $w(x, t)$ achieve their maxima at $x=0$, we easily see that h_{1}, h_{2}, h_{3} are bounded. Indeed,

$$
\begin{equation*}
0 \leq h_{1}(r, t) \leq \frac{u(0, t)}{\rho(t)^{\tau_{1}}} \leq 1, \quad 0 \leq h_{2}(r, t) \leq \frac{v(0, t)}{\rho(t)^{\tau_{2}}} \leq 1, \quad 0 \leq h_{3}(r, t) \leq \frac{w(0, t)}{\rho(t)^{\tau_{3}}} \leq 1 \tag{3.6}
\end{equation*}
$$

Multiplying (3.3) by $h_{1, r}$ (where $h_{1, r}$ express partial derivation of h_{1} for r), and then integrating with respect to r on $(0, r)$, we have

$$
\begin{equation*}
\frac{p-1}{p}\left|h_{1, r}\right|^{p}+h_{2}^{\alpha}(r, t) h_{1}(r, t)-h_{2}^{\alpha}(0, t) h_{1}(0, t)-\alpha \int_{0}^{r} h_{2}^{\alpha-1} h_{2, r} h_{1} d r \leq 0 \tag{3.7}
\end{equation*}
$$

From (3.7) and $h_{2, r}(r, t) \leq 0$, it follows that

$$
\begin{equation*}
\left|h_{1, r}\right| \leq\left(\frac{2 p}{p-1}\right)^{1 / p} \tag{3.8}
\end{equation*}
$$

for $t \in(0, T)$ and $r \in[0, R \rho(t))$. Similarly, we get

$$
\begin{equation*}
\left|h_{2, r}\right| \leq\left(\frac{2 q}{q-1}\right)^{1 / q}, \quad\left|h_{3, r}\right| \leq\left(\frac{2 m}{m-1}\right)^{1 / m} . \tag{3.9}
\end{equation*}
$$

Now we proceed by contradiction to claim that

$$
\begin{equation*}
\liminf _{t \rightarrow T}\left(\frac{u_{t}(0, t)}{\rho(t)^{p+(p-1) \tau_{1}}}+\frac{v_{t}(0, t)}{\rho(t)^{q+(q-1) \tau_{2}}}+\frac{w_{t}(0, t)}{\rho(t)^{m+(m-1) \tau_{3}}}\right)=c>0 . \tag{3.10}
\end{equation*}
$$

Otherwise, there exists a sequence $\left\{t_{n}\right\} \subseteq(0, T)$ with $t_{n} \rightarrow T$ such that

$$
\liminf _{t_{n} \rightarrow T}\left(\frac{u_{t}\left(0, t_{n}\right)}{\rho\left(t_{n}\right)^{p+(p-1) \tau_{1}}}+\frac{v_{t}\left(0, t_{n}\right)}{\rho\left(t_{n}\right)^{q+(q-1) \tau_{2}}}+\frac{w_{t}\left(0, t_{n}\right)}{\rho\left(t_{n}\right)^{m+(m-1) \tau_{3}}}\right)=0 .
$$

By using the Ascoli-Arzela theorem, there exists a sequence (still denoted by $\left\{t_{n}\right\}$) such that

$$
\begin{equation*}
h_{1}\left(\cdot, t_{n}\right) \rightarrow \bar{h}_{2}(\cdot), \quad h_{2}\left(\cdot, t_{n}\right) \rightarrow \bar{h}_{2}(\cdot), \quad \text { and } \quad h_{3}\left(\cdot, t_{n}\right) \rightarrow \bar{h}_{3}(\cdot), \quad \text { as } n \rightarrow+\infty \tag{3.11}
\end{equation*}
$$

hold uniformly on a compact subset of $[0,+\infty)$. Now in the sense of distributions

$$
\begin{gather*}
\left(\Phi_{p}\left(\bar{h}_{1}^{\prime}\right)\right)^{\prime}+\frac{N-1}{r} \Phi_{p}\left(\bar{h}_{1}^{\prime}\right)+\bar{h}_{2}^{\alpha}=0 \tag{3.12}\\
\left(\Phi_{q}\left(\bar{h}_{2}^{\prime}\right)\right)^{\prime}+\frac{N-1}{r} \Phi_{q}\left(\bar{h}_{2}^{\prime}\right)+\bar{h}_{3}^{\beta}=0 \tag{3.13}\\
\left(\Phi_{m}\left(\bar{h}_{3}^{\prime}\right)\right)^{\prime}+\frac{N{ }^{-}-1}{r} \Phi_{m}\left(\bar{h}_{3}^{\prime}\right)+\bar{h}_{1}^{\gamma}=0 . \tag{3.14}
\end{gather*}
$$

The absolute continuity of h_{1}, h_{2}, h_{3} implies that $\bar{h}_{1}, \bar{h}_{2}, \bar{h}_{3}$ are $\mathbf{C}^{\mathbf{1}}(0,+\infty)$. By the local existence and uniqueness of initial value problem for (3.12)-(3.14) and using the arguments in [4,5], we conclude that $\bar{h}_{1}, \bar{h}_{2}>0, \bar{h}_{3}>0$ on $(0,+\infty)$ with $\bar{h}_{1}^{\prime}(0)=\bar{h}_{2}^{\prime}(0)=\bar{h}_{3}^{\prime}(0)=0$.

If $N=2, p>2$, we proceed as follows. From equations (3.12)-(3.14), we infer that $r \Phi_{p}\left(\bar{h}_{1}^{\prime}\right)$, $r \Phi_{q}\left(\bar{h}_{2}^{\prime}\right)$, and $r \Phi_{m}\left(\bar{h}_{3}^{\prime}\right)$ are decreasing, and that there exist $M<0$ and $r_{0}>0$ such that

$$
r \Phi_{p}\left(\bar{h}_{1}^{\prime}\right)<M, \quad \text { for } r \in\left(r_{0},+\infty\right)
$$

The last inequality implies that

$$
\begin{align*}
\bar{h}_{1}(s)>\bar{h}_{1}(s)-\bar{h}_{1}(t) & =(-M)^{1 /(p-1)} \int_{s}^{t} \cdot r^{-1 /(p-1)} d r \tag{3.15}\\
& =(-M)^{1 /(p-1)}\left(t^{(p-2) /(p-1)}-s^{(p-2) /(p-1)}\right)
\end{align*}
$$

for $r_{0} \leq s \leq t$. Letting $t \rightarrow+\infty$ in (3.15), we obtain a contradiction.
, If $N=2, p=2$, proceeding similarly as above implies that

$$
\bar{h}_{1}(s)>\bar{h}_{1}(s)-\bar{h}_{1}(t)>(-M)[\ln (t)-\ln (s)]
$$

for $r_{0} \leq s \leq t$. Letting $t \rightarrow+\infty$ in the last inequality, we obtain a contradiction.

Finally, if $N>\max \{p, q\} \geq 2$ holds, we know from Theorem 2.1 that system (3.12)-(3.14) has no positive solution. We conclude that (3.10) is true. It follows from (3.10) that there exists $t_{1} \in(0, T)$ such that for any $t \in\left(t_{1}, T\right)$ we have

$$
\begin{align*}
c & \leq \frac{u_{t}(0, t)}{\rho(t)^{p+(p-1) \tau_{1}}}+\frac{v_{t}(0, t)}{\rho(t)^{q+(q-1) \tau_{2}}}+\frac{w_{t}(0, t)}{\rho(t)^{m+(m-1) \tau_{3}}} \tag{3.16}\\
& \leq \frac{u_{t}(0, t)}{u(0, t)^{\left(1+\delta_{1}\right) / \delta_{1}}}+\frac{v_{t}(0, t)}{v(0, t)^{\left(1+\delta_{2}\right) / \delta_{2}}}+\frac{w_{t}(0, t)}{w(0, t)^{\left(1+\delta_{3}\right) / \delta_{3}}} .
\end{align*}
$$

Integrating (3.16) on $(t, s) \subseteq\left(t_{1}, T\right)$ and then letting $s \rightarrow T$, we obtain

$$
\begin{equation*}
c(T-t) \leq \delta_{1} u(0, t)^{-1 / \delta_{1}}+\delta_{2} v(0, t)^{-1 / \delta_{2}}+\delta_{3} w(0, t)^{-1 / \delta_{3}} \tag{3.17}
\end{equation*}
$$

By using Condition (vi) in (3.17), we have

$$
u(x, t) \leq u(0, t) \leq c_{1}(T-t)^{-\delta_{1}},
$$

for any $(x, t) \in Q_{T} \backslash Q_{t_{1}}$.
We have the blow-up estimates for v and w in the same way:

$$
v(x, t) \leq v(0, t) \leq c_{2}(T-t)^{-\delta_{2}}, \quad w(x, t) \leq w(0, t) \leq c_{3}(T-t)^{-\delta_{3}}
$$

The proof is completed.
Remark 1. For the special variational parabolic system

$$
u_{t}=\Delta u+v^{\mu}, \quad v_{t}=\Delta v+u^{\delta},
$$

with $\mu, \delta>1$, Caristi and Mitidieri [5] obtained the following blow-up estimates:

$$
\begin{equation*}
u(x, t) \leq u(x, 0) \leq c(T-t)^{-(\mu+1) /(\mu \delta-1)}, \quad v(x, t) \leq v(x, 0) \leq c(T-t)^{-(\delta+1) /(\mu \delta-1)} \tag{3.18}
\end{equation*}
$$

The single equation case was treated by Weissler [4] with

$$
\begin{equation*}
u(x, t) \leq u(x, 0) \leq c(T-t)^{-1 /(\theta-1)} \tag{3.19}
\end{equation*}
$$

Clearly, inequalities (3.18),(3.19) agree with Theorem 3.1 if one takes $p=q=m=2, \alpha=\mu$, $\beta=\gamma=\delta$, or $p=q=m=2, \alpha=\beta=\gamma=\theta$, respectively. Therefore, the result in this paper extends their results essentially.

REFERENCES

1. G. Astrita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, (1974).
2. L.K. Martinson and K.B. Pavlov, Unsteady shear flows of a conducting fluid with a rheological power law, Magnitnaya Gidrodinamika 2, 50-58, (1971).
3. J.R. Esteban and J.L. Vazquez, On the equation of turbulent filteration in one-dimensional porous media, Nonlinear Analysis 10, 1303-1325, (1982).
4. F.B. Weissler, An L^{∞} blow-up estimate for a nonlinear heat equation, Comm. Pure Appl. Math. 38, 291-295, (1985).
5. G. Caristi and E. Mitidieri, Blow-up estimates of positive solutions of a parabolic system, J. Diff. Eqns. 113, 265-271, (1994).
6. Z. Yang and Q. Lu, Blow-up estimates for a non-Newtonian filtration system, Applied Math. and Mech. 22 (3), 332-339, (2001).
7. S. Zheng, Nonexistence of positive solutions to a semilinear elliptic system and blow-up estimates for a reaction-diffusion system, J. Math. Anal. and Appl. 232, 293-311, (1999).
8. E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic system in \mathbf{R}^{N}, Differential Integral Equations 9, 465-479, (1996).
9. E. Mitidieri, G. Sweers and R. vander Vorst, Nonexistence theorems for systems of quasilinear partial differential equations, Differential Integral Equations 8, 1331-1354, (1995).
10. Ph. Clement, R. Manasevich and E. Mitidieri, Positive solutions for a quasilinear system via blow up, Comm. Partial Differential Equations 18 (12), 2071-2106, (1993).

[^0]: Supported by National Science Foundation of China (No. 10172011 and No. 19990510); Doctoral Foundation of Education Ministry of China.

