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1. Introduction
1.1. Finite quotients

One way to understand an infinite, finitely generated group is to identify its finite quo-
tients, and count all the epimorphisms to one of these finite groups. A wide spectrum of
possibilities can occur. For example, residually finite groups have plenty of finite quotients,
whereas infinite simple groups have none. Free groups and surface groups have an abun-
dance of finite solvable quotients, whereas groups with perfect derived subgroup have no
solvable quotients except abelian ones.

If G is afinitely generated group, arda finite group, letHom(G, I')| be the number
of homomaorphisms frond to I", and lets - (G) = | Epi(G, I')|/| Aut I" | be the number of
epimorphisms fronG to I", up to automorphisms af'. In the case whelr = F,, is the
free group of ranla, Philip Hall [15] gave a procedure to determine the Eulerian function
| Epi(F,, I')|, based on Mébius inversion in the subgroup latticé ofAn explicit formula
for computing| Epi(F,, I')| in the case wheli" is solvable was given by Gaschitz [11].

In this paper, we generalize Gaschiitz’ formula, from the free gigypo an arbitrary
finitely presented grou@. As a byproduct, we derive an expression for the order of the au-
tomorphism group of a finite solvable grouih Putting things together gives a method for
computing the solvable Hall invariandg (G) in terms of homological data. This extends
previous results from [26], which only dealt with certain metabelian graups

1.2. Finite-index subgroups

Another way to understand a finitely generated, residually finite group is through its
finite-index subgroups. Let(G) andaj(G) be the number of index subgroups (re-
spectively, normal subgroups) &f. The growth of these sequences—also known as the
subgroup growth ofG—has been a subject of intensive study in the recent past, see [25].
Much is known in the case whe is nilpotent; explicit formulas foe (G) anda;'(G) are
available in a few other cases, such as free products of cyclic groups and surface groups.

In [14], Marshall Hall showed how to express the numhgr&’) in terms of the Hall
invariantsé(G), whereI" ranges through the isomorphism classes of subgroups of the
symmetric grougsy. In [26], we used this fact to arrive at a homological formuladeiG).

Here, we give a similar (but more involved) formula for(G). Combining our previous
results with the present techniques, we also give formulagfar), for k < 15.

1.3. Solvable quotients

The derived series of a groug is defined inductively byG©@ = G and G® =
[G*=D G*=D]. AgroupG is solvable if its derived series terminates. The derived length
of G is the minimalk for which G® = 1; abelian groups have derived length 1, while
metabelian groups have length 2.

At the other extreme, a perfect groGpequals its own derived subgroup, so its derived
series stabilizes a&’ = GV Clearly, a solvable group has no perfect subgroups. Hence,
if G® is perfect, therG has no solvable quotients of derived length greater than
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Now supposd™ is a finite solvable group, of derived lengdttSince the derived series of
G consists of characteristic subgroups, the number of epimorphismdrami™ depends
only on the solvable quotierit/G; in fact, | Epi(G, I')| = | Epi(G/ G, IM)|.

1.4. Lifting homomorphisms

As is well known, a group is solvable if and only if it can be expressed as an iterated
extension of abelian groups. In order to count homomorphisms from a finitely generated
groupG to a finite solvable group’, we use an inductive procedure, sketched below.

Suppose we have an extensior»1A — I' — B — 1, with A abelian andB solvable.

Such an extension is determined by a monodromy homomorphisBn— Aut(A), and a
(twisted) cohomology clagg ] € H?(B, A). Let p: G — B be a homomorphism. Then
hasalifto:G — I' ifand only if p*[x]=0in HEP(G, A). Furthermore, the lifts op are
in one-to-one correspondence with 1-cochains that cobound the 2- cec,ytka The set
of such 1- cochaunsZ1 4 (G, A), is either empty, or is in bijection W|tﬁ ,(G, A); define
gx(p)tobeOorl, accordlngly We find:

[Hom(G. M= Y ex(p)-|Z2,(G. A)|.
peHom(G, B)

1.5. Systems of equations

If G admits a finite presentation, s& = (x1,...,x, | r1, ..., ), We can translate
the lifting condition into a systeny = S(P, I, p) of m equations i unknowns over
the abelian groupA. The equations irf, given in (3.4) below, are similar in nature to
inhomogeneous linear equations. The homogeneous part is written in terms of the Fox
derivativesdr; /dx, twisted byo p, whereas the non-homogeneous part involves pfily
and the presentatidA.

As shown in Theorem 3.4, the number of solutions of the systeraincides with the
number of lifts ofp. The precise determination of these solutions gives a way to explicitly
construct those lifts.

In general, the system of equatiofiscannot be reduced to a linear system. But, in
certain cases, this is possible. One instance (exploited in [9,26]) is Bhisnabelian,

A is the additive group of a finite commutative riy ando is induced by multiplication

in R. Another instance is whea is homocyclic, sayA = Zgaf, and the monodromy is of

the formo : B — GL(s, Z4r). In particular, ifA is an elementary abeliap-group E, the
cohomology groug (G, E) can be viewed as a vector space over the prime Higlcand

its dimension can be computed in terms of the rank of the Jacobian matrix associated to a
presentation of7, twisted by the homomorphism

1.6. A generalization of Gaschitz’ formula

Next, we restrict our attention to surjective homomorphisis» I". From the above

discussion, we know thatHom(G, I")| can be obtained by summiag (0)g %™ Z3(G.E)
over all p € Hom(G, B). In order to compute Epi(G, I')|, we have to subtract all the
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homomorphisms; — I which are not surjective. Due to the minimality 8f those are
precisely the homomorphisms whose image is a complemeitiof/".

Every solvable group” admits a normal series whose successive factors are elementary
abelian. Our method for calculatingpi(G, I')| is to use such a chief series to construct
all the epimorphisms by repeated liftings through the chief series. The key step is provided
by the following result.

Theorem.Let G be a finitely presented group, and IEtbe a finite, solvable group. Lét
be an elementary abeliajgroup which is also a chief factor af, and letB = I'/E. If
o is the monodromy angd is the2-cocycle defining the extensién—~ E — I' — B — 1,
then

i di 1 —
]Epl(G, 1")| = |E|)¢ Z (Sx (0)q"Mza HY,(G.E) _ quk(a 1))’
0€Epi(G, B)

whereZ = 0 or 1 according asB acts trivially on E or not, ¢, (o) = 1 or 0 according as
the equatiors! f = —p* x has a solution or not;, =1orOaccordingagy] e H§(B, E)

vanishes or noty is the number of complemented chief factorg"asomorphic toE as
I'-modulequnder the conjugation actignandg® = | Endr(E)]|.

Now supposd”™ =Ip> It > ---> I, > .11 = 1 is a chief series, with factors; =
I;/Tiv1 =72 and quotientss; = I'/T;. We then find:

|Epi(G’ F)| = Z Z |EV|§U(SXV(PV)C]V" _vaCI5”(a”_l)),
P1€EPI, (G.B1)  pveEpi, | (G.B))

whereB, 11 =E, Xq,, 5, Bv, By = diqu” H(}Vpu (G, E)), a,, is the number of chief factors
of B,1 isomorphic toE, asB,1-modules, and EQII'(G, B;i11) is the set of epimorphisms
lifting p; : G — B;. In the case whelr = F,,, this recovers Gaschutz’ formula.

1.7. Examples

To illustrate our recursive process for calculatingpi(G, I')|, we discuss various
classes of source and target groups.

When it comes to the target grodh we analyze in detail two series of finite metabelian
groups: the dihedral and the binary dihedral groups. We also consider a class of derived
length 3 solvable groups, of the form= foz x Dop, which includes the symmetric group
Sq= ZgBZ X Deg.

In calculating| Epi(G, I')|, one can use the lattice of subgroupdvinstead of its chief
series extensions. We briefly illustrate this approach for the sake of comparison, in the case
whenT is a dihedral group.

When it comes to the source groafy we start of course with the free groups. An-
other family of examples are the orientable and non-orientable surface greupsdrI;.

The other examples we consider (the one-relator Baumslag—Solitar and Baumslag groups,
a certain link group, and the Artin braid groups) are discussed separately below.
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1.8. Baumslag—Solitar groups

A famous family of one-relator groups was introduced by Baumslag and Solitar in [4].
For each pair of integerén, n) with 0 < m < |n|, let BS(m,n) = (x,y | xy"x~1y=").
Much is known about these groups: &5 ») is solvable if and only ifn = 1, in which
case B%l,n) = Z[1/n] x Z; it is residually finite if and only ifm = |n| or m =1, in
which case it is also Hopfian; and it is Hopfian if and only:itandn have the same prime
divisors orm = 1. For example, B&, 3) is non-Hopfian, while B&, 4) is Hopfian but
non-residually finite.

The groups B&n, n) have been classified by Moldavanski [27]. They are in bijection
with the set of unordered pai@:, n) with 0 < m < |n|. In the case whem = 1, the
set of finite quotients of B&, n) is a complete group invariant, see [28], and it consists
of all quotients of metacyclic groups of ty@g x, Z,, whereo is multiplication byn,
andn” =1 (mods). The subgroup growth of the Baumslag—Solitar groupgnB3),
with m, n coprime was determined by E. Gelman, see [25, p. 284]; a presentation for
Aut(BS(m, n)) was given in [12].

We compute here the number of epimorphisms from the Baumslag—Solitar groups to
Dg and Qg. This allows us to divide the groups B%, n) into four (respectively, two)
non-isomorphic classes.

1.9. Baumslag’s parafree groups

In [3], Baumslag introduced the following notion: a grodp is called parafree if
it is residually nilpotent and has the same nilpotent quotients as a free dtoljne
simplest non-free yet parafree groups are the one-relator grégpsn) = (x, y,z |
xz"xz ™x"1z"yz7"y~1). As shown in [3], each group in this family (indexed by pairs
of integersn andn) has the same nilpotent quotients and the same first two solvable quo-
tients as the free groupy,.

In[21], R. Lewis and S. Liriano showed that there are several distinctisomorphism types
among the group® (m, n). By counting homomorphisms to 82, Z,), they verified that
the third solvable quotients df(m, n) differ from those ofF», for certain pairs of integers,
e.g.,(m,n) = (1,3) and (3,5). By computing the number of epimorphisms Bfm, n)
onto a smaller solvable quotient group of derived length 3, narSiglywe can recover
(and sharpen) the result of Lewis and Liriano. We findzibdd andm — n =2 (mod 4,
then P (m, n) is not isomorphic taF,. Moreover, in that case? (m, n) is not isomorphic to
P@m',n') if m" evenorm’ —n’' # 2 (mod 4.

1.10. Alink group

Counting finite solvable quotients of a grodp can also help decide whether a nor-
mal subgroupH is perfect. Indeed, ifH < G is perfect, andl" is finite and solvable,
thenér(G) =8, (G/H). In other words, ifs(G) > §(G/H) for some finite solvable
groupl’, thenH is not perfect.

As an example of how this works, we taketo be the group of a certain 2-component
link considered by Hillman in [16]. Thew,,, the intersection of the lower central series
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of G, is non-trivial, i.e.,G is not residually nilpotent. Hencé; is not parafree. On the other
hand,G/G, = P(—1,1), and thusG has the same nilpotent quotients &g moreover,
G/G" = F/F;. Using our formula, we find tha, (G) > 8s,(P(—1, 1)). This shows that
G, is not perfect, thereby answering a question of Hillman, see [16, p. 74].

1.11. Braid groups

The braid groupsB,, have been intensively studied ever since Artin introduced them
in the mid 1920s. Although the braid groups are residually finite, few of their finite quo-
tients are known. General series of non-abelian quotient8,f¢rn > 3) are the symmetric
groupss,,, and the projective symplectic groups R&p 2, 3) with n even, or PS(r —1, 3)
with » odd.

Once we restrict to solvable quotients, the situation becomes more manageable. In Sec-
tion 10 we use our methods to compute the number of epimorphismsHyoto certain
finite solvable groups. For example, we show thai(Bz) = 1 andéds,(B4) = 3 (this re-
covers a particular case of a much more general result of Artin [1], see also [6]). Using
results of V. Lin, we also compute the number of indesubgroups oB,,, whenk < n or
k = 2n, andn is sufficiently large.

We conclude with some conjectures on the possible valuek-f@, ), for solvabler”,
and on the behavior of the sequengé€B,,), for n > 0.

2. Extensions and group cohomology

In this section, we review some basic material on group cohomology. We outline a
computation method based on Fox calculus [8], and explain how low-degree cohomology
is connected with extensions with abelian kernel. We use [5] and [17] as general reference.

2.1. Group cohomology and Fox calculus

Let G be a group, andA a G-module, with action specified by a homomorphism
a:G — Aut(A). LetC" = MapqG*", A) be the group of-cochains, and define cobound-
ary mapsy” : C" — C"+1 by

r—1

8 (f)(X0. o2 X)) = x0f (X1 %) — D _(=1) (X0, Xii 1, %)

i=0
+ (=D (o, Xm0
The cohomology groups @ with coefficients inA are defined as
HL(G, A) = Z},(G. A)/BL(G, A), (2.1)

whereZ/, (G, A) = ker(§") are the cocycles anft, (G, A) = im(s"~1) are the cobound-
aries.
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Now supposeG admits a finite presentatiot; = F, /R, where F,, is the free group
ONX1, ..., X, andR is the normal subgroup generatedfyy. .., r,. The Fox derivatives
% :ZF, — 1F, are theZ-linear maps defined by

0x; d(uv)  du v
=—-2:c)+ U—,

0x; 0x; 0x;

=4;; and
ax]' Y

wheree : ZF, — 7 is the augmentation map. The beginning of a free resolutids bo§
ZG-modules is then

&

J d
zem s 76" 2= 76 7 0, 2.2)

whered; = ¢p(x1 —1...x, — )T andJg = ¢ (dr;/dx;) is the Fox Jacobian matrix. Ap-
plying Homy, (—, A) yields the cochain complex

dq G
A—— A" —— A", (2.3)

whose homology i$11(G, A).
2.2. Extensions with abelian kernel

An extension” of a groupB by an abelian groug (written additively) is a short exact
sequence

1 Ao B 1, (2.4)

determined by

o the monodromy homomorphism: B — Aut(A), defined byi(op(a)) = s(b) - i(a) -
s(b)~1, wheres: B — I' is any set section of;

e the cohomology clasgy] € Hf(B, A) of a normalized 2-cocyclg :B x B — A,
defined byi (x (b, b)) = s(b)s(b')s(bb') L.

An element ofl” can we written as a pair, b) with a € A andb € B, while multiplication
in I" is given by(az, b1) - (a2, b2) = (a1+ op,(a2) + x (b1, b2), b1b2). Note that(a, b)_l =
(—op-1(a) — x (b1, b), b ).

We denote a groug” as in (2.4) by’ = A x, , B. In the case of a split extension
([x]=0), we simply writel" = A x, B; in the case of a central extensian, < id, for all
be B),wewriteI’ = A x, B.
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Now assumd™ = A x,., B is finite, and letc(I") be the number of complements &f
in I". If the extension splits (which we write ag = 1), thenc(I") = |Z§(B, A)|; if the
extension does not split (which we write @s= 0), thenc(I") = 0. Thus

o(I') =cy|Z2(B, A)|. (2.5)

3. Lifting homomorphisms

In this section, we present a method for counting the homomorphisms from a finitely
presented grou to a finite groupl”, given as an extension with abelian kernel.

3.1. Homomorphisms into extensions

Let G be afinitely generated group, apdG — B a homomorphism to a group. Let
I' = A x,,, B be an extension oB by an abelian groupt, with monodromyo : B —
Aut(A) and 2-cocycle; : B x B — A. ThenA becomes & -module, with action specified
by op:G — Aut(A). Let Z(}p(G, A) and H(}p(G, A) be the corresponding 1-cocycle and
1-cohomology groups.

Any set map\: G — I lifting p:G — B can be written as a pair of maps= (f, p),
with f: G — A. Thena is a homomorphism if and only if satisfies the following:

f(gh) = (@) + 0, (f() + x(p(g). p(h)) forallg,heG, (3.1)

that is, f is a 1-cochain that cobounds the 2-cocyelg* x : G x G — A. Denote the set
of all such 1-cochains by

Z3, (G A ={f:G—>A|s"f=—p*x}. (3.2)

This set is either empty, or else! | (G, A) = Z},(G. A) + fo, for some 1-cochairy,.
Sete, (p) to be 0 or 1, accordingly. We then have the following.

Proposition 3.2.The number of homomorphisms fr@io I = A %, , B is given by

[HOM(G. A xo, B)|= Y &x(p)-|Z3,(G. A)|. (3.3)
peHomM(G, B)

If the extension is split, then clearty(p) = 1 forall p: G — B, and thus (3.3) reduces
to [Hom(G, A %, B)| =) ,1Z,(G. A)|. If the extension is central, thefi} (G, A) =
Hom(G, A) for all p, and thugHom(G, A x, B)| = Zp gy (p)|Hom(G, A)|. If the exten-
sion is both split and central (i.e., a direct product), then (3.3) reduces to the well known
formula|Hom(G, A x B)| = |Hom(G, A)| - |[Hom(G, B)|.
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3.3. Equations for lifts

We now give a practical algorithm for computing the quantities involved in formula
(3.3), in the case whefi is a finitely presented group. Given a homomorphjsn: — B,
we want to decide whether there is a 1-cochginG — A cobounding—p*x (i.e.,
whethere, (p) # 0), and, if so, count how many such cochains there are (i.e., determine
1Z2,(G. A))).

Let P = (x1,...,x, | r1,...,rn) be a finite presentation fo&, and¢: F, — G the
presenting homomorphism. Writg = uy 1-- - ug ,, With eachu; ; equal to somecf"‘-’,
whereey j = +1.

Theorem 3.4.Let p:G — B be a homomorphism. Ther (p) = 1 or 0 according to
whether the following system of equations has a solutign. . ., a,) with g; € A:

Iy

=1 e
ZGp( >(a’ Zekvjz X (P, ), o))

j=1
-1
+ Y x(pura-u ), plug j11)) =0, 1<k<m, (3.4)
j=1

wherep = p¢. Moreover, ife, () =1, then|Z§p(G, A)| equals the number of solutions
of the(homogeneoysystem

- 3

}:ap(aﬁ>(a,-)=o, 1<k<m. (3.5)
X

i=1

Proof. Let f:G — A be a 1-cochain that coboundso™x. From the cocycle condition
(3.1) it follows thatf : G — A is uniquely determined by its value on the generators. Now
note that the may = f¢: F,, — I vanishes on the relators 6f:

fr) =0 1<k<m. (3.6)

To finish the proof, we need to express this system of equations in terms of the values
f(x;) = a;, and count the number of solutions. _
Tothatend, let =u; - --u; be aword inF,, withu ; = x;’ . Then the following equality

holds in the abelian group:

f(r)—Zop( )(al>+Z’ x (B, p(u))

-1
Z (Pl uj), plujyn)). 3.7)

j=1



170 D. Matei, A.l. Suciu / Journal of Algebra 286 (2005) 161-186

This follows by induction on the lengthof the wordr, using (3.1). A detailed proof, in the

case wher” = A x, B, is given in [26, Lemma 7.3]. The general case works similarly.
From (3.7), it is apparent that the system of equations (3.6) coincides with (3.4). By

definition, the set of solutions to (3.4) equd?lépyx(G, A). When this set is non-empty

(i.e., ex(p) =1), then|Z7, (G, A)| =|Z},(G, A)|, cf. Section 3.1. So it is enough to
count solutions of the system (3.4) in the particular case whég= 0. But this system is

(3.5), and we are done.O

In particular, if G = F,, then the system (3.4) is empty, and sap) = 1, for any
homomorphisnp : F,, — B and extensiod” = A X, , B.

3.5. Corank of twisted Jacobian

With notation as in Theorem 3.4, suppo$és an abeliar-group, wherey is a prime.
Then the number of solutions of system (3.5) is of the fgfnfor somed > 0. Denote
this integer byd (op). Then

23,(G, A)| =q*P. (3.8)
For an arbitrary finite abelian groug, denote byA, the g-torsion subgroup. Then

A=, 4 Aq @sG-modules, andl (G, A) = P, Z%W(G, Ag), wherer, : Aut(A) —
Aut(A4,) is the canonical projection. Hence

22,(G. A)| = ] g% (3.9)
qllA]

Now assumeA is homocyclic, sayA = fof. Then AutA) can be identified with
GL(s, Z4r). Thus (3.5) becomes a system of linear equations over theZgingand

d(op) = corankJ;"). (3.10)

Here recall/g = ¢(dr; /0x;) is them x n matrix overZG associated to the presentation
P=(x1,....%p | r1,....rm) for G, while J” is thems x ns matrix overZ,- obtained by
replacing each entry of Jg by the matrixop(e) € Aut(A) = GL(s, Zyr).

4. Generalized Gaschutz formula

In this section, we give a formula counting the number of epimorphisms from a finitely
presented grou to a finite, solvable groug’. We use [29] as a general reference for
group theory.
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4.1. Complements in finite solvable groups

A group is said to bsolvableif its derived series terminates. For a finite graipthis
is equivalent tal” having an elementary abelian chief series, i.e., a non-refinable series of
normal subgroups, such that all the quotients are elementary abelian. By a classical result,
any minimal normal subgroup df must be an elementary abelian graapmoreover, the
quotientB = I' /E acts linearly ont.

We will need the following result of Gaschutz.

Theorem 4.2[11, Satz 3] LetI" = E x, , B be an extension of a finite, solvable groBp
by an elementary abeliag-group E which is a minimal normal subgroup @f. Then the
number of complements &fin I" is given by

eIy =cy - |ES - gD, 4.1)

wherec, =1 or 0 according agx]= 0 or not, ¢ = 0 or 1 according asB acts trivially
on E or not, ande is the number of complemented chief factorg’aomorphic toE as
I'-modules under the conjugation action.

If ¢, =0, the extension is non-split, and 80/") = 0; the case, = 1 is the one re-
quiring an argument. The proof in [11] breaks into several steps. First, it is shown that
c(I")y=c(I'/Z) - c(Z), whereZ = Cr(E) is the centralizer off in I, ¢(I"/Z) is the
number of complements & in I"'/Z, andc(Z) is the number of complements &fin Z.

Next, it is shown that(I"/Z) = |E|¢, andc(Z) = | Endr-(E)|*~L. Finally, it is noted that
|Endr(E)| = g*, for somex > 0.
For related results, see [2, (2.10)] and [7, Theorem 2].

4.3. A recursion formula
Now let G be a finitely presented group.

Lemma 4.4.Supposd” = E x, , B is an extension of a finite group by an elementary
abeliang-group E which is a minimal normal subgroup @f. Then

[EpiG. )|[= > (e4(0)q"" —c), 4.2)
0<Epi(G, B)

wherec =c¢(I') = cX|ZC1,(B, E)| is the number of complements Bfin I" (¢, = 1if the
extension splits, in which casg (p) = 1, andc, = 0 otherwisg.

Proof. Fix an epimorphisnp:G — B. Thenp has|Z}, (G, E)| =&, (p) - ¢*? lifts
tol'. LetA:G — I be such a lift, and letV = ImA. ThenU is an extension oB by
K = U N E (a subgroup ofE). By minimality, B acts irreducibly onE, and so either
K = E, in which caseU = I (and soa is surjective), orK = 1, in which caseU is a
complement ofE. Thereforep contributese, (p)g?©? — ¢ to |Epi(G, I')|. O
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We now have
¢C" = |23,(G. B)| = | B2,(G. E)| - [HE, (G, B)| = |EI< - "™ P @B (4.3)
Combining Lemma 4.4 with Theorem 4.2 and formula (4.3), we obtain the following.
Theorem 4.5.LetG be afinitely presented group, and lEt= E x,,, B be an extension of

a finite, solvable grouB by an elementary abeliagr-group E which is a minimal normal
subgroup ofl". Then

i di 1 _
|Epi(G, I')| = |E|¢ Z (6, (0)q8Ma Hip(GE) _ ¢ (e,
p€eEpi(G,B)

This theorem allows us to compute recursiveut(I")| = | Epi(I", I')|, for any finite
solvable group™.

Corollary 4.6. Let I' = E x, , B be an extension of a finite, solvable groBpby an
elementary abeliag-group E which is a minimal normal subgroup &f. Then

di Lr, _
AU =IEE 3 (o (o)™ ) — gt
p€Epi(I", B)

Combining the two results above gives a recursion formula for the Hall invajgiit),
for any finite solvable group’.

4.7. Lifting through the chief series

We now describe an explicit procedure for constructing the s€tEgr), and counting
its elements. Start with a chief series

r=rgp>n>--->L,>I1=1 (4.4)

Write E; = I}/Ti41 = Z2" and B; = I'/T;, for 0<i <v. Let x; : B; x B; — E; be a
classifying 2-cocycle for the extension

1 E; Biy1 B; 1, (4.5)

with monodromyo; : B; — Aut(E;) = GL(s;, ¢;). Finally, letc; = ¢(B;+1) be the number
of complements of; in B; 11, leta; be the number of chief factors &1 isomorphic to
E; asBi1-modules, and set” = |Endg,,, (E;)|.

Now let G be a finitely presented group. Start with the trivial epimorphigmG —
Bo=1. Then EpiG, B1) consists 0%30 — 1 elements, whergg = diquo HY(G; Ey).
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For each such elemepi : G — B1, we must decide whether there is a jift: G — B».

Applying Theorem 4.5 to the extensidBp = E1 X,,4, B1, We find there aréEq|% x

_1 . .
> oeEpiG.B Exa (pl)qfl - chqfl(“l )y such lifts, wheres; = dimz,, Hollpl(G, E1).

oo (4.6)

PO

Bo
Continuing in the manner illustrated in diagram (4.6), we obtain the following formula.

Corollary 4.8. With notation as above, the number of epimorphigm& — I is given by

EpiG. D)= > o Y B (e (pn)al =y g @),
P1€EPi, (G.B1)  pueBpi,  (G.By)

where B,11 = E, Xg,,4, Bv, Bv = diquv Hglvpv (G, E)), «, is the number of comple-
mented chief factors i, 1, isomorphic toE, as B,+1-modules, andpi, (G, Bi1) is
the set of epimorphisms lifting : G — B;.

WhenG is the free group of rank, Theorem 4.5 (or Corollary 4.8) recovers the classi-
cal Gaschutz formula.

Corollary 4.9 [11, Satz 4] The Eulerian function of a finite solvable group(/", n) =
| Epi(F,, I')|, is given by

h

(I n) = n[q;ivi” (qfin N qié‘iii)(q;m _ ql_Si{i+Ki) . (qfin N q;}'igiJF(ui*l)Ki)]’
i=1

where V1, Vo, ..., V,, are the distinctI"-module isomorphism types of the chief factors,
qf" =|V;|, & = 0 or 1 according asI” acts trivially onV; or not, qlf“' is the number of



174 D. Matei, A.l. Suciu / Journal of Algebra 286 (2005) 161-186

I'-endomorphisms of;, and finally,u; is the numbers of factors of tygé which are
complemented if", andv; is the number of other factors of tyfe.

Proof. Let E be a minimal normal subgroup @f, and setB = I'/E. Let V; be therl -
isomorphism type of. Applying Theorem 4.5, we find an expression of the form
. . : Gi(,Bi ki (i —1)
|[EPI(F,, I')| = [EPi(Fy, B)| - [EI¥ (" — ¢14; ),
where g; = diqui HY(F,,E) = si(n — ¢). If E is not complemented, then,, =0,

and the second factor reduces¢d"; otherwise, the second factor reducesgfd' —
qSiCH-(Mi—l)Ki
; .

Now repeat the procedure, withi replaced byB, and continue in this fashion till the
trivial group is reached. O

5. Dihedral groups

We now study in more detail epimorphisms to the dihedral group of orderThis
group is a split extensiols,, = Z,, x4 Z>, with monodromyo (b) = b1

Do, = (a, b ‘ a"™ =b%=1, bab = a_1>.
Letm =g;*---g;" be the prime decomposition of. A chief series forDy,, is
Doy =Ip>T11>>T10> > 1> ->14 >1

with terms’; ; = Zm/(qal P The chief factors ar&o = Z» andE; ; = Z,,. The
1 i1 9

lifting process goes through the extensidhs= Z, and B; ; = quocl Sl h for 1<
1 791 9

i <r, 1< j<qa;. Of these extensions, only the ones where a prigmappears for the
first time are split, while the others are non-split. Indeed, all the extensions are of the form
Doy1 = Zg Xo,x D2, With x(a"b¥, a*b") =k, whereu +s - (=) =1 -k +r (modgql),
and 0<r <.

As before, letG be a finitely presented group. Applying Lemma 4.4, we obtain the
following recursion formula for the number of epimorphisms fréhto a dihedral group:

> (47" —q) ifqtl

p€EpI(G,Dy)

Yo ex(p)g?” gL
peEPI(G, Da1)

|EPI(G, Dag1)| = (5.1)

Example 5.1.For the free grou = F,,, we find

r

|EPi(Fy. Daw)| = (2" = D)m" - [ [(1—4"). (5.2)
i=1
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wheregqs, ..., g, are the prime factors of (and the empty product is 1). This recovers a
computation of Kwak, Chun, and Lee, see [20, Lemma 4.1].

Example 5.2.Let T, = (x1,...,Xg, Y1, ..., Yg | [x1,¥1]---[x4,y,] = 1) and 1'[(;k =
(x1,...,xg | xfmxg = 1) be the fundamental groups of orientable (respectively, non-
orientable) surfaces of genys Let g1, ..., g, be the odd prime factors ofi, and put

e=m/2 (mod 2 if m is even. Then, according to whetheris odd or even,

m2g—l(22g _ 1) 1_[(1 _ ql_Z*Zg)7
|Epi(IT,, Daw)| = i=1
ngfl(zzg _ 1) (28 _ 22723‘) 1_[(1 qZ 2g)7
i=1
w2110 + 1 }
|Epi(17;’ DZ’")| = = r
mé~1(2¢ — 2278) [(zg -[Ja-47%+ ]—[ }
i=1

(5.3)

In [19], Kwak and Lee obtained related formulas, counting the number of redar,
branched covergyprime) of a closed surface.

Example 5.3.An interesting family of examples is provided by the Baumslag—Solitar one-
relator groups BGn, n) = (x, y | xy"x~1y~"). As an illustration of our techniques, we
now compute the number of epimorphisms fraé= BS(m, n) to Ds.

The dihedral groums is a central extension @352 by Zo, with 2-cocycley : Z$? x
Z?Z — Z assuming non-zero values only on the p&irsa), (b, a), (a, ab), and(b, ab).
An epimorphismG — Dg induces by abelianization an epimorphistng Lip—m| =
Z2 @ Z; this can happen only if: andn have the same parity.

So assumer = n (mod 2. Then there are precisely 6 epimorphisms frérto Z?Z; let
p:G— Zgaz be one of those. A computation shows tuét: 0. By Theorem 3.4p lifts
to Dg, i.e.,e,(p) =1, if and only if

m

Zx(uvk_l, v) — x(u,u) + x (uv™, u) + Z(—x(v, ) + x (wv™uv'"1, v)) = 0.

k=1 =1
whereu = p(x) andv = p(y), in which case there are precisely 4 liftsibg. This equation
simplifies to
m m n
—x(u, v) + —x(uv, v) + —x(v, v)=0, or

m—+1 1 1
Tx(u v)+Tx(uv v)+Tx(v v) + x(wv,u) — x(u,u) =0,
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according to whethem is even or odd. We find thé{p | ¢, (0) = 1}| = 6,4,2, or O,
according to whethe(m, *5=) = (0,0), (0, 1), (1, 1), or (1,0) modulo 2, respectively.
Using the fact that AuiDg) = Dg, we obtain:

3 ifmevenandi —m=0(mod 4,

8D8(BS(m,n)) _ 2 ifmevenandi —m =2 (mod 9, (5.4)
1 ifmoddandi —m =2 (mod 9,
0 otherwise

6. Binary dihedral groups

The binary dihedral group of orderis a central extensio), = Z2 x y D2y, With
presentation

Dy, = (a, b | a® =1, a" =b?, bab~* =a_1>.

In particular,Dy = Za, Dg = Qs, the quaternion group, any ,,,_, = Q,., the general-

oy o

ized quaternion group. Write = g;%¢;" - - -g;", with go = 2. A chief series is then
D, =To>Too>To1>>10ay>">I71>>1yq >1

with terms I'o o = Zow, 1} = Zm/(qao PN and factorsEg o = Zz, E;j = Zy;,
0 41 9
where 0< i <r, 1< j < «;. The lifting process goes through the extensi®gs= Z,

Bo,j = Dyj+2, andB; ; = quao «_1 j1- Here only the extensions where a primeap-
' ' 0 9i-1" 9
pears for the first time are split, the rest are non-split, except whisreven, in which case

the primegg = 2 produces a split extension the first two times it appears.
Indeed, there are three types of extensions that occur:

. D;ql =Zq %o,y D3, With ¢ an odd prime, in which case the computationyofjoes
essentially as in the dihedral case.

e Dy1 =77 x, Do, for which x was computed before.

o Qo1 =Zy xy Do, in which casey (a“b’,a’b') =k + 1, whereu + s - (=1)¥ =
k-2 45 (mod 2) with0<n <21 andl =1 if v =t = 1 andl = 0 otherwise.

Applying Lemma 4.4, we obtain the following recursion formulas:

> (77 —q) ifqfl

p€EPI(G,D3)
Do ex(pg?” gl
peEpi(G, D)

[Epi(G. Qp)| = D e (p)g"?. (6.2)
pEEpi(G,Dzr)

[Epi(G, D3,))| = (6.1)
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Example 6.1.For the free grou = F,, we find

r

|Epi(Fy. D},)| = (4" = 2")m" - [ [(1—4"). (6.3)
i=0

Example 6.2.Let us compute the number of epimorphisms from the Baumslag—Solitar
groups to the quaternion group. Notice thisf = Z> x , Z;ezy with 2-cocycley vanishing

only on the pairda, b), (b, ab), and(ab, a). Let p :BS(m,n) — Z & Z, be an epimor-
phism. Then necessarity andn have the same parity. Moreoverlifts to Qg if and only

if

m n

Zx(uvk_l, v) — x(u,u)+ X(uv’", u) + Z(—X(v, v) + X(uvmuvl_l, v)) =0,
k=1 =1

whereu = p(x) andv = p(y), in which casep has 4 lifts. The above condition is equiva-
lenttom +n =0 (mod 4. Using the fact that AyDg) = S4, we conclude:

1 ifn—misevenandn +n=0(mod 4,

) (6.4)
0 otherwise

30g (BS(m, n)) = {

7. Finite quotients of derived length 3

We now consider epimorphisms of a finitely presented gi@umto finite groups which
are not metabelian. A nice class of groups of derived length 3 are the split extensions
r= Zg xo D2,, Wherep andg are distinct primes such thathas order 2mod p). On

generators andc for D, the monodromy : D2, — GL(2, ¢) is given by (b) = ( , 3)

-10
ando (c) = (23), for somer.
According to Theorem 4.5, we have
[Epi(G.I)|=q* > (¢’ -1), (7.1)

pEEPI(G. D2y)

whereB(p) = dimg, H2,(G; Z$?).
In particular, the symmetric group on four letters is a split extensipa Zgﬂ Xy S3,
with monodromyo : S3 = SL(2,2) — Aut(Z?z) = GL(2, 2) the natural inclusion, given

by o (b) = (7 5) ando (c) = ($ 5). We then have:

[Epi(G. Sa)| =4 > (2P¥-1),
p€EPI(G, S3)
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wherep(p) = dimg, H(}p(G; Z?z). Since AutSs) = Sa, we find

1
55,(G) =5 > (2 -1). (7.2)
pE€EPI(G, S3)

Example 7.1. Consider G = F,. Recall that|Epi(F),, S3)| = (2" — 1)(3" — 3). If
p:Fy — S3, thenH}, (Fy: Z§?) = Z§?~2. Hence,

|Epi(F,, Sa)| = (2" — 1)(3" — 3) (4" — 4). (7.3)

Example 7.2.Let G = (x, y | yxy~1 = x~1) be the Klein bottle group. There is then an
obvious epimorphism : G — S3; in fact, 5,(G) = 1. But this epimorphism does not lift
to S4. Indeed Jg = (y+x~11—x~1), and thus/%’ = (é 8 2 i) Hence HZ, (G, 7$%) =0,
and soss, (G) =0.

Example 7.3.We now show that the Baumslag parafree groupén,n) = (x, v,z |
xZ"xz mx"1z"yz7"y ™1y, fall into at least two distinct isomorphism classes, each con-
taining infinitely many members. We do this by counting epimorphisn$s to

Let us start by computing the Fox JacobiarG& P (m, n):

Jo=(14xz" =[y.2"] ¥y =1 x(1=xzsn+ ([, 2] = ¥)sn).

wheresy = 1+ z + --- + z¥~1. The abelianization aii — G/G’ = Z? = (11, t») sends
x> 1,y 11,z t2. Thus,

= (1 -1 A-m)(1+n+---+57Y).

Clearly, | Epi(G, Z3)| = 3. Since the first entry inlglID is never zero, each epimor-
phism G — Z; lifts to 6 different epimorphisms td3. Writing the typical element of
S3 =73 % Zp asbPc? , we see that the 18 epimorphismsG — S3 divide into 3 families:

o x — bP y— bPre, z — bP2, wherep = nB, # 0 andp, arbitrary,
o x — bP y— bPr 7z — bP2c, wherep = ((—1)™ — (—=1)"1")B1 # 0 andB, arbitrary,
o x—> bl y— bPic, 7 — bP2, where = (—1)" — (=1 ™) (B1 — B2) #0.

Eachp in the first family contributes @2 — 1) to | Epi(G, S4)|, asJ°” has corank 4, while
the otherp’s contribute either @3 — 1) or 4(22 — 1), according ag/°” has corank 5 or 4
(depending on whethet — n = 2 (mod 4 or not). Therefore

6-4(2°2 -1)+12-422-1)
24
s (POmm) = 164021
a0

=17 ifmodd,m —n =2 (mod 9,

otherwise
(7.4)
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It would be interesting to see whether solvable Hall invariants completely classify the
Baumslag parafree groups, and, more generally, the parafree groups considered by Strebel
in [30].

Example 7.4.Let L be the 2-component link from [16, p. 72], aid#l the fundamental
group of its complement, with presentation

-1 -1 -1
X -1 -1 X, TxXy Tx2
x1t (xaxp)2 120 (xgtxaxa) 2 T P (xpxg)™e >

-1 -1 -2
[xl X, "X3X1X4X5 “X4, xz]

G= <x1, X2, X3, X4

wherex” = y~1xy. Let G, be the intersection of the lower central seriesofAs noted by
Hillman, G = G, x P(—1, 1). In particular,L is not a homology boundary link. Moreover,
G/G"= Fz/Fé/, yetG % F».

Notice that| Epi(G, I")| = | Epi(F2, I")|, for any finite metabelian group. In particu-
lar, 85,(G) = 3. On the other hand, we can distinguiShfrom both F, and P(—1, 1) by
counting representations onfg:

85,(G)=2-(2"-1)+ (2> - 1) =33,

8. The lattice of subgroups

Let I" be afinite group. LeL (I") be the lattice of subgroups &f, ordered by inclusion.
TheMobius functionw: L(I') x L(I") — Z, is defined inductively by.(H, H) = 1, and
Z,KKK w(H, S) =0, forany subgrou < I". For simplicity, writew(H) := u(H, I').

In [18], Kratzer and Thévenaz give a formula for the Mobius function of a solvable
group, in terms of a chief series.

Theorem 8.1[18]. Supposd” is solvable, and lef” = Iy > --- > I, > 1 be a chief series.
If H< I',letH; =T;H, and consider the sequenée= H, < --- < Hy=I", where one
keeps only distinct term&;. Let h; be the number of complementsafin L(I") which
containH; 1. Then

w(H)=(=1"hy---hy_1.

In the particular case when is nilpotent, this recovers a classical result of Weisner:
((H) =0, unlessH < I" andI'/H = @;_, Z*, in which caseu(H) = [[/_;(—1)% x
si(si—=1)/2

l Now let G be a finitely generated group. Then, as noted by P. Hall [15],

[Hom(G. )| = > |Epi(G. H)|. (8.1)

HLI
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or, by Mobius inversion:

[Ep(G. M| = Y u(H)|Hom(G, H)|. (8.2)
HLI

The Eulerian functionof I" is the sequence (I, n) = | Epi(F,, I")|, counting ordered
n-tuples generating”. By the Hall enumeration principle (8.2), the Eulerian function is
determined by the Mdbius function, as follows(I", n) = Zng w(H)|H|".

In conjunction with the results from Section 2, the Hall enumeration principle provides
an alternate way to compute the number of epimorphisms from an arbitrary finitely pre-
sented grous to a finite solvable group'.

Example 8.2.The lattice of subgroups of the dihedral graDp,, consists of one subgroup
of typeZ; andm /1 subgroups of typ#;, for each divisot of m. The Mdbius function is

given by
m m m
M(Zz)=—7u<7), /L(Dzz)=ﬂ(7>-

Letgqs, ..., g, be the prime divisors ofi. By Proposition 3.2 and formula (3.8), we have

: 1
[EPI(G. Dom)| =) YM(?)(]Hom(G, Dy)| — |Hom(G, Z;)|)

llm

= %,«?) S |ZEG. )

llm peEpI(G,Z>)

SLE) s e e

Iim 0€EpPi(G,Zp) i=1

In particular,| Epi(F,, D2n)| = (2" —1) 3, F1(5)1", which, after some manipulations,
recovers formula (5.2).

9. Hall invariants and finite-index subgroups

Let G be afinitely generated group. For each positive intégkat a; (G) be the number
of indexk subgroups ofG. The behavior of the sequené& (G)}x>1 (that is, the “sub-
group growth” ofG) has been the object of intense study ever since the foundational paper
of M. Hall [14]; see the monograph by A. Lubotzky and D. Segal [25] for a comprehensive
survey.

Let it (G) = |HOoM(G, Sy)| and#(G) be the number of homomorphisms (respectively,
transitive homomorphisms) fror to the symmetric grouy. It is readily seen that
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ar(G) = (’,f((i), The following recursion formula (due to M. Hall [14]) computesin
terms ofhy, ..., hg, starting froma; = hq =

k-1

1 1
a(G) = —5,(G) - Z G (@ (@), (9.1)

In this context, it is also useful to consider theHall invariant of G,
8r(G) = |Epi(G, I')|/|Aut T"|. 9.2)

Since Autl” acts freely and transitively on EgF, I"), the numbers(G) is an inte-
ger, which counts the homomorphic images(that are isomorphic td”. Notice that
8rixr(G) =8 (G)8r,(G), providedly and > have coprime orders.

Formula (9.1), together with P. Hall’s enumeration principle (8.1), expresses the num-
bersa; = a;(G) in terms of Hall invariants. For low indices, we havg:= 1, ay = 6z,
az =38z, + 38s,, and

an = 367,(1— 87,) + 82, + 43,92 + 4 pg + 404, + 485 (9.3)

In general, the Hall invariant$- (G) contain more information about a grogpthan
the numbersy, (G). For exampleg; (I1,) = ak(H;‘g), for all g > 1 (see [25]), but clearly
87, (I1g) # 87, (H;g) for any oddn > 1.

Wheng is finitely presented, all the Hall invariants that appear in (9.3) can be expressed
in terms of simple homological data. If is abelian, this is done in Theorem 3.1 in [26].
Let us briefly review how this goes.

For a prime p, write the p-torsion part of Hi(G,Z) as @i>1Zj§“". Set n =

rankH1(G,Z),a =Y ia;, andp =) «;. For a positive integey, write ae[s]1 = ;_ 1 i,
We then have

snt+a _ ,(s—Dn+als] s—1 n+p __
b2, =L 506 = Hu,
P =p e P
(psn+a _ p(s—l)n+a[s])(pn+ﬂ _ p)
82,02, (G) = (9.4)

ps+1(p _ 1)2

These formulas, together with the multiplicativity property afetermine the™-invariants
of G for I" abelian of order at most 31, while higher orders are treated similarly.

If I is non-abelian, of order at most 12, the answer is given in Table 1. Plugging these
answers, together with the ones from (7.2) and (9.4 into formula (9.3) gives an expression
for a4(G) solely in terms of cohomological invariants f6r.

Now leta;(G) be the number of indek, normal subgroups af. Clearly,

4 (G)= ) 5r(G). (9.5)

| |=k
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Table 1
Hall invariants for non-abelian groups of order at most 12
r 3r(G)
dimz., HL,(G,Z
S3="73 %o 7o 33 pekpiG.zy @ 7 e (GFD) )
2 dimz, H1(G,Z
Dg =7y %y Z? %ZpeEpi(G,Z§2) £y (p)2 7, Hp (G, Z2)
dimz, HY(G,Z
Qs =72, 23" iZPEEPi(G,Z?Z) e ()27 11 (12
dimg,, H,(G.Z
D12=175 %0 75" %ZpeEpi(G,Z?Z)(?’ Mg fiop(G28) _q)
dimz,, H,(G.Z
DIy =123 g L4 %ZpeEpi(G,Z‘o @mzs Hop(G-23) _ 4,
dimg,, HY,(G,2$?
Ay =157 %0 Ly 35 ekpicG.zg @72 Tor 127 1y

In [26], we used this formula to computg'(G) in terms of homological data, provided
k has at most two factors. Our approach worked forkalf 15, except fork = 8 and

k =12. To compute:g, we also needed to knofy,, andsg,; for a3, we also needeélp,,
and3D’{2- The formulas in Table 1 complete the computatioapfG), for k < 15.

10. Finite quotients of braid groups
We conclude with a discussion of Artin’s braid groups, viewed through the prism of
their finite quotients and their finite-index subgroups. In addition to our own results, we
use in crucial fashion results of Artin [1], Gorin and Lin [13], and Lin [22—24].
10.1. Braid groups
The braid group om > 3 strings has presentation
B, = (x, y | Y (yx)¥ ", [yixyfi,x], 2<i < n/2>.

Let B), be the commutator subgroup. Cleay,/ B, = Z, generated by, and so we have
a split extensionB, = B, . Z. Itis also known that

B3=F ><1,Z:<x,a,b|ax=b, b":ba_l),

x,a,b

By = (Fo X Fp) NTZ:<C,d

a*=b, b*=ba1, " =dc, d* =d,
ct=d, c®=d ¢, d*=dc1d?, d* =dc7Yd |

Note thatB3/B; = B,/Bj = Z2. On the other hand, if > 5, thenB], is perfect, see Gorin
and Lin [13].

Now supposd” is a finite group. Ifl" is cyclic, thens~(B,) = 1. On the other hand, if
I'/I"" is non-cyclic, therd - (B,,) = 0.
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If n > 5, andI is a finite quotient ofB,,, thenI"’ must be perfect. Hence, every finite
solvable quotient of3,, must be cyclic, and so

0 if I"is not cyclig

1 if I'is cyclic, (10.1)

8r(By) = {

whenevetl" is a finite solvable group and> 5. On the other hand, the groups and B4
have plenty of non-abelian, finite solvable quotients, as we see next.

10.2. Solvable quotients &3 and B4

Let G be one of the braid groupBs or B4. From the presentations above it is apparent
that the maximal metabelian quotiex/G”, is isomorphic toH = (Z & Z) x. Z. The
monodromy actiony = (0 ‘11), has order 6, and its characteristic polynomiafis- 7 4 1.

Now let I" be a finite, metabelian quotient 6f. ThenI” = I'’ x;7 Zy, with I'’ a quotient
of Z2. Write I'' = Z,, ® Z;. We can pick generatotse Z; andu, v € I'’ so that(z) €
Aut(I'") is given byt (u) = v andt (v) = —u +v. Henceu andv have the same order, and
so either(m, ) = 1 or/ = m. Analyzing the various possibilities, we obtain the following
proposition.

Proposition 10.3.Let I" a finite, metabelian quotient @ = Bz or Bs. Assumd’ is not
cyclic. Thenl” is split metabelian, of type

Q) I' =73 x Zy with k =+2 (mod 6, in which casé(G) =1,

(2) I' =7, x Zi withr > 3andk =0 (mod 6, in which casé(G) = 2;
(3) I' =Z§? x Zy with k = 3 (mod ), in which case;(G) = 1;

(4) I' =7%2 % Z; withr > 3andk =0 (mod 6, in which caséfr (G) = 1.

Now assumd™ is a finite, solvable, non-cyclic quotient 8§ or By. If follows from the
proof above that the maximal metabelian quotidft/™” has order divisible by 6. Buf'
is an extension of /', and soI"| is also divisible by 6.

Finite solvable quotients oBs can have derived length greater than 2. For example,
considerS, = Z?Z x S3. We know | Epi(Bs3, S3)| = 6. If p is an epimorphism fronB3
to S3, thenH;, (Bs; Zg?z) = 7. Hence| Epi(Bs, S4)| =4-6- (21 — 1), and s, (B3) = 1.

More generally, ifl}. = Zo.a» x, Ay is the sequence of groups starting frdim= Sa,
then(SQ (B3) = 1. On the other hand, f‘, = Zp3 X3 Aglis the sequence of groups starting
from I'p = SL(2, 3), thenéfr (B3) =2.

Since B4 surjects ontaBs, it inherits all the finite quotients aB3. In general, though,
B4 has more epimorphisms onto a given finite quotient t®anThe smallest solvable
group for which this happens i&. Indeed, H2, (Ba; Z3%) = 232, for all p: B4 — S3;
thus,| Epi(By, Sa)| = 4- 6 (22 — 1), and sO3s, (Bs) = 3, althoughss, (B3) = 1.

In view of all this evidence, we propose the following conjecture. Cebe a finite
solvable group. Then

Sr(B3) <2 and 8;(Bs) <3. (10.2)
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10.4. Finite-index subgroups &,

We conclude with a discussion of the subgroup growth of the braid gréyp©f
course,a1(B,) = a»(B,) = 1. The values ofi(B,) for 3<n <8 and 3< k < 16 are
listed in Table 2. The values not in bold were computed solely by machine. The values in
bold can be justified, as follows:

(1) Using results from Section 10.2, we see thatB3) = az(Ba) = 4, andaz(B,) = 1,
for n > 4. Furthermoreg4(B3) =9, as(Bs) = 17, andas(B,) = 1, forn > 4.

(2) Proposition 4.1 from Lin [24] gives (B3), for 4 < k < 7, while Propositions 4.4 and
4.7 from [24] givets(B4) andrg(B4). This gives the corresponding values QK B3)
anday (Ba).

(3) Supposer > 4 andk < n. In [22], Lin showed that any transitive homomorphism
B, — Si has cyclic image. This implies(B,,) = (k — 1)!, and sau; (B,) = 1.

(4) In [1], Artin computed| Epi(B,,, S,)| for all n. This givesas(Bs) = 6, ag(Bg) = 13,
anda,(B,) =n+1, forn > 6.

(5) Suppose & n < k < 2n. In Theorem F.a) from [24], Lin proves that any transitive
homomorphismB,, — S; has cyclic image. Consequently(B,)) = (k — 1)! and so
ar(By) =1.

(6) Suppose: > 6. Up to conjugation, there are 4 transitive homomorphisns> Sa,,
of which 3 are non-cyclic, see [24, Theorem F.b)]. It is readily seen that the central-
izer of those 3 homomorphisms is the involutidh 2)(3,4) --- (2n — 1, 2n). Hence,
ton(By) = (2n — 1! + 3(2n)!/2, and saup, (B,) = 3n + 1.

(7) Further results from Sections 4 and 7 in [24] gig€Bs), t7(Bs), and# (Bg), for 7 <
k < 10; the corresponding values far(B,,) follow.

Out of this discussion, we obtain the following corollary.

Corollary 10.5. For the specified values @fand r, the number of index subgroups of
the braid groupB,, is given by

1 fork <nandn>4,0r6<n<k<2n,
ar(By)=3n+1 ifk=nandn>86,
3n+1 ifk=2nandn>6.

Table 2
Number of low-index subgroups &, (n < 8)

a3 a4 a5 ag a7y d4ag a9 alp 411 412 413 ai4 ais aie
By 4 9 6 22 43 49 130 266 287 786 1730 2199 5184 12193
By 4 17 6 34 43 81 148 266 287 938 1730 2199 5199 12449
B; 1 1 6 7 1 1 1 26 1 19 1 1 36 17
Bsg 1 1 1 13 1 1 1 11 1 25 1 1 31 1
B7 1 1 1 1 8 1 1 1 1 1 1 22 1 1
Bg 1 1 1 1 1 9 1 1 1 1 1 1 1 25
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Based on this evidence, we propose the following conjecture.

Conjecture 10.6.For all n > 0,

1 if ntk,

ax(Bn) = {c(k/fl) n+1 ifn|k,

wherec(k/n) is a constant, depending only @fin.
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