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1. Introduction

1.1. Finite quotients

One way to understand an infinite, finitely generated group is to identify its finite
tients, and count all the epimorphisms to one of these finite groups. A wide spectr
possibilities can occur. For example, residually finite groups have plenty of finite quot
whereas infinite simple groups have none. Free groups and surface groups have a
dance of finite solvable quotients, whereas groups with perfect derived subgroup h
solvable quotients except abelian ones.

If G is a finitely generated group, andΓ a finite group, let|Hom(G,Γ )| be the numbe
of homomorphisms fromG to Γ , and letδΓ (G) = |Epi(G,Γ )|/|AutΓ | be the number o
epimorphisms fromG to Γ , up to automorphisms ofΓ . In the case whenG = Fn is the
free group of rankn, Philip Hall [15] gave a procedure to determine the Eulerian func
|Epi(Fn,Γ )|, based on Möbius inversion in the subgroup lattice ofΓ . An explicit formula
for computing|Epi(Fn,Γ )| in the case whenΓ is solvable was given by Gaschütz [11]

In this paper, we generalize Gaschütz’ formula, from the free groupFn, to an arbitrary
finitely presented groupG. As a byproduct, we derive an expression for the order of the
tomorphism group of a finite solvable groupΓ . Putting things together gives a method
computing the solvable Hall invariantsδΓ (G) in terms of homological data. This exten
previous results from [26], which only dealt with certain metabelian groupsΓ .

1.2. Finite-index subgroups

Another way to understand a finitely generated, residually finite group is throug
finite-index subgroups. Letak(G) and a�

k (G) be the number of indexk subgroups (re
spectively, normal subgroups) ofG. The growth of these sequences—also known as
subgroup growth ofG—has been a subject of intensive study in the recent past, see
Much is known in the case whenG is nilpotent; explicit formulas forak(G) anda�

k (G) are
available in a few other cases, such as free products of cyclic groups and surface gr

In [14], Marshall Hall showed how to express the numbersak(G) in terms of the Hall
invariantsδΓ (G), whereΓ ranges through the isomorphism classes of subgroups o
symmetric groupSk . In [26], we used this fact to arrive at a homological formula fora3(G).
Here, we give a similar (but more involved) formula fora4(G). Combining our previous
results with the present techniques, we also give formulas fora�

k (G), for k � 15.

1.3. Solvable quotients

The derived series of a groupG is defined inductively byG(0) = G and G(k) =
[G(k−1),G(k−1)]. A groupG is solvable if its derived series terminates. The derived len
of G is the minimalk for which G(k) = 1; abelian groups have derived length 1, wh
metabelian groups have length 2.

At the other extreme, a perfect groupG equals its own derived subgroup, so its deriv
series stabilizes atG′ = G(1). Clearly, a solvable group has no perfect subgroups. He

if G(k) is perfect, thenG has no solvable quotients of derived length greater thank.
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Now supposeΓ is a finite solvable group, of derived lengthl. Since the derived series
G consists of characteristic subgroups, the number of epimorphisms fromG to Γ depends
only on the solvable quotientG/G(l); in fact, |Epi(G,Γ )| = |Epi(G/G(l),Γ )|.

1.4. Lifting homomorphisms

As is well known, a group is solvable if and only if it can be expressed as an ite
extension of abelian groups. In order to count homomorphisms from a finitely gene
groupG to a finite solvable groupΓ , we use an inductive procedure, sketched below.

Suppose we have an extension 1→ A → Γ → B → 1, with A abelian andB solvable.
Such an extension is determined by a monodromy homomorphismσ :B → Aut(A), and a
(twisted) cohomology class[χ] ∈ H 2

σ (B,A). Let ρ :G → B be a homomorphism. Thenρ
has a liftρ̃ :G → Γ if and only if ρ∗[χ] = 0 in H 2

σρ(G,A). Furthermore, the lifts ofρ are
in one-to-one correspondence with 1-cochains that cobound the 2-cocycle−ρ∗χ . The set
of such 1-cochains,Z1

σρ,χ (G,A), is either empty, or is in bijection withZ1
σρ(G,A); define

εχ (ρ) to be 0 or 1, accordingly. We find:∣∣Hom(G,Γ )
∣∣ =

∑
ρ∈Hom(G,B)

εχ (ρ) · ∣∣Z1
σρ(G,A)

∣∣.
1.5. Systems of equations

If G admits a finite presentation, sayP = 〈x1, . . . , xn | r1, . . . , rm〉, we can translate
the lifting condition into a systemS = S(P,Γ,ρ) of m equations inn unknowns over
the abelian groupA. The equations inS, given in (3.4) below, are similar in nature
inhomogeneous linear equations. The homogeneous part is written in terms of th
derivatives∂ri/∂xj , twisted byσρ, whereas the non-homogeneous part involves onlyρ∗χ
and the presentationP .

As shown in Theorem 3.4, the number of solutions of the systemS coincides with the
number of lifts ofρ. The precise determination of these solutions gives a way to expl
construct those lifts.

In general, the system of equationsS cannot be reduced to a linear system. But
certain cases, this is possible. One instance (exploited in [9,26]) is whenB is abelian,
A is the additive group of a finite commutative ringR, andσ is induced by multiplication
in R. Another instance is whenA is homocyclic, sayA = Z⊕s

qr , and the monodromy is o
the formσ :B → GL(s,Zqr ). In particular, ifA is an elementary abelianq-groupE, the
cohomology groupH 1(G,E) can be viewed as a vector space over the prime fieldZq , and
its dimension can be computed in terms of the rank of the Jacobian matrix associat
presentation ofG, twisted by the homomorphismρ.

1.6. A generalization of Gaschütz’ formula

Next, we restrict our attention to surjective homomorphismsG � Γ . From the above

discussion, we know that|Hom(G,Γ )| can be obtained by summingεχ (ρ)q
dimZq Z1

σρ(G,E)
over all ρ ∈ Hom(G,B). In order to compute|Epi(G,Γ )|, we have to subtract all the
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homomorphismsG → Γ which are not surjective. Due to the minimality ofE, those are
precisely the homomorphisms whose image is a complement ofE in Γ .

Every solvable groupΓ admits a normal series whose successive factors are eleme
abelian. Our method for calculating|Epi(G,Γ )| is to use such a chief series to constr
all the epimorphisms by repeated liftings through the chief series. The key step is pro
by the following result.

Theorem.LetG be a finitely presented group, and letΓ be a finite, solvable group. LetE
be an elementary abelianq-group which is also a chief factor ofΓ , and letB = Γ/E. If
σ is the monodromy andχ is the2-cocycle defining the extension1→ E → Γ → B → 1,
then ∣∣Epi(G,Γ )

∣∣ = |E|ζ
∑

ρ∈Epi(G,B)

(
εχ (ρ)q

dimZq H1
σρ(G,E) − cχqκ(α−1)

)
,

whereζ = 0 or 1 according asB acts trivially onE or not, εχ (ρ) = 1 or 0 according as
the equationδ1f = −ρ∗χ has a solution or not,cχ = 1 or 0 according as[χ] ∈ H 2

σ (B,E)

vanishes or not,α is the number of complemented chief factors ofΓ isomorphic toE as
Γ -modules(under the conjugation action), andqκ = |EndΓ (E)|.

Now supposeΓ = Γ0 > Γ1 > · · · > Γν > Γν+1 = 1 is a chief series, with factorsEi =
Γi/Γi+1 = Z⊕si

qi
and quotientsBi = Γ/Γi . We then find:∣∣Epi(G,Γ )

∣∣ =
∑

ρ1∈Epiρ0
(G,B1)

· · ·
∑

ρν∈Epiρν−1
(G,Bν)

|Eν |ζν
(
εχν (ρν)q

βν
ν − cχν q

κν(αν−1)
ν

)
,

whereBν+1 = Eν ×σν,χν Bν , βν = dimZqν
H 1

σνρν
(G,Eν), αν is the number of chief factor

of Bν+1 isomorphic toEν asBν+1-modules, and Epiρi
(G,Bi+1) is the set of epimorphism

lifting ρi :G � Bi . In the case whenG = Fn, this recovers Gaschütz’ formula.

1.7. Examples

To illustrate our recursive process for calculating|Epi(G,Γ )|, we discuss variou
classes of source and target groups.

When it comes to the target groupΓ , we analyze in detail two series of finite metabel
groups: the dihedral and the binary dihedral groups. We also consider a class of d
length 3 solvable groups, of the formΓ = Z⊕2

q �D2p, which includes the symmetric grou

S4 = Z⊕2
2 � D6.

In calculating|Epi(G,Γ )|, one can use the lattice of subgroups ofΓ instead of its chief
series extensions. We briefly illustrate this approach for the sake of comparison, in th
whenΓ is a dihedral group.

When it comes to the source groupG, we start of course with the free groupsFn. An-
other family of examples are the orientable and non-orientable surface groups,Πg andΠ∗

g .
The other examples we consider (the one-relator Baumslag–Solitar and Baumslag

a certain link group, and the Artin braid groups) are discussed separately below.
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1.8. Baumslag–Solitar groups

A famous family of one-relator groups was introduced by Baumslag and Solitar i
For each pair of integers(m,n) with 0 < m � |n|, let BS(m,n) = 〈x, y | xymx−1y−n〉.
Much is known about these groups: BS(m,n) is solvable if and only ifm = 1, in which
case BS(1, n) = Z[1/n] � Z; it is residually finite if and only ifm = |n| or m = 1, in
which case it is also Hopfian; and it is Hopfian if and only ifm andn have the same prim
divisors orm = 1. For example, BS(2,3) is non-Hopfian, while BS(2,4) is Hopfian but
non-residually finite.

The groups BS(m,n) have been classified by Moldavanski [27]. They are in bijec
with the set of unordered pairs(m,n) with 0 < m � |n|. In the case whenm = 1, the
set of finite quotients of BS(1, n) is a complete group invariant, see [28], and it cons
of all quotients of metacyclic groups of typeZs �σ Zr , whereσ is multiplication byn,
and nr ≡ 1 (mods). The subgroup growth of the Baumslag–Solitar groups BS(m,n),
with m, n coprime was determined by E. Gelman, see [25, p. 284]; a presentatio
Aut(BS(m,n)) was given in [12].

We compute here the number of epimorphisms from the Baumslag–Solitar gro
D8 and Q8. This allows us to divide the groups BS(m,n) into four (respectively, two
non-isomorphic classes.

1.9. Baumslag’s parafree groups

In [3], Baumslag introduced the following notion: a groupG is called parafree i
it is residually nilpotent and has the same nilpotent quotients as a free groupF . The
simplest non-free yet parafree groups are the one-relator groupsP(m,n) = 〈x, y, z |
xzmxz−mx−1znyz−ny−1〉. As shown in [3], each group in this family (indexed by pa
of integersm andn) has the same nilpotent quotients and the same first two solvable
tients as the free groupF2.

In [21], R. Lewis and S. Liriano showed that there are several distinct isomorphism
among the groupsP(m,n). By counting homomorphisms to SL(2,Z4), they verified that
the third solvable quotients ofP(m,n) differ from those ofF2, for certain pairs of integers
e.g., (m,n) = (1,3) and (3,5). By computing the number of epimorphisms ofP(m,n)

onto a smaller solvable quotient group of derived length 3, namelyS4, we can recove
(and sharpen) the result of Lewis and Liriano. We find: ifm odd andm − n ≡ 2 (mod 4),
thenP(m,n) is not isomorphic toF2. Moreover, in that case,P(m,n) is not isomorphic to
P(m′, n′) if m′ even orm′ − n′ 
≡ 2 (mod 4).

1.10. A link group

Counting finite solvable quotients of a groupG can also help decide whether a n
mal subgroupH is perfect. Indeed, ifH � G is perfect, andΓ is finite and solvable
thenδΓ (G) = δΓ (G/H). In other words, ifδΓ (G) > δΓ (G/H) for some finite solvable
groupΓ , thenH is not perfect.

As an example of how this works, we takeG to be the group of a certain 2-compone

link considered by Hillman in [16]. ThenGω, the intersection of the lower central series
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of G, is non-trivial, i.e.,G is not residually nilpotent. Hence,G is not parafree. On the othe
hand,G/Gω

∼= P(−1,1), and thusG has the same nilpotent quotients asF2; moreover,
G/G′′ ∼= F2/F

′′
2 . Using our formula, we find thatδS4(G) > δS4(P (−1,1)). This shows tha

Gω is not perfect, thereby answering a question of Hillman, see [16, p. 74].

1.11. Braid groups

The braid groupsBn have been intensively studied ever since Artin introduced t
in the mid 1920s. Although the braid groups are residually finite, few of their finite
tients are known. General series of non-abelian quotients forBn (n � 3) are the symmetric
groupsSn, and the projective symplectic groups PSp(n−2,3) with n even, or PSp(n−1,3)

with n odd.
Once we restrict to solvable quotients, the situation becomes more manageable.

tion 10 we use our methods to compute the number of epimorphisms fromBn to certain
finite solvable groups. For example, we show thatδS3(B3) = 1 andδS4(B4) = 3 (this re-
covers a particular case of a much more general result of Artin [1], see also [6]).
results of V. Lin, we also compute the number of indexk subgroups ofBn, whenk � n or
k = 2n, andn is sufficiently large.

We conclude with some conjectures on the possible values forδΓ (Bn), for solvableΓ ,
and on the behavior of the sequenceak(Bn), for n � 0.

2. Extensions and group cohomology

In this section, we review some basic material on group cohomology. We outl
computation method based on Fox calculus [8], and explain how low-degree cohom
is connected with extensions with abelian kernel. We use [5] and [17] as general refe

2.1. Group cohomology and Fox calculus

Let G be a group, andA a G-module, with action specified by a homomorphi
α :G → Aut(A). LetCr = Maps(G×r ,A) be the group ofr-cochains, and define coboun
ary mapsδr :Cr → Cr+1 by

δr (f )(x0, . . . , xr ) = x0f (x1, . . . , xr ) −
r−1∑
i=0

(−1)if (x0, . . . , xixi+1, . . . , xr )

+ (−1)r−1f (x0, . . . , xr−1).

The cohomology groups ofG with coefficients inA are defined as

Hr
α(G,A) = Zr

α(G,A)/Br
α(G,A), (2.1)

whereZr
α(G,A) = ker(δr ) are the cocycles andBr

α(G,A) = im(δr−1) are the cobound

aries.
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Now supposeG admits a finite presentation,G = Fn/R, whereFn is the free group
on x1, . . . , xn andR is the normal subgroup generated byr1, . . . , rm. The Fox derivatives
∂

∂xj
:ZFn → ZFn are theZ-linear maps defined by

∂xi

∂xj

= δij and
∂(uv)

∂xj

= ∂u

∂xj

ε(v) + u
∂v

∂xj

,

whereε :ZFn → Z is the augmentation map. The beginning of a free resolution ofZ by
ZG-modules is then

ZGm
JG

ZGn
d1

ZG
ε

Z 0, (2.2)

whered1 = φ(x1 − 1 . . . xn − 1) andJG = φ(∂ri/∂xj ) is the Fox Jacobian matrix. Ap
plying HomZG(−,A) yields the cochain complex

A
dα

1
An

Jα
G

Am, (2.3)

whose homology isH 1
α (G,A).

2.2. Extensions with abelian kernel

An extensionΓ of a groupB by an abelian groupA (written additively) is a short exac
sequence

1 A
i

Γ
π

B 1, (2.4)

determined by

• the monodromy homomorphismσ :B → Aut(A), defined byi(σb(a)) = s(b) · i(a) ·
s(b)−1, wheres :B → Γ is any set section ofπ ;

• the cohomology class[χ] ∈ H 2
σ (B,A) of a normalized 2-cocycleχ :B × B → A,

defined byi(χ(b, b′)) = s(b)s(b′)s(bb′)−1.

An element ofΓ can we written as a pair(a, b) with a ∈ A andb ∈ B, while multiplication
in Γ is given by(a1, b1) · (a2, b2) = (a1 +σb1(a2)+χ(b1, b2), b1b2). Note that(a, b)−1 =
(−σb−1(a) − χ(b−1, b), b−1).

We denote a groupΓ as in (2.4) byΓ = A ×σ,χ B. In the case of a split extensio
([χ] = 0), we simply writeΓ = A �σ B; in the case of a central extension (σb = id, for all

b ∈ B), we writeΓ = A ×χ B.
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Now assumeΓ = A ×σ,χ B is finite, and letc(Γ ) be the number of complements ofA

in Γ . If the extension splits (which we write ascχ = 1), thenc(Γ ) = |Z1
σ (B,A)|; if the

extension does not split (which we write ascχ = 0), thenc(Γ ) = 0. Thus

c(Γ ) = cχ

∣∣Z1
σ (B,A)

∣∣. (2.5)

3. Lifting homomorphisms

In this section, we present a method for counting the homomorphisms from a fi
presented groupG to a finite groupΓ , given as an extension with abelian kernel.

3.1. Homomorphisms into extensions

Let G be a finitely generated group, andρ :G → B a homomorphism to a groupB. Let
Γ = A ×σ,χ B be an extension ofB by an abelian groupA, with monodromyσ :B →
Aut(A) and 2-cocycleχ :B ×B → A. ThenA becomes aG-module, with action specifie
by σρ :G → Aut(A). Let Z1

σρ(G,A) andH 1
σρ(G,A) be the corresponding 1-cocycle a

1-cohomology groups.
Any set mapλ :G → Γ lifting ρ :G → B can be written as a pair of mapsλ = (f,ρ),

with f :G → A. Thenλ is a homomorphism if and only iff satisfies the following:

f (gh) = f (g) + σρ(g)

(
f (h)

) + χ
(
ρ(g),ρ(h)

)
for all g,h ∈ G, (3.1)

that is,f is a 1-cochain that cobounds the 2-cocycle−ρ∗χ :G × G → A. Denote the se
of all such 1-cochains by

Z1
σρ,χ (G,A) = {

f :G → A
∣∣ δ1f = −ρ∗χ

}
. (3.2)

This set is either empty, or elseZ1
σρ,χ (G,A) = Z1

σρ(G,A) + f0, for some 1-cochainf0.
Setεχ (ρ) to be 0 or 1, accordingly. We then have the following.

Proposition 3.2.The number of homomorphisms fromG to Γ = A ×σ,χ B is given by

∣∣Hom(G,A ×σ,χ B)
∣∣ =

∑
ρ∈Hom(G,B)

εχ (ρ) · ∣∣Z1
σρ(G,A)

∣∣. (3.3)

If the extension is split, then clearlyε0(ρ) = 1 for all ρ :G → B, and thus (3.3) reduce
to |Hom(G,A �σ B)| = ∑

ρ |Z1
σρ(G,A)|. If the extension is central, thenZ1

σρ(G,A) =
Hom(G,A) for all ρ, and thus|Hom(G,A×χ B)| = ∑

ρ εχ (ρ)|Hom(G,A)|. If the exten-
sion is both split and central (i.e., a direct product), then (3.3) reduces to the well k

formula |Hom(G,A × B)| = |Hom(G,A)| · |Hom(G,B)|.
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3.3. Equations for lifts

We now give a practical algorithm for computing the quantities involved in form
(3.3), in the case whenG is a finitely presented group. Given a homomorphismρ :G → B,
we want to decide whether there is a 1-cochainf :G → A cobounding−ρ∗χ (i.e.,
whetherεχ (ρ) 
= 0), and, if so, count how many such cochains there are (i.e., deter
|Z1

σρ(G,A)|).
Let P = 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation forG, andφ :Fn → G the

presenting homomorphism. Writerk = uk,1 · · ·uk,lk , with eachuk,j equal to somex
ek,j

i ,
whereek,j = ±1.

Theorem 3.4.Let ρ :G → B be a homomorphism. Thenεχ (ρ) = 1 or 0 according to
whether the following system of equations has a solution(a1, . . . , an) with ai ∈ A:

n∑
i=1

σ ρ̄

(
∂rk

∂xi

)
(ai) +

lk∑
j=1

ek,j − 1

2
χ

(
ρ̄(uk,j ), ρ̄

(
u

ek,j

k,j

))

+
lk−1∑
j=1

χ
(
ρ̄(uk,1 · · ·uk,j ), ρ̄(uk,j+1)

) = 0, 1� k � m, (3.4)

whereρ̄ = ρφ. Moreover, ifεχ (ρ) = 1, then|Z1
σρ(G,A)| equals the number of solution

of the(homogeneous) system

n∑
i=1

σ ρ̄

(
∂rk

∂xi

)
(ai) = 0, 1� k � m. (3.5)

Proof. Let f :G → A be a 1-cochain that cobounds−ρ∗χ . From the cocycle conditio
(3.1) it follows thatf :G → A is uniquely determined by its value on the generators. N
note that the map̄f = f φ :Fn → Γ vanishes on the relators ofG:

f̄ (rk) = 0, 1� k � m. (3.6)

To finish the proof, we need to express this system of equations in terms of the
f̄ (xi) = ai , and count the number of solutions.

To that end, letr = u1 · · ·ul be a word inFn, with uj = x
ej

ij
. Then the following equality

holds in the abelian groupA:

f̄ (r) =
n∑

i=1

σ ρ̄

(
∂r

∂xi

)
(ai) +

l∑
j=1

ej − 1

2
χ

(
ρ̄(uj ), ρ̄

(
u

ej

j

))

+
l−1∑

χ
(
ρ̄(u1 · · ·uj ), ρ̄(uj+1)

)
. (3.7)
j=1
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This follows by induction on the lengthl of the wordr , using (3.1). A detailed proof, in th
case whenΓ = A �σ B, is given in [26, Lemma 7.3]. The general case works similarl

From (3.7), it is apparent that the system of equations (3.6) coincides with (3.4
definition, the set of solutions to (3.4) equalsZ1

σρ,χ (G,A). When this set is non-empt

(i.e., εχ (ρ) = 1), then|Z1
σρ,χ (G,A)| = |Z1

σρ(G,A)|, cf. Section 3.1. So it is enough
count solutions of the system (3.4) in the particular case when[χ] = 0. But this system is
(3.5), and we are done.�

In particular, if G = Fn, then the system (3.4) is empty, and soεχ (ρ) = 1, for any
homomorphismρ :Fn → B and extensionΓ = A ×σ,χ B.

3.5. Corank of twisted Jacobian

With notation as in Theorem 3.4, supposeA is an abelianq-group, whereq is a prime.
Then the number of solutions of system (3.5) is of the formqd , for somed � 0. Denote
this integer byd(σρ). Then

∣∣Z1
σρ(G,A)

∣∣ = qd(σρ). (3.8)

For an arbitrary finite abelian groupA, denote byAq the q-torsion subgroup. The
A = ⊕

q||A| Aq asG-modules, andZ1
σρ(G,A) = ⊕

q Z1
πqσρ(G,Aq), whereπq : Aut(A) →

Aut(Aq) is the canonical projection. Hence

∣∣Z1
σρ(G,A)

∣∣ =
∏
q||A|

qd(πqσρ). (3.9)

Now assumeA is homocyclic, sayA = Z⊕s
qr . Then Aut(A) can be identified with

GL(s,Zqr ). Thus (3.5) becomes a system of linear equations over the ringZqr , and

d(σρ) = corank
(
J

σρ
G

)
. (3.10)

Here recallJG = φ(∂ri/∂xj ) is them × n matrix overZG associated to the presentati
P = 〈x1, . . . , xn | r1, . . . , rm〉 for G, while J

σρ
G is thems × ns matrix overZqr obtained by

replacing each entrye of JG by the matrixσρ(e) ∈ Aut(A) = GL(s,Zqr ).

4. Generalized Gaschütz formula

In this section, we give a formula counting the number of epimorphisms from a fin
presented groupG to a finite, solvable groupΓ . We use [29] as a general reference

group theory.
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4.1. Complements in finite solvable groups

A group is said to besolvableif its derived series terminates. For a finite groupΓ , this
is equivalent toΓ having an elementary abelian chief series, i.e., a non-refinable ser
normal subgroups, such that all the quotients are elementary abelian. By a classica
any minimal normal subgroup ofΓ must be an elementary abelian groupE; moreover, the
quotientB = Γ/E acts linearly onE.

We will need the following result of Gaschütz.

Theorem 4.2[11, Satz 3]. LetΓ = E ×σ,χ B be an extension of a finite, solvable groupB

by an elementary abelianq-groupE which is a minimal normal subgroup ofΓ . Then the
number of complements ofE in Γ is given by

c(Γ ) = cχ · |E|ζ · qκ(α−1), (4.1)

wherecχ = 1 or 0 according as[χ] = 0 or not, ζ = 0 or 1 according asB acts trivially
on E or not, andα is the number of complemented chief factors ofΓ isomorphic toE as
Γ -modules under the conjugation action.

If cχ = 0, the extension is non-split, and soc(Γ ) = 0; the casecχ = 1 is the one re-
quiring an argument. The proof in [11] breaks into several steps. First, it is shown
c(Γ ) = c(Γ/Z) · c(Z), whereZ = CΓ (E) is the centralizer ofE in Γ , c(Γ/Z) is the
number of complements ofE in Γ/Z, andc(Z) is the number of complements ofE in Z.
Next, it is shown thatc(Γ/Z) = |E|ζ , andc(Z) = |EndΓ (E)|α−1. Finally, it is noted that
|EndΓ (E)| = qκ , for someκ � 0.

For related results, see [2, (2.10)] and [7, Theorem 2].

4.3. A recursion formula

Now letG be a finitely presented group.

Lemma 4.4.SupposeΓ = E ×σ,χ B is an extension of a finite groupB by an elementary
abelianq-groupE which is a minimal normal subgroup ofΓ . Then∣∣Epi(G,Γ )

∣∣ =
∑

ρ∈Epi(G,B)

(
εχ (ρ)qd(σρ) − c

)
, (4.2)

wherec = c(Γ ) = cχ |Z1
σ (B,E)| is the number of complements ofE in Γ (cχ = 1 if the

extension splits, in which caseεχ (ρ) = 1, andcχ = 0 otherwise).

Proof. Fix an epimorphismρ :G → B. Thenρ has|Z1
σρ,χ (G,E)| = εχ (ρ) · qd(σρ) lifts

to Γ . Let λ :G → Γ be such a lift, and letU = Imλ. ThenU is an extension ofB by
K = U ∩ E (a subgroup ofE). By minimality, B acts irreducibly onE, and so eithe
K = E, in which caseU = Γ (and soλ is surjective), orK = 1, in which caseU is a

complement ofE. Thereforeρ contributesεχ (ρ)qd(σρ) − c to |Epi(G,Γ )|. �
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We now have

qd(σρ) = ∣∣Z1
σρ(G,E)

∣∣ = ∣∣B1
σρ(G,E)

∣∣ · ∣∣H 1
σρ(G,E)

∣∣ = |E|ζ · qdimZq H1
σρ(G,E)

. (4.3)

Combining Lemma 4.4 with Theorem 4.2 and formula (4.3), we obtain the followi

Theorem 4.5.LetG be a finitely presented group, and letΓ = E ×σ,χ B be an extension o
a finite, solvable groupB by an elementary abelianq-groupE which is a minimal norma
subgroup ofΓ . Then

∣∣Epi(G,Γ )
∣∣ = |E|ζ

∑
ρ∈Epi(G,B)

(
εχ (ρ)q

dimZq H1
σρ(G,E) − cχqκ(α−1)

)
.

This theorem allows us to compute recursively|Aut(Γ )| = |Epi(Γ,Γ )|, for any finite
solvable groupΓ .

Corollary 4.6. Let Γ = E ×σ,χ B be an extension of a finite, solvable groupB by an
elementary abelianq-groupE which is a minimal normal subgroup ofΓ . Then

∣∣Aut(Γ )
∣∣ = |E|ζ

∑
ρ∈Epi(Γ,B)

(
εχ (ρ)q

dimZq H1
σρ(Γ,E) − cχqκ(α−1)

)
.

Combining the two results above gives a recursion formula for the Hall invariantδΓ (G),
for any finite solvable groupΓ .

4.7. Lifting through the chief series

We now describe an explicit procedure for constructing the set Epi(G,Γ ), and counting
its elements. Start with a chief series

Γ = Γ0 > Γ1 > · · · > Γν > Γν+1 = 1. (4.4)

Write Ei = Γi/Γi+1 = Z⊕si
qi

andBi = Γ/Γi , for 0 � i � ν. Let χi :Bi × Bi → Ei be a
classifying 2-cocycle for the extension

1 Ei Bi+1 Bi 1, (4.5)

with monodromyσi :Bi → Aut(Ei) = GL(si , qi). Finally, letci = c(Bi+1) be the numbe
of complements ofEi in Bi+1, let αi be the number of chief factors ofBi+1 isomorphic to
Ei asBi+1-modules, and setqκi

i = |EndBi+1(Ei)|.
Now let G be a finitely presented group. Start with the trivial epimorphismρ0 :G →
B0 = 1. Then Epi(G,B1) consists ofqβ0
0 − 1 elements, whereβ0 = dimZq0

H 1(G;E0).
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For each such elementρ1 :G � B1, we must decide whether there is a liftρ2 :G � B2.
Applying Theorem 4.5 to the extensionB2 = E1 ×σ1,χ1 B1, we find there are|E1|ζ1 ×∑

ρ1∈Epi(G,B1)
(εχ1(ρ1)q

β1
1 − cχ1q

κ1(α1−1)
1 ) such lifts, whereβ1 = dimZq1

H 1
σ1ρ1

(G,E1).

Γ Eν

Bν Eν−1

G

ρ

ρν

ρ2

ρ1

ρ0

...

B2 E1

B1 E0

B0

(4.6)

Continuing in the manner illustrated in diagram (4.6), we obtain the following form

Corollary 4.8. With notation as above, the number of epimorphismsρ :G � Γ is given by∣∣Epi(G,Γ )
∣∣ =

∑
ρ1∈Epiρ0

(G,B1)

· · ·
∑

ρν∈Epiρν−1
(G,Bν)

|Eν |ζν
(
εχν (ρν)q

βν
ν − cχν q

κν(αν−1)
ν

)
,

whereBν+1 = Eν ×σν,χν Bν , βν = dimZqν
H 1

σνρν
(G,Eν), αν is the number of comple

mented chief factors inBν+1, isomorphic toEν asBν+1-modules, andEpiρi
(G,Bi+1) is

the set of epimorphisms liftingρi :G � Bi .

WhenG is the free group of rankn, Theorem 4.5 (or Corollary 4.8) recovers the clas
cal Gaschütz formula.

Corollary 4.9 [11, Satz 4]. The Eulerian function of a finite solvable group,φ(Γ,n) =
|Epi(Fn,Γ )|, is given by

φ(Γ,n) =
h∏

i=1

[
q

sivin
i

(
q

sin
i − q

siζi

i

)(
q

sin
i − q

siζi+κi

i

) · · · (qsin
i − q

siζi+(ui−1)κi

i

)]
,

whereV1,V2, . . . , Vh are the distinctΓ -module isomorphism types of the chief facto

q

si
i = |Vi |, ζi = 0 or 1 according asΓ acts trivially onVi or not, q

κi

i is the number of
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the
Γ -endomorphisms ofVi , and finally,ui is the numbers of factors of typeVi which are
complemented inΓ , andvi is the number of other factors of typeVi .

Proof. Let E be a minimal normal subgroup ofΓ , and setB = Γ/E. Let Vi be theΓ -
isomorphism type ofE. Applying Theorem 4.5, we find an expression of the form∣∣Epi(Fn,Γ )

∣∣ = ∣∣Epi(Fn,B)
∣∣ · |E|ζi

(
q

βi

i − cχi
q

κi (αi−1)
i

)
,

where βi = dimZqi
H 1(Fn,E) = si(n − ζi). If E is not complemented, thencχi

= 0,

and the second factor reduces toq
sin
i ; otherwise, the second factor reduces toq

sin
i −

q
siζi+(ui−1)κi

i .
Now repeat the procedure, withΓ replaced byB, and continue in this fashion till th

trivial group is reached. �

5. Dihedral groups

We now study in more detail epimorphisms to the dihedral group of order 2m. This
group is a split extensionD2m = Zm �σ Z2, with monodromyσ(b) = b−1:

D2m = 〈
a, b

∣∣ am = b2 = 1, bab = a−1〉.
Let m = q

α1
1 · · ·qαr

r be the prime decomposition ofm. A chief series forD2m is

D2m = Γ0 > Γ1,1 > · · · > Γ1,α1 > · · · > Γr,1 > · · · > Γr,αr > 1,

with termsΓi,j = Z
m/(q

α1
1 ···qαi−1

i−1 q
j−1
i )

. The chief factors areE0 = Z2 andEi,j = Zqi
. The

lifting process goes through the extensionsB1 = Z2 andBi,j = D
2q

α1
1 ···qαi−1

i−1 q
j−1
i

, for 1�
i � r , 1 � j � αi . Of these extensions, only the ones where a primeqi appears for the
first time are split, while the others are non-split. Indeed, all the extensions are of the
D2ql = Zq �σ,χ D2l , with χ(aubv, asbt ) = k, whereu + s · (−1)v = l · k + r (modql),
and 0� r < l.

As before, letG be a finitely presented group. Applying Lemma 4.4, we obtain
following recursion formula for the number of epimorphisms fromG to a dihedral group:

∣∣Epi(G,D2ql)
∣∣ =


∑

ρ∈Epi(G,D2l )

(
qd(σρ) − q

)
if q � l,

∑
ρ∈Epi(G,D2l )

εχ (ρ)qd(σρ) if q | l.
(5.1)

Example 5.1.For the free groupG = Fn, we find

∣∣Epi(Fn,D2m)
∣∣ = (

2n − 1
)
mn ·

r∏(
1− q1−n

)
, (5.2)
i=1
i
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whereq1, . . . , qr are the prime factors ofm (and the empty product is 1). This recover
computation of Kwak, Chun, and Lee, see [20, Lemma 4.1].

Example 5.2. Let Πg = 〈x1, . . . , xg, y1, . . . , yg | [x1, y1] · · · [xg, yg] = 1〉 and Π∗
g =

〈x1, . . . , xg | x2
1 · · ·x2

g = 1〉 be the fundamental groups of orientable (respectively, n
orientable) surfaces of genusg. Let q1, . . . , qr be the odd prime factors ofm, and put
e = m/2 (mod 2) if m is even. Then, according to whetherm is odd or even,

∣∣Epi(Πg,D2m)
∣∣ =


m2g−1(22g − 1

) r∏
i=1

(
1− q

2−2g
i

)
,

m2g−1(22g − 1
)(

2e − 22−2g
) r∏

i=1

(
1− q

2−2g
i

)
,

∣∣Epi
(
Π∗

g ,D2m

)∣∣ =


mg−1

[(
2g − 2

) r∏
i=1

(
1− q

2−g
i

) +
r∏

i=1

(
qi − q

2−g
i

)]
,

mg−1(2e − 22−g
)[(

2g − 2
) r∏

i=1

(
1− q

2−g
i

) +
r∏

i=1

(
qi − q

2−g
i

)]
.

(5.3)

In [19], Kwak and Lee obtained related formulas, counting the number of regularD2p

branched covers (p prime) of a closed surface.

Example 5.3.An interesting family of examples is provided by the Baumslag–Solitar
relator groups BS(m,n) = 〈x, y | xymx−1y−n〉. As an illustration of our techniques, w
now compute the number of epimorphisms fromG = BS(m,n) to D8.

The dihedral groupD8 is a central extension ofZ⊕2
2 by Z2, with 2-cocycleχ :Z⊕2

2 ×
Z⊕2

2 → Z2 assuming non-zero values only on the pairs(a, a), (b, a), (a, ab), and(b, ab).
An epimorphismG � D8 induces by abelianization an epimorphismZ ⊕ Z∣∣n−m

∣∣ �
Z2 ⊕ Z2; this can happen only ifm andn have the same parity.

So assumem ≡ n ( mod 2). Then there are precisely 6 epimorphisms fromG to Z⊕2
2 ; let

ρ :G � Z⊕2
2 be one of those. A computation shows thatJ

ρ
G = 0. By Theorem 3.4,ρ lifts

to D8, i.e.,εχ (ρ) = 1, if and only if

m∑
k=1

χ
(
uvk−1, v

) − χ(u,u) + χ
(
uvm,u

) +
n∑

l=1

(−χ(v, v) + χ
(
uvmuvl−1, v

)) = 0.

whereu = ρ(x) andv = ρ(y), in which case there are precisely 4 lifts toD8. This equation
simplifies to

m

2
χ(u, v) + m

2
χ(uv, v) + n

2
χ(v, v) = 0, or

m + 1 m − 1 n − 1
2
χ(u, v) +

2
χ(uv, v) +

2
χ(v, v) + χ(uv,u) − χ(u,u) = 0,
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according to whetherm is even or odd. We find that|{ρ | εχ (ρ) = 1}| = 6,4,2, or 0,
according to whether(m, n−m

2 ) ≡ (0,0), (0,1), (1,1), or (1,0) modulo 2, respectively
Using the fact that Aut(D8) = D8, we obtain:

δD8

(
BS(m,n)

) =


3 if m even andn − m ≡ 0 (mod 4),

2 if m even andn − m ≡ 2 (mod 4),

1 if m odd andn − m ≡ 2 (mod 4),

0 otherwise.

(5.4)

6. Binary dihedral groups

The binary dihedral group of order 4m is a central extensionD∗
4m = Z2 ×χ D2m, with

presentation

D∗
4m = 〈

a, b
∣∣ a2m = 1, am = b2, bab−1 = a−1〉.

In particular,D∗
4 = Z4, D∗

8 = Q8, the quaternion group, andD∗
4·2m−2 = Q2m , the general-

ized quaternion group. Writem = q
α0
0 q

α1
1 · · ·qαr

r , with q0 = 2. A chief series is then

D∗
4m = Γ0 > Γ0,0 > Γ0,1 > · · · > Γ0,α0 > · · · > Γr,1 > · · · > Γr,αr > 1,

with terms Γ0,0 = Z2m, Γi,j = Z
m/(q

α0
0 ···qαi−1

i−1 q
j−1
i )

and factorsE0,0 = Z2, Ei,j = Zqi
,

where 0� i � r , 1 � j � αi . The lifting process goes through the extensionsB0 = Z2,
B0,j = D2j+2, andBi,j = D∗

4q
α0
0 ···qαi−1

i−1 q
j−1
i

. Here only the extensions where a primeqi ap-

pears for the first time are split, the rest are non-split, except whenm is even, in which cas
the primeq0 = 2 produces a split extension the first two times it appears.

Indeed, there are three types of extensions that occur:

• D∗
2ql = Zq ×σ,χ D∗

2l , with q an odd prime, in which case the computation ofχ goes
essentially as in the dihedral case.

• D2r+1 = Z2 ×χ D2r , for whichχ was computed before.
• Q2r+1 = Z2 ×χ D2r , in which caseχ(aubv, asbt ) = k + l, whereu + s · (−1)v ≡

k · 2r−1 + n (mod 2r ) with 0� n < 2r−1, andl = 1 if v = t = 1 andl = 0 otherwise.

Applying Lemma 4.4, we obtain the following recursion formulas:

∣∣Epi
(
G,D∗

2ql

)∣∣ =


∑

ρ∈Epi(G,D∗
2l )

(
qd(σρ) − q

)
if q � l,

∑
ρ∈Epi(G,D∗

2l )

εχ (ρ)qd(σρ) if q | l,
(6.1)

∣∣Epi(G,Q2r+1)
∣∣ =

∑
εχ (ρ)qd(ρ). (6.2)
ρ∈Epi(G,D2r )
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Example 6.1.For the free groupG = Fn, we find

∣∣Epi
(
Fn,D

∗
4m

)∣∣ = (
4n − 2n

)
mn ·

r∏
i=0

(
1− q1−n

i

)
. (6.3)

Example 6.2.Let us compute the number of epimorphisms from the Baumslag–S
groups to the quaternion group. Notice thatQ8 = Z2 ×χ Z⊕2

2 , with 2-cocycleχ vanishing
only on the pairs(a, b), (b, ab), and(ab, a). Let ρ : BS(m,n) � Z2 ⊕ Z2 be an epimor-
phism. Then necessarilym andn have the same parity. Moreover,ρ lifts to Q8 if and only
if

m∑
k=1

χ
(
uvk−1, v

) − χ(u,u) + χ
(
uvm,u

) +
n∑

l=1

(−χ(v, v) + χ
(
uvmuvl−1, v

)) = 0,

whereu = ρ(x) andv = ρ(y), in which caseρ has 4 lifts. The above condition is equiv
lent tom + n ≡ 0 (mod 4). Using the fact that Aut(Q8) = S4, we conclude:

δQ8

(
BS(m,n)

) =
{

1 if n − m is even andm + n ≡ 0 (mod 4),

0 otherwise.
(6.4)

7. Finite quotients of derived length 3

We now consider epimorphisms of a finitely presented groupG onto finite groups which
are not metabelian. A nice class of groups of derived length 3 are the split exte
Γ = Z2

q �σ D2p, wherep andq are distinct primes such thatq has order 2(modp). On

generatorsb andc for D2p, the monodromyσ :D2p → GL(2, q) is given byσ(b) = (
r 1

−1 0

)
andσ(c) = ( 0 1

1 0

)
, for somer .

According to Theorem 4.5, we have

∣∣Epi(G,Γ )
∣∣ = q2

∑
ρ∈Epi(G,D2p)

(
qβ(ρ) − 1

)
, (7.1)

whereβ(ρ) = dimZq
H 1

σρ(G;Z⊕2
q ).

In particular, the symmetric group on four letters is a split extensionS4 = Z⊕2
2 �σ S3,

with monodromyσ :S3 = SL(2,2) → Aut(Z⊕2
2 ) = GL(2,2) the natural inclusion, give

by σ(b) = ( 1 1
1 0

)
andσ(c) = ( 0 1

1 0

)
. We then have:

∣∣Epi(G,S4)
∣∣ = 4

∑ (
2β(ρ) − 1

)
,

ρ∈Epi(G,S3)
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whereβ(ρ) = dimZ2 H 1
σρ(G;Z⊕2

2 ). Since Aut(S4) = S4, we find

δS4(G) = 1

6

∑
ρ∈Epi(G,S3)

(
2β(ρ) − 1

)
. (7.2)

Example 7.1. Consider G = Fn. Recall that |Epi(Fn,S3)| = (2n − 1)(3n − 3). If
ρ :Fn � S3, thenH 1

σρ(Fn;Z⊕2
2 ) = Z⊕2n−2

2 . Hence,∣∣Epi(Fn,S4)
∣∣ = (

2n − 1
)(

3n − 3
)(

4n − 4
)
. (7.3)

Example 7.2.Let G = 〈x, y | yxy−1 = x−1〉 be the Klein bottle group. There is then
obvious epimorphismρ :G � S3; in fact, δS3(G) = 1. But this epimorphism does not li
toS4. Indeed,JG = (y+x−1 1−x−1), and thusJ σρ

G = ( 1 0 0 1
0 0 1 1

)
. Hence,H 1

σρ(G,Z⊕2
2 ) = 0,

and soδS4(G) = 0.

Example 7.3. We now show that the Baumslag parafree groups,P(m,n) = 〈x, y, z |
xzmxz−mx−1znyz−ny−1〉, fall into at least two distinct isomorphism classes, each c
taining infinitely many members. We do this by counting epimorphisms toS4.

Let us start by computing the Fox Jacobian ofG = P(m,n):

JG = (
1+ xzm − [

y, zn
]

yzny−1 − 1 x
(
1− zmxz−m

)
sm + ([

y, zn
] − y

)
sn

)
,

wheresk = 1 + z + · · · + zk−1. The abelianization ab :G → G/G′ = Z2 = 〈t1, t2〉 sends
x �→ 1, y �→ t1, z �→ t2. Thus,

J ab
G = (

tm2 tn2 − 1 (1− t1)
(
1+ t2 + · · · + tn−1

2

) )
.

Clearly, |Epi(G,Z2)| = 3. Since the first entry inJ ab
G is never zero, each epimo

phism G � Z2 lifts to 6 different epimorphisms toS3. Writing the typical element o
S3 = Z3 � Z2 asbβcγ , we see that the 18 epimorphismsρ :G � S3 divide into 3 families:

• x → bβ , y → bβ1c, z → bβ2, whereβ = nβ2 
= 0 andβ1 arbitrary,
• x → bβ , y → bβ1, z → bβ2c, whereβ = ((−1)m − (−1)m+n)β1 
= 0 andβ2 arbitrary,
• x → bβ , y → bβ1c, z → bβ2, whereβ = ((−1)m − (−1)m+n)(β1 − β2) 
= 0.

Eachρ in the first family contributes 4(22 −1) to |Epi(G,S4)|, asJ σρ has corank 4, while
the otherρ ’s contribute either 4(23 − 1) or 4(22 − 1), according asJ σρ has corank 5 or 4
(depending on whetherm − n ≡ 2 (mod 4) or not). Therefore

δS4

(
P(m,n)

) =


6 · 4(22 − 1) + 12· 4(23 − 1)

24
= 17 if m odd,m − n ≡ 2 (mod 4),

18· 4(22 − 1)

24
= 9 otherwise.
(7.4)
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It would be interesting to see whether solvable Hall invariants completely classif
Baumslag parafree groups, and, more generally, the parafree groups considered by
in [30].

Example 7.4.Let L be the 2-component link from [16, p. 72], andG the fundamenta
group of its complement, with presentation

G =
〈
x1, x2, x3, x4

∣∣∣∣∣ x
x−1

4
1 (x4x1)

x−1
2 x1x2,

(
x−1

3 x1x4
)x−1

2 x−1
1 x2(x1x4)

x3[
x−1

1 x−1
4 x3x1x4x

−2
3 x4, x2

]
〉

,

wherexy = y−1xy. LetGω be the intersection of the lower central series ofG. As noted by
Hillman,G = Gω �P(−1,1). In particular,L is not a homology boundary link. Moreove
G/G′′ ∼= F2/F

′′
2 , yetG 
∼= F2.

Notice that|Epi(G,Γ )| = |Epi(F2,Γ )|, for any finite metabelian groupΓ . In particu-
lar, δS3(G) = 3. On the other hand, we can distinguishG from bothF2 andP(−1,1) by
counting representations ontoS4:

δS4(G) = 2 · (24 − 1
) + (

22 − 1
) = 33.

8. The lattice of subgroups

Let Γ be a finite group. LetL(Γ ) be the lattice of subgroups ofΓ , ordered by inclusion
TheMöbius function, µ :L(Γ ) × L(Γ ) → Z, is defined inductively byµ(H,H) = 1, and∑

H�S�K µ(H,S) = 0, for any subgroupK � Γ . For simplicity, writeµ(H) := µ(H,Γ ).
In [18], Kratzer and Thévenaz give a formula for the Möbius function of a solv

group, in terms of a chief series.

Theorem 8.1[18]. SupposeΓ is solvable, and letΓ = Γ0 > · · · > Γν > 1 be a chief series
If H � Γ , let Hi = ΓiH , and consider the sequenceH = Hr < · · · < H0 = Γ , where one
keeps only distinct termsHi . Let hi be the number of complements ofHi in L(Γ ) which
containHi+1. Then

µ(H) = (−1)rh1 · · ·hr−1.

In the particular case whenΓ is nilpotent, this recovers a classical result of Weisn
µ(H) = 0, unlessH � Γ andΓ/H ∼= ⊕r

i=1 Z⊕si
qi

, in which caseµ(H) = ∏r
i=1(−1)si ×

q
si(si−1)/2
i .

Now letG be a finitely generated group. Then, as noted by P. Hall [15],

∣∣Hom(G,Γ )
∣∣ =

∑ ∣∣Epi(G,H)
∣∣, (8.1)
H�Γ
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or, by Möbius inversion:∣∣Epi(G,Γ )
∣∣ =

∑
H�Γ

µ(H)
∣∣Hom(G,H)

∣∣. (8.2)

TheEulerian functionof Γ is the sequenceφ(Γ,n) = |Epi(Fn,Γ )|, counting ordered
n-tuples generatingΓ . By the Hall enumeration principle (8.2), the Eulerian function
determined by the Möbius function, as follows:φ(Γ,n) = ∑

H�Γ µ(H)|H |n.
In conjunction with the results from Section 2, the Hall enumeration principle prov

an alternate way to compute the number of epimorphisms from an arbitrary finitely
sented groupG to a finite solvable groupΓ .

Example 8.2.The lattice of subgroups of the dihedral groupD2m consists of one subgrou
of typeZl andm/l subgroups of typeD2l , for each divisorl of m. The Möbius function is
given by

µ(Zl ) = −m

l
µ

(
m

l

)
, µ(D2l ) = µ

(
m

l

)
.

Let q1, . . . , qr be the prime divisors ofm. By Proposition 3.2 and formula (3.8), we hav

∣∣Epi(G,D2m)
∣∣ =

∑
l|m

1

l
µ

(
m

l

)(∣∣Hom(G,D2l )
∣∣ − ∣∣Hom(G,Zl )

∣∣)
=

∑
l|m

1

l
µ

(
m

l

) ∑
ρ∈Epi(G,Z2)

∣∣Z1
σρ(G,Zl )

∣∣
=

∑
l|m

1

l
µ

(
m

l

) ∑
ρ∈Epi(G,Z2)

r∏
i=1

q
d(πqi

σρ)

i . (8.3)

In particular,|Epi(Fn,D2m)| = (2n −1)
∑

l|m m
l
µ

(
m
l

)
ln, which, after some manipulation

recovers formula (5.2).

9. Hall invariants and finite-index subgroups

Let G be a finitely generated group. For each positive integerk, letak(G) be the numbe
of index k subgroups ofG. The behavior of the sequence{ak(G)}k�1 (that is, the “sub-
group growth” ofG) has been the object of intense study ever since the foundational
of M. Hall [14]; see the monograph by A. Lubotzky and D. Segal [25] for a comprehe
survey.

Let hk(G) = |Hom(G,Sk)| andtk(G) be the number of homomorphisms (respectiv

transitive homomorphisms) fromG to the symmetric groupSk . It is readily seen that
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ak(G) = tk(G)
(k−1)! . The following recursion formula (due to M. Hall [14]) computesak in

terms ofh1, . . . , hk , starting froma1 = h1 = 1:

ak(G) = 1

(k − 1)!hk(G) −
k−1∑
l=1

1

(k − l)!hk−l (G)al(G). (9.1)

In this context, it is also useful to consider theΓ -Hall invariant of G,

δΓ (G) = ∣∣Epi(G,Γ )
∣∣/|AutΓ |. (9.2)

Since AutΓ acts freely and transitively on Epi(G,Γ ), the numberδΓ (G) is an inte-
ger, which counts the homomorphic images ofG that are isomorphic toΓ . Notice that
δΓ1×Γ2(G) = δΓ1(G)δΓ2(G), providedΓ1 andΓ2 have coprime orders.

Formula (9.1), together with P. Hall’s enumeration principle (8.1), expresses the
bersak = ak(G) in terms of Hall invariants. For low indices, we have:a1 = 1, a2 = δZ2,
a3 = δZ3 + 3δS3, and

a4 = 1
2δZ2(1− δZ2) + δZ4 + 4δ

Z
⊕2
2

+ 4δD8 + 4δA4 + 4δS4. (9.3)

In general, the Hall invariantsδΓ (G) contain more information about a groupG than
the numbersak(G). For example,ak(Πg) = ak(Π

∗
2g), for all g � 1 (see [25]), but clearly

δZn
(Πg) 
= δZn

(Π∗
2g) for any oddn > 1.

WhenG is finitely presented, all the Hall invariants that appear in (9.3) can be expr
in terms of simple homological data. IfΓ is abelian, this is done in Theorem 3.1 in [2
Let us briefly review how this goes.

For a prime p, write the p-torsion part of H1(G,Z) as
⊕

i�1 Z⊕αi

pi . Set n =
rankH1(G,Z), α = ∑

iαi , andβ = ∑
αi . For a positive integers, write α[s] = ∑s−1

i=1 iαi .
We then have

δZps (G) = psn+α − p(s−1)n+α[s]

ps − ps−1
, δ

Z
⊕s
p

(G) =
s−1∏
i=0

pn+β − pi

ps − pi
,

δZp⊕Zps (G) = (psn+α − p(s−1)n+α[s])(pn+β − p)

ps+1(p − 1)2
. (9.4)

These formulas, together with the multiplicativity property ofδ determine theΓ -invariants
of G for Γ abelian of order at most 31, while higher orders are treated similarly.

If Γ is non-abelian, of order at most 12, the answer is given in Table 1. Plugging
answers, together with the ones from (7.2) and (9.4 into formula (9.3) gives an expr
for a4(G) solely in terms of cohomological invariants forG.

Now leta�
k (G) be the number of indexk, normal subgroups ofG. Clearly,

a�
k (G) =

∑
δΓ (G). (9.5)
|Γ |=k
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Table 1
Hall invariants for non-abelian groups of order at most 12

Γ δΓ (G)

S3 = Z3 �σ Z2
1
2

∑
ρ∈Epi(G,Z2)(3

dimZ3
H1

σρ (G,Z3) − 1)

D8 = Z2 �χ Z⊕2
2

1
8

∑
ρ∈Epi(G,Z⊕2

2 )
εχ (ρ)2dimZ2

H1
ρ (G,Z2)

Q8 = Z2 ×χ Z⊕2
2

1
24

∑
ρ∈Epi(G,Z⊕2

2 )
εχ (ρ)2dimZ2

H1
ρ (G,Z2)

D12 = Z3 �σ Z⊕2
2

1
4

∑
ρ∈Epi(G,Z⊕2

2 )
(3

dimZ3
H1

σρ (G,Z3) − 1)

D∗
12 = Z3 �σ Z4

1
4

∑
ρ∈Epi(G,Z4)(3

dimZ3
H1

σρ (G,Z3) − 1)

A4 = Z⊕2
2 �σ Z3

1
6

∑
ρ∈Epi(G,Z3)(2

dimZ2
H1

σρ (G,Z⊕2
2 ) − 1)

In [26], we used this formula to computea�
k (G) in terms of homological data, provide

k has at most two factors. Our approach worked for allk � 15, except fork = 8 and
k = 12. To computea�

8, we also needed to knowδD8 andδQ8; for a�
12, we also neededδD12

andδD∗
12

. The formulas in Table 1 complete the computation ofa�
k (G), for k � 15.

10. Finite quotients of braid groups

We conclude with a discussion of Artin’s braid groups, viewed through the pris
their finite quotients and their finite-index subgroups. In addition to our own result
use in crucial fashion results of Artin [1], Gorin and Lin [13], and Lin [22–24].

10.1. Braid groups

The braid group onn � 3 strings has presentation

Bn = 〈
x, y

∣∣ yn(yx)1−n,
[
yixy−i , x

]
, 2� i � n/2

〉
.

Let B ′
n be the commutator subgroup. Clearly,Bn/B

′
n = Z, generated byx, and so we have

a split extension,Bn = B ′
n �τ Z. It is also known that

B3 = F2 �τ Z = 〈
x, a, b

∣∣ ax = b, bx = ba−1〉,
B4 = (F2 � F2) �τ Z =

〈
x, a, b

c, d

∣∣∣∣ ax = b, bx = ba−1, cx = dc, dx = d,

ca = d, cb = d−1c, da = dc−1d2, db = dc−1d

〉
.

Note thatB ′
3/B

′′
3 = B ′

4/B
′′
4 = Z2. On the other hand, ifn � 5, thenB ′

n is perfect, see Gorin
and Lin [13].

Now supposeΓ is a finite group. IfΓ is cyclic, thenδΓ (Bn) = 1. On the other hand, i

Γ/Γ ′ is non-cyclic, thenδΓ (Bn) = 0.
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If n � 5, andΓ is a finite quotient ofBn, thenΓ ′ must be perfect. Hence, every fini
solvable quotient ofBn must be cyclic, and so

δΓ (Bn) =
{

0 if Γ is not cyclic,

1 if Γ is cyclic,
(10.1)

wheneverΓ is a finite solvable group andn � 5. On the other hand, the groupsB3 andB4
have plenty of non-abelian, finite solvable quotients, as we see next.

10.2. Solvable quotients ofB3 andB4

Let G be one of the braid groupsB3 or B4. From the presentations above it is appar
that the maximal metabelian quotient,G/G′′, is isomorphic toH = (Z ⊕ Z) �τ Z. The
monodromy action,τ = ( 0 −1

1 1

)
, has order 6, and its characteristic polynomial ist2 − t +1.

Now letΓ be a finite, metabelian quotient ofG. ThenΓ = Γ ′ �τ̄ Zk , with Γ ′ a quotient
of Z2. Write Γ ′ = Zm ⊕ Zl . We can pick generatorsz ∈ Zk andu,v ∈ Γ ′ so thatτ̄ (z) ∈
Aut(Γ ′) is given byτ̄ (u) = v andτ̄ (v) = −u+v. Hence,u andv have the same order, an
so either(m, l) = 1 or l = m. Analyzing the various possibilities, we obtain the followi
proposition.

Proposition 10.3.Let Γ a finite, metabelian quotient ofG = B3 or B4. AssumeΓ is not
cyclic. ThenΓ is split metabelian, of type

(1) Γ = Z3 � Zk with k ≡ ±2 (mod 6), in which caseδΓ (G) = 1;
(2) Γ = Zr � Zk with r > 3 andk ≡ 0 (mod 6), in which caseδΓ (G) = 2;
(3) Γ = Z⊕2

2 � Zk with k ≡ 3 (mod 6), in which caseδΓ (G) = 1;
(4) Γ = Z⊕2

r � Zk with r > 3 andk ≡ 0 (mod 6), in which caseδΓ (G) = 1.

Now assumeΓ is a finite, solvable, non-cyclic quotient ofB3 or B4. If follows from the
proof above that the maximal metabelian quotient,Γ/Γ ′′ has order divisible by 6. ButΓ
is an extension ofΓ/Γ ′′, and so|Γ | is also divisible by 6.

Finite solvable quotients ofB3 can have derived length greater than 2. For exam
considerS4 = Z⊕2

2 � S3. We know |Epi(B3, S3)| = 6. If ρ is an epimorphism fromB3

to S3, thenH 1
σρ(B3;Z⊕2

2 ) = Z2. Hence,|Epi(B3, S4)| = 4·6· (21−1), and soδS4(B3) = 1.
More generally, ifΓr = Z2·3r �χ A4 is the sequence of groups starting fromΓ0 = S4,

thenδΓr (B3) = 1. On the other hand, if̃Γr = Z2·3r �χ̃ A4 is the sequence of groups starti
from Γ̃0 = SL(2,3), thenδΓ̃r

(B3) = 2.
SinceB4 surjects ontoB3, it inherits all the finite quotients ofB3. In general, though

B4 has more epimorphisms onto a given finite quotient thanB3. The smallest solvabl
group for which this happens isS4. Indeed,H 1

σρ(B4;Z⊕2
2 ) = Z⊕2

2 , for all ρ :B4 � S3;
thus,|Epi(B4, S4)| = 4 · 6 · (22 − 1), and soδS4(B4) = 3, althoughδS4(B3) = 1.

In view of all this evidence, we propose the following conjecture. LetΓ be a finite
solvable group. Then
δΓ (B3) � 2 and δΓ (B4) � 3. (10.2)
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10.4. Finite-index subgroups ofBn

We conclude with a discussion of the subgroup growth of the braid groupsBn. Of
course,a1(Bn) = a2(Bn) = 1. The values ofak(Bn) for 3 � n � 8 and 3� k � 16 are
listed in Table 2. The values not in bold were computed solely by machine. The val
bold can be justified, as follows:

(1) Using results from Section 10.2, we see thata3(B3) = a3(B4) = 4, anda3(Bn) = 1,
for n > 4. Furthermore,a4(B3) = 9, a4(B4) = 17, anda4(Bn) = 1, for n > 4.

(2) Proposition 4.1 from Lin [24] givestk(B3), for 4� k � 7, while Propositions 4.4 an
4.7 from [24] givet5(B4) andt6(B4). This gives the corresponding values forak(B3)

andak(B4).
(3) Supposen > 4 andk < n. In [22], Lin showed that any transitive homomorphis

Bn → Sk has cyclic image. This impliestk(Bn) = (k − 1)!, and soak(Bn) = 1.
(4) In [1], Artin computed|Epi(Bn,Sn)| for all n. This givesa5(B5) = 6, a6(B6) = 13,

andan(Bn) = n + 1, for n > 6.
(5) Suppose 6< n < k < 2n. In Theorem F.a) from [24], Lin proves that any transit

homomorphismBn → Sk has cyclic image. Consequently,tk(Bn) = (k − 1)! and so
ak(Bn) = 1.

(6) Supposen > 6. Up to conjugation, there are 4 transitive homomorphismsBn → S2n,
of which 3 are non-cyclic, see [24, Theorem F.b)]. It is readily seen that the ce
izer of those 3 homomorphisms is the involution(1,2)(3,4) · · · (2n − 1,2n). Hence,
t2n(Bn) = (2n − 1)! + 3(2n)!/2, and soa2n(Bn) = 3n + 1.

(7) Further results from Sections 4 and 7 in [24] givet6(B5), t7(B5), andtk(B6), for 7�
k � 10; the corresponding values forak(Bn) follow.

Out of this discussion, we obtain the following corollary.

Corollary 10.5. For the specified values ofk andn, the number of indexk subgroups of
the braid groupBn is given by

ak(Bn) =


1 for k < n andn > 4, or 6< n < k < 2n,

n + 1 if k = n andn > 6,

3n + 1 if k = 2n andn > 6.

Table 2
Number of low-index subgroups ofBn (n � 8)

a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

B3 4 9 6 22 43 49 130 266 287 786 1730 2199 5184 1219
B4 4 17 6 34 43 81 148 266 287 938 1730 2199 5199 124
B5 1 1 6 7 1 1 1 26 1 19 1 1 36 17
B6 1 1 1 13 1 1 1 11 1 25 1 1 31 1
B7 1 1 1 1 8 1 1 1 1 1 1 22 1 1
B 1 1 1 1 1 9 1 1 1 1 1 1 1 25
8
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Based on this evidence, we propose the following conjecture.

Conjecture 10.6.For all n � 0,

ak(Bn) =
{

1 if n � k,

c(k/n) · n + 1 if n | k,

wherec(k/n) is a constant, depending only onk/n.
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