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Abstract

To understand how genes are distributed on chromosomes we bring new insights into gene positional clustering and its properties. We have
made a large-scale analysis of three types of differentiation and we observed that genes that subsequently enter into different cell processes are
positionally clustered on chromosomes. Genes from the clusters are transcribed subsequently with respect to time kinetics and also to position.
This means that the genes related to a cellular process are clustered together, independent of the period of time during which they are active and
important for the process. Our results also demonstrate not only that there are general regions of increased or decreased levels of gene expression,
but also that, in fact, in some chromosome regions we can find clustering of genes related to specific cell processes. The results provided in this
paper also support the theory of “transcription factories” and show that transcription of genes from the clusters is managed by softer epigenetic
mechanisms.
© 2006 Elsevier Inc. All rights reserved.
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Gene transcription should not be energetically exhaustive for
the cell. The first logical follow-up is that genes required by
cellular processes would be clustered on the chromosomes. The
second follow-up is that the clusters of genes needed for certain
process would be colocalized in the neighborhood of transcrip-
tion factories [1,2].

Differentiation of cell lines is an excellent experimental
model for investigating molecular mechanisms that regulate
cellular processes. In the postgenomic era there are many
articles covering the area of various types of differentiation. The
articles have mostly brought only a list of regulated genes
related to certain processes. Our results provide a view on the
spatial distribution of genes active during three types of
differentiation.

The mapping of active genes to chromosomes showed that
genes related to differentiation are mostly localized in regions
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with increased gene expression (RIDGEs) [3,4], where they
form clusters. In these regions there are genes with different
time-dependent kinetics. Regulation of these genes is supposed
to be driven by epigenetic mechanisms, such as methylation and
acetylation [5–13].

Our results suggest a possibility that there are clusters of
genes on chromosomes that are controlled by epigenetic
mechanisms. To check this, we detected time kinetics of gene
expression during several cellular processes. Shapes of the time
dependencies reflect the gene regulation mechanisms. The
shapes represent the type of regulation, e.g., fast down-
regulation. Genes clustered together might be regulated
differently for various cellular processes; however, they should
remain in clusters. In our experiments, the above-mentioned
cellular processes were represented by various types of human
cell differentiation.

We compared gene expression profiles obtained during
differentiation of HL-60 cells along either the monocyte or the
granulocyte pathway and K-562 cells along the megakaryocyte
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Fig. 1. Self-organizing map (SOM) clustering was used to find five groups of regulated genes (GRG) with distinct time-dependent changes during differentiation. The
average values and standard deviations are shown for each data point. The x axes represent the sample number, which is proportional to total differentiation time, and
the y axes represent normalized expression levels (for all differentiation types). Each vector of normalized expression values was normalized (zero mean and standard
deviation equal to 1).
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differentiation pathway. We used cDNA microarray technology
that allowed us to detect consequent changes in gene expression
for about 19,000 genes or EST sequences. All regulated genes
were divided into five groups of regulated genes (GRG) on the
basis of their time-response shape. We realized that there are
significant sets of genes belonging to same GRG (i.e., they have
the same kinetics) for different differentiations. But we also
revealed significant sets of genes belonging to one GRG for one
differentiation and to another GRG for another differentiation.
In other words, genes in these subsets behaved similarly during
one differentiation.

Results

We analyzed time-dependent changes in gene expression
profiles during monocytic (MD) and granulocytic (GD)
differentiation of HL-60 cells or megakaryocytic (MKD)
differentiation of K562 cells using cDNA microarrays. The
stage of differentiation was determined according to the
expression of CD11b in GD, CD14 and CD11b in the case of
MD, and CD44 during MKD, using flow-cytometric analysis.
We identified 4718 (MD), 4505 (GD), and 4947 (MKD) genes
with differential expression for the chosen discrimination level.

We performed cluster analysis and we obtained five GRG
containing genes from each type of differentiation (character-
Table 1
Groups of regulated genes (GRG) in various differentiation processes

Type of differentiation Number of genes inside each GRG for relevant
differentiation

1 2 3 4 5

Monocyte (MD) 967 492 1038 680 683
Granulocyte (GD) 856 856 528 887 856
Megakaryocyte (MKD) 615 859 874 677 684

The numbers of genes inside the five GRG for GD, MD, and MKD are shown.
istic expression profiles for each GRG are shown in Fig. 1). It is
interesting to note that there were practically no initially down-
regulated genes that would be up-regulated in terminally
differentiated cells. The numbers of genes or ESTs in GRG
Fig. 2. Intersections of groups of regulated genes between individual
differentiation processes. (A) MD and MKD, (B) GD and MD, and (C) GD
and MKD. For better visualization of individual intersections we colored each
box using a relevant amount of red (the more intense the color, the more genes in
the intersection).



Fig. 3. Granulocytic differentiation of HL-60 cells is taken as an illustrative example showing the distribution of genes or ESTs of various GRG on human
chromosomes. The different color ticks represent genes or ESTs of the five GRG (1, green; 2, yellow; 3, red; 4, magenta; 5, blue). Gray ticks represent all spotted
sequences of our cDNAmicroarrays (about 19,000 genes or ESTs). The thickness of the ticks is 0.1 Mb for the detailed area of chromosome 9 and 0.5 Mb for the rest of
the image. Therefore, in some cases, ticks of different color may appear at the same vertical distance—this is caused by mapping resolution.
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Fig. 4. Density of regulated genes (R×R/T, see Materials and methods) for different types of differentiation processes. (A) One can clearly see the regions with high
density of regulated genes and also with large absolute numbers of regulated genes. (B) The density of regulated genes in general does not reflect the initial gene
density obtained from the microarray slide used. For each plot, the horizontal axis represents position in Mb and the vertical axis represents the density.
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for all types of differentiation are shown in Table 1. Each
characteristic profile represents one type of regulation kinetic,
e.g., GRG 1 represents genes with nondecreasing expression.

In our further analysis we projected the GRG of different
pathways into each other. The numbers of genes found
simultaneously in the nth GRG of MD and at the same time
in the mth GRG of GD are shown in Fig. 2A. Similarly, mutual
projections of MD vs MKD and MKD vs GD are shown in Figs.
2B and 2C. For example, 385 genes (56%) of the GD GRG 5
(slow up-regulation) are shared with GRG 5 of MD. In some
cases, the same genes can be found in GRG with different
kinetics for different differentiations. For example, 171 genes
(28%) are common to GRG 1 from GD and GRG 5 from
MKD.

When we focused on regions with a high density of regulated
genes, we saw the occurrence of genes from all five GRG along
the chromosomes (Fig. 3). We found many nice examples of
positional repetition of regulated genes along chromosomes.

Further evaluation of the data provided by the visualization
of weighted area regulation (see Materials and methods)
confirmed that regulated genes are nonrandomly scattered on
Fig. 5. RT-PCR analysis of 2% agarose gel performed to check regulation
patterns obtained using microarray technique. (A) Granulocyte differentiation
and (B) monocyte differentiation are shown.
chromosomes. In addition, the distribution of regulated genes
varies among the investigated types of differentiation (Figs. 4A
and 4B). For example, positional clustering of genes regulated
in GD and MD can be seen at the first 10 Mb of chromosome 7.
In contrast, there is no cluster in this region for MKD. On
chromosome 8, around 90 Mb, we can find 35% of genes
regulated in MKD instead of 10% in GD. Many similar
examples can be found in Fig. 4A. The density of regulated
genes in general does not reflect the initial gene density
obtained from the whole microarray (Fig. 4B). For example,
only 5 of about 60 genes are regulated in the MD at the area
around 30 Mb on chromosome 20. The occurrence of regulated
genes in various RIDGEs is not uniform and distinct
differentiation processes involve genes that occupy different
parts of RIDGEs. These results provide further nice evidence of
gene clustering along chromosomes entering various types of
differentiation.

To confirm the reliability of microarray data, RT-PCR was
performed using eight genes with altered expression (four
down-regulated and four up-regulated). The RT-PCR confirmed
the same patterns of gene expression as cDNA microarrays for
all tested genes. Although the level of gene expression
determined by cDNA microarrays was not identical to the
level of gene expression obtained with RT-PCR, both methods
indicated similar patterns of gene expression changes (Fig. 5
and Table 2).

Discussion

We revealed positional clustering of genes related to three
types of ex vivo differentiation—differentiation of HL-60 into
granulocytes and monocytes and K-562 into megakaryocytes.
Caron et al. proved the existence of RIDGE domains on
chromosomes. We found subgroups of genes inside RIDGE
domains that are closely connected with special cell processes.
This is a very important demonstration that, from the
functional point of view, there are not only regions of
increased or decreased levels of gene expression but also
groups of genes related to some cellular processes. Our
visualizations show the positional clustering of regulated
genes on chromosomes. Regulated genes (see in Materials and
methods) were divided into five GRG according to the time



Table 2
Expression profiles of selected genes during two differentiation processes

Gene GRG No. for
relevant differentiation

Gene expression levels at relevant time points of differentiation (h)

GD 0 18 36 54 72 90 108 126 144

MYCN 5 6031 269 244 - 187 180 176 207 206
MRC2 1 1486 1594 1564 1539 1334 1525 1397 4316 15,230
CDKN1A 5 3201 2658 2555 2432 3031 1121 1026 1081 996
ENTPD7 1 1206 1428 1331 1243 1240 1238 7234 11,201 25,870

MD 0 9 18 27 36 45 54 63 72

CD14 1 1583 1629 1935 2381 4024 5228 15,621 20,528 35,062
TFPI 5 19,039 1664 1402 1379 1355 1385 1415 1445 1437
API5 1 1619 1670 2194 6349 10,503 8442 6349 14,321 16,571
P53 5 20,767 1719 16,571 1479 13,027 1662 1296 1931 1593

Every number represents the normalized level of expression at the relevant time point of differentiation.

Table 3
Overview of primers used for control PCR experiments

Gene Primer Primer sequence

ENTPD7 Forward 5′-AATCTACCTTTTCTTCCCTTGC-3′
Reverse 5′-ACTACGACAGGGATCTTGGATCA-3′

MRC2 Forward 5′-ATGGGATCTGCCAGTTGC-3′
Reverse 5′-CAGGACTGAGACGTTGAGACC-3′

CDKN1A Forward 5′-GCCGGAGCTGGGCGCGGATT-3′
Reverse 5′-CTGAGACTAAGGCAGAAGAT-3′

MYCN Forward 5′-GGCAGTAGGACCACCAGTGT-3′
Reverse 5′-CTAATACTGGCCGCAAAAGC-3′

CD14 Forward 5′-AGGACTTGCACTTTCCAGCTTG-3′
Reverse 5′-TCCCGTCCAGTGTCAGGTTATC-3′

TFPI Forward 5′-GATCCTGGAATATGTCGAGGT-3′
Reverse 5′-TCTTGCATTCTTCCAGTGTCT-3′

API5 Forward 5′-TTTAGGTGGGTTGTTCAGCC-3′
Reverse 5′-TTCTAGGACCTTTTTGGATTCA-3′

P53 Forward 5′-GAGGTTGTGAGGCGCTGCCCC-3′
Reverse 5′-TTCCTCTGTGCGCCGGTCTCT-3′
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kinetics of gene expression changes. These groups were sorted
according to the occurrence of maximum expression (Fig. 1).
The number of genes in particular GRG fluctuated between
500 and 1000 (Table 1). When we projected the genes from GRG
onto chromosomes we obtained territories (inside RIDGEs)
accumulating genes of various functions and time kinetics but
connected with distinct differentiation processes (Fig. 3). We will
refer to these territories as positional clusters. We realized that
there are no positional clusters containing genes fromonly a single
GRG. One can see a system in the distribution of GRG genes
inside positional clusters. This system reflects the dynamics of
gene regulation changes without energy-consuming chromatin
reorganization. Consequently switches to needed genes are
probably managed by mechanisms on the epigenetic regulation
level. Clustering of genes also supports energetically profitable
switching of genes being transcribed in “transcription fac-
tories”—there is no need for wide transfers.

To compare various groups of genes with similar (or different)
regulation in the differentiation pathways (mentioned above), we
calculated the intersections ofGRG.These calculations resulted in
two-dimensional tables (Fig. 2). Using these tables we revealed
that there are GRG in principle shared by differentiation types
(e.g., 385 genes for GD/MD shared by GRG 5). We also revealed
that there are groups of genes in common for two differentiation
types but with different time kinetics. This means that there are
groups of active genes used differently during different
differentiations (e.g., 171 genes shared by GRG 1 for MKD and
GRG 5 for GD). In other words, regulated genes form groups;
genes in these groups behave similarly during one differentiation
process. But the behavior of genes in the clusters can vary
between different differentiation processes. For example, GRG
that are up-regulated during one differentiation can be down-
regulated during another differentiation.

In comparison with other authors this study works with about
19,000 genes/ESTs during three types of differentiation. Our
study follows and confirms studies involving from 872 to
12,500 genes/ESTs [28–31] mostly during one type of cellular
process. An interesting fact is that our results correlate with
conclusions presented by studies performed on another species
[32].
The results presented in our study are important for better
understanding of changes in gene expression. The differentia-
tion pathways appeared to be an appropriate way to study
differences in transcription of genes. Furthermore, characteriza-
tions of regions entering various cell processes using powerful
microarray technology, as shown in this paper, bring new views
of the genome related to transcriptional regulation.

Materials and methods

Cell cultivation and differentiation

The human promyelocytic leukemia HL-60 and human erythroleukemia
K562 cell lines were grown in logarithmic phase in RPMI medium supplement
with 10% heat-inactivated fetal bovine serum, 100 U/ml penicillin, 100 μg/ml
streptomycin, and 20 mM glutamine at 37°C in a humidified atmosphere and 5%
CO2.

Cell differentiation

Monocytic differentiation of HL-60 cells was induced by phorbol 12-
myristate 13-acetate (PMA; 100 μM) (Sigma) for 72 h. HL-60 cells were
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incubated with DMSO (1.25% (v/v)) for 6 days to induce granulocytic
differentiation. Megakaryocytic differentiation of K562 cells was carried out
using 100 μM PMA for 72 h [14,15].

DNA microarrays

Microarray slides used in this study (SS-H19k6 QuantArray; Clinical
Genomic Centre, Toronto, ON, Canada) contained 19,200 human cDNAs,
positive controls (fragments of the Arabidopsis chlorophyll synthetase gene that
has no homology to any human gene), and negative controls (3× SSC).
Experiments were repeated twice for each time point and each type of
differentiation with similar results. In the final analysis, the mean values of
intensity from different measurements were taken for each spot. Spots were
excluded from later measurements if their difference in normalized intensities
was higher than 25%.

Probe preparation, hybridization, and washing

For each microarray experiment 10 to 20-μg samples of purified total
RNA were labeled by incorporating Cy3- and Cy5-dCTP (Amersham) using
oligo(dT) primers (anchored) and SuperScript II (Invitrogen) during RT-PCR.
The acquired labeled cDNA was precipitated by isopropanol (protocols from
the OCI Microarray Centre, 2000). Before hybridization, each slide was
incubated in blocking solution (5× SSC, 0.1% SDS, and 10 mg/ml BSA) at
37°C for 1 h. Slides were incubated in 30 μl of hybridization solution (DIG
Easy Hyb Granules; Roche) containing Cy3- and Cy5-labeled target, 5 μl of
yeast tRNA (Invitrogen), and 5 μl of calf thymus DNA (Life Technologies).
Hybridization was performed by the incubation of slides in the hybridization
chamber overnight at 37°C. Next day, the slides were washed three times in
1× SSC with 0.1% SDS for 10 min at 50°C. After washing, the samples
were rinsed in 1× SSC (according to protocols from the OCI Microarray Centre,
2000).

Semiquantitative RT-PCR

Total RNA samples were reverse transcribed to single-stranded cDNA using
oligo(dT) primers (anchored) with SuperScript II reverse transcriptase
(Invitrogen). Each diluted cDNA was used as a template for subsequent PCR
amplification. Each PCR was carried out in a 50-μl volume of master mix with
1 mMMgCl2 and TaqDNA polymerase, for 5 min at 94°C for initial denaturing,
followed by 10, 15, 20, 25, 30, and 35 cycles of 30 s at 94°C, 30 s at 52 to 60°C
according to the used primer, and 1.5 min at 72°C, in the PCR system (PTC-100;
MJ Research, Inc.). Results of RT-PCR were confirmed by agarose gel
electrophoresis and evaluated by Gene Tools v3.00.22 (SynGene). 18Sr RNA
served as an internal control for comparison of equal amounts of expression of
tested genes [16].

Using RT-PCR we confirmed the changed expression of eight genes detected
by microarrays. RT-PCR was performed on the group of four genes from
monocyte differentiation and four genes from granulocyte differentiation. Every
group contained two up and two down regulated genes correspondent with time
0 (non affected cells) versus end point of relevant type of differentiation. For RT-
PCR we have chosen the genes with significant change of expression. We have
chosen MYCN, CDKN1A to check down-regulation and MRC2 and ENTPD7
to check up-regulation during granulocyte differentiation (Fig. 5A). Genes
CD14 and API5 were used to check up-regulation, genes P53 and TFPI were
used to check down-regulation during monocyte differentiation (Fig. 5B). See
Table 3 for a list of the primers used.

Image analysis and data processing

To analyze images produced by the microarray scanner, we used software
developed in our laboratory within our research performed in the microarray
data processing area. The grid was semiautomatically set up for each image
and the alignment to the array of spots was carefully checked. Each spot was
segmented individually in its surroundings by the gradient weighted
segmentation method [17] and the quality analysis was automatically
performed. This procedure removed some defective spots according to their
shapes (circularity) and intensity distributions in the foreground area. Our
image analysis method is very similar to those used by commercial software
packages. The spots were quantified by taking the mean of the intensities of
the foreground pixels. The local background intensity for each spot was
determined as the mean of the background area. The background was
subtracted from the foreground intensity.

The next stage of data analysis was the normalization of the measured
intensity values. Our aim was to evaluate gene expression at particular time
points in time-series experiment so we chose the single-channel analysis
technique. This normalization allows comparisons of absolute intensities
between arrays. Single-channel normalization of two-color cDNA microarray
experiments can be considered as a two-stage process: within-slide normal-
ization followed by between-slide normalization. We applied print-tip LOWESS
[18] for within-slide normalization. This method allowed us to suppress spatial-
and intensity-dependent bias. The smoothing parameter was set to 0.33. Then
the between-slide normalization was performed using quantile normalization
proposed by Bolstad [19]. Both mentioned methods were implemented within
our research performed in the microarray data processing area.

We performed cluster analysis of results to obtain groups of similarly
expressed genes.

There is a large number of existing clusteringmethods but unfortunately there
are no decisive criteria for selecting the most optimal one [20]. Different
approaches [21] were tried, K-means, SOM [22], and C-means, and results were
very similar. We chose the SOM due mainly to its advantages mentioned, e.g., in
[23]. GeneCluster2 [24] was chosen for the computations and visualization of the
results. In the first step, called data preprocessing, genes or ESTs that were
differentially expressed across time were selected using a variation filter. For the
selection, a relative change of 1.5-fold and an absolute change of 500 units were
set.

Choosing the number of clusters is the most critical step of cluster analysis,
even more critical then choosing the clustering method. There exists a theory
dealing with this task (see [21,25] for details). The number of clusters can be
validated by different classification methods [26]. A robust approach combining
different classification methods by “voting” [27] was chosen. The number of
clusters (5) was not chosen arbitrarily. Based on the mentioned calculations the
most optimum number of clusters for our dataset is 5. Thus, after within-slide
normalization, SOM with 500,000 iterations was applied to genes that passed
the variation filter to create five groups of genes with similar regulation (the
GRG).

Genes from all clusters were mapped on chromosomes according to their
position in base pairs and chosen resolution (genes were mapped proportionally
to image height). Each cluster was assigned one color and each gene was painted
using the color of its cluster. We used gray to highlight all studied genes (all
genes printed to our microarrays). To increase expression potency of the
visualization, each cluster was assigned a single column in the chromosome
(leftmost column represents cluster 1, rightmost column cluster 5). Fig. 3 is an
example of such visualization.

The occurrence of regulated genes along chromosomes is influenced by the
positional distribution of genes spotted on our arrays. Therefore, for
visualization of the spatial distribution of regulated genes, the following
technique called weighted area regulation was used. We computed the spatial
occupancy of all genes printed on our arrays on chromosomes using a sliding
window of given width in base pairs. Evaluation of the number of genes for each
sliding window position resulted in vector T for each chromosome (i.e., each
item in the vector is the number of genes within the sliding window moved by
the appropriate distance). The length of T is proportional to the current
chromosome length. We performed the same computation for the regulated
genes only, resulting in vector R. Scalar division of these two vectors (R/T) gave
us the vector of densities of regulated genes with respect to our arrays. These
densities, however, strongly fluctuated for regions with low gene numbers.
Therefore, to conserve the advantages of both quantities R and R/T, the
multiplication R×R/T was calculated (R/T was used as a weight vector for
visualization of the vector R). The resulting values express the amount of
regulated genes in a given region weighted by the density of all regulated genes
in the region. We plotted this computation for each chromosome (Fig. 4). One
can clearly see the regions with a high density of regulated genes and with a
large absolute number of regulated genes. Our method combines both relative
and absolute numbers.
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