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The 0+ states of 8He are studied in a five-body 4He +n +n +n +n cluster model. Many-body resonances
are treated on the correct boundary condition as Gamow states using the complex scaling method. The
0+

2 state of 8He is predicted as a five-body resonance in the excitation energy of 6.3 MeV with a width
of 3.2 MeV, which mainly has a (p3/2)

2(p1/2)
2 configuration. In this state, number of the 0+ neuron

pair shows almost two, which is different from the ground state having a large amount of the 2+ pair
component. The monopole transition of 8He from the ground state into the five-body unbound states
is also evaluated. It is found that the 7He + n component mostly exhausts the strength, while the 0+

2
contribution is negligible. The final states are dominated by 6He+n+n, not 4He+n+n+n+n. The results
indicate the sequential breakup process of 8He → 7He + n → 6He + n + n by the monopole excitation.

© 2010 Elsevier B.V. Open access under CC BY license. Metadata, citation and similar papers at core.ac.uk
The development of experiments using radioactive beam has
provided us with much information on unstable nuclei far from
the stability. In particular, the light nuclei near the drip-line ex-
hibit new phenomena of nuclear structures, such as the neutron
halo structure in 6He, 11Li and 11Be [1].

Recently, many experiments on 8He have been reported [2–6].
Its ground state is considered to have a neutron skin structure con-
sisting of four valence neutrons around 4He with small binding
energy of 3.1 MeV. The recent experiments reported the matter
and charge radius of 8He in addition to 6He [7,8]. For the excited
states of 8He, most of them can be located above the 4He + 4n
threshold energy [5]. This fact indicates that the observed reso-
nances of 8He can decay into the channels of 7He + n, 6He + 2n,
5He + 3n and 4He + 4n. These multiparticle decays of 8He are re-
lated to the Borromean nature of 6He, which breaks up easily into
4He + 2n, and make it difficult to settle the excited states of 8He.
Similar situation is also occurred for other He isotopes, such as 6He
and 7He [9].

In the theoretical side, ab initio calculation of Green’s function
Monte Carlo [10] has shown that the calculated energy levels fairly
show a good correspondence with the experiments, although the
results depend on the choice of the three-nucleon forces. This
calculation is based on the bound state approximation and the
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continuum effect of the open channels is not included, while the
excited states of 8He are unbound.

Several methods have been proposed to treat the continuum ef-
fects explicitly, such as the microscopic cluster model [11–13], the
continuum shell model [14] and the Gamow shell model [15,16].
It is, however, difficult to satisfy the multiparticle decay conditions
correctly for all open channels. The energy spectra of many-body
resonances depend on the treatment of open channels. For 8He,
it is necessary to describe the 4He + 4n five-body resonances in
the theory. Furthermore, it is important to reproduce the thresh-
old energies of subsystems for particle decays. Emphasizing these
theoretical conditions, in this study, we employed the cluster or-
bital shell model (COSM) [17,18] of the 4He + 4n five-body system
for He isotopes. In COSM, the effects of all open channels are taken
into account explicitly, so that we can treat the many-body decay-
ing phenomena. In our previous works [19,20], we have success-
fully obtained the 4He + 3n four-body resonances of 7He, including
the full couplings with 5,6He. We have described many-body reso-
nances as Gamow states using the complex scaling method (CSM)
[21–23], under the correct boundary conditions for all decay chan-
nels. In CSM, the resonant wave functions are directly obtained
by diagonalization of the complex-scaled Hamiltonian using the L2

basis functions. The successful results of He isotopes have been ob-
tained for energies, decay widths, spectroscopic factors, Coulomb
breakups and so on.

In this study, we proceed our study of He isotopes to the 8He
structures. It is interesting to see how our model describes 8He
in addition to 5−7He and predicts the excited states of 8He. The
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excited states of 8He can be a five-body resonance. It is a chal-
lenge of CSM to describe the five-body nuclear resonances. For
this purpose, in this article, we concentrate on the 0+ states of
8He. We predict the excited 0+ resonances and investigate their
structures in comparison with the ground state. We also calculate
the monopole strength from the ground state into the unbound
states of 8He. This is to see the characteristics not only of the res-
onances, but also of non-resonant continuum states of 8He. In the
breakups of 8He in a low energy region, two kinds of the final
states of 6He + 2n and 4He + 4n are available. Using the five-body
unbound states of 8He obtained in COSM, we clarify the breakup
processes of 8He into the above final states by the monopole ex-
citation. Similar analysis has been performed in the three-body
Coulomb breakups of halo nuclei [25–27].

We explain the present model of He isotopes. We use COSM
of the 4He + Nvn systems, where Nv is a valence neutron number
around 4He, namely, Nv = 4 for 8He. The Hamiltonian is the same
as that used in Refs. [19,25];

H =
Nv+1∑
i=1

ti − T G +
Nv∑

i=1

V αn
i +

Nv∑
i< j

V nn
i j (1)

=
Nv∑

i=1

[ �p2
i

2μ
+ V αn

i

]
+

Nv∑
i< j

[ �pi · �p j

4m
+ V nn

ij

]
, (2)

where ti and TG are the kinetic energies of each particle (n and
4He) and of the center of mass of the total system, respectively.
The operator �pi is the relative momentum between n and 4He.
The reduced mass μ is 4m/5 using a nucleon mass m. The 4He −n
interaction V αn is given by the microscopic KKNN potential [21,
24], in which the tensor correlation of 4He is renormalized into
the potential based on the resonating group method of the 4He +
n scattering. We use the Minnesota potential [28] as V nn . These
interactions reproduce the low-energy scattering of the 4He − n
and the n–n systems, respectively.

For the wave function, 4He is treated as the (0s)4 configuration
of a harmonic oscillator wave function, whose length parameter
is 1.4 fm to fit the charge radius of 4He as 1.68 fm. The motion
of valence neutrons around 4He is solved variationally using the
few-body technique. We expand the relative wave functions of the
4He + Nvn system using the COSM basis states [17,18]. In COSM,
the total wave function Ψ J with a spin J of the AHe = 4He + Nvn
system (mass number A = 4 + Nv) is represented by the superpo-
sition of the configuration Ψ

J
c as

Ψ J (AHe
) =

∑
c

C J
c Ψ

J
c

(AHe
)
, (3)

Ψ
J

c
(AHe

) =
Nv∏

i=1

a†
αi |0〉, (4)

where 4He corresponds to a vacuum |0〉. The creation operator a†
α

is for the single particle state of a valence neutron above 4He, with
the quantum number α = {n, �, j} in a j j coupling scheme. Here,
the index n represents the different radial component. The index
c represents the set of αi as c = {α1, . . . ,αNv }. We take a summa-
tion over the available configurations in Eq. (3), which give a total
spin J . The expansion coefficients {C J

c } in Eq. (3) are determined
with respect to the total wave function Ψ J by diagonalization of
the Hamiltonian matrix elements.

The coordinate representation of the single particle state cor-
responding to a†

α is given as ψα(r) as function of the relative
coordinate r between the center of mass of 4He and a valence
Fig. 1. Sets of the spatial coordinates in COSM for the 4He + Nvn system.

neutron [17,18,20], as shown in Fig. 1. We employ sufficient num-
ber of radial bases of ψα in order to describe the spatial extension
of valence neutrons in the weak binding state and also in the res-
onances. In this model, the radial part of ψα is expanded with
Gaussian basis functions [29] as

ψα =
N� j∑
k=1

dk
αφk

� j

(
r,bk

� j

)
, (5)

φk
� j

(
r,bk

� j

) = N r�e−(r/bk
� j)

2/2[Y�(r̂),χσ
1/2

]
j. (6)

The index k is for the Gaussian basis with the length parame-
ter bk

� j . A basis number and the normalization factor of the ba-

sis are given by N� j and N , respectively. The coefficients {dk
α} in

Eq. (5) are determined using the Gram-Schmidt orthonormaliza-
tion, and hence, the basis states ψα are orthogonal to each other.
The numbers of the radial bases of ψα are at most N� j , and are
determined to converge the physical solutions. The length param-
eters bk

� j are chosen in geometric progression [21,29]. We use at

most 17 Gaussian basis functions by setting bk
� j from 0.2 fm to

around 40 fm with the geometric ratio of 1.4 as a typical one. Due
to the expansion of the radial wave function using a finite number
of basis states, all the energy eigenvalues are discretized for bound,
resonant and continuum states. To obtain the Hamiltonian ma-
trix elements of multi-neutron system, we employ the j-scheme
technique of the shell model. The antisymmetrization between a
valence neutron and 4He is treated on the orthogonality condition
model [21], in which the single particle state ψα is imposed to be
orthogonal to the 0s state occupied by 4He.

In COSM, the asymptotic boundary condition of the wave func-
tions for neutron emissions are correctly described [20,21]. For
8He, all the channels of 8He, 7He +n, 6He + 2n, 5He + 3n, 4He + 4n
are automatically included in the total wave function Ψ J in Eq. (3).
These components are coupled to each other by the interactions
and the antisymmetrization, which depend on the relative dis-
tances between 4He and a valence neutron and between the va-
lence neutrons. For the single-particle states, we take the angular
momenta � � 2 to keep the accuracy of the converged energy
within 0.3 MeV of 6He in comparison with the full space calcula-
tion. In this model, we adjust the two-neutron separation energy of
6He(0+) to the experiment of 0.975 MeV by taking the 173.7 MeV
of the repulsive strength of the Minnesota force instead of the
original value of 200 MeV. The adjustment of the nn interaction
is originated from the pairing correlation between valence neu-
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trons with higher angular momenta � > 2 [21]. Hence, the present
model reproduces the observed properties of 5,6He, as shown in
Fig. 2, namely, the threshold energies of the particle emissions of
He isotopes.

We explain CSM, which describes resonances and nonresonant
continuum states [21]. Hereafter, we refer to the nonresonant con-
tinuum states as simply the continuum states. In CSM, we trans-
form the relative coordinates of the 4He + Nvn system, as ri →
rieiθ for i = 1, . . . , Nv, where θ is a scaling angle. The Hamilto-
nian in Eq. (2) is transformed into the complex-scaled Hamiltonian
Hθ , and the corresponding complex-scaled Schrödinger equation is
given as

HθΨ
J

θ = EΨ
J

θ . (7)

The eigenstates Ψ
J

θ are obtained by solving the eigenvalue prob-
lem of Hθ in Eq. (7). In CSM, we obtain all the energy eigenval-
ues E of bound and unbound states on a complex energy plane,
governed by the ABC theorem [21]. In this theorem, it is proved
that the boundary condition of Gamow resonances is transformed
to the damping behavior at the asymptotic region. This condi-
tion makes it possible to use the same method of obtaining the
bound states for resonances. For a finite value of θ , every Riemann
branch cut is commonly rotated down by 2θ . Hence, the contin-
uum states such as 7He + n and 6He + 2n channels are obtained
on the branch cuts rotated with the 2θ dependence [19,25]. On
the contrary, bound states and resonances are obtainable indepen-
dently of θ (see Fig. 3). Hence, we can identify the resonance poles
with complex eigenvalues: E = Er − iΓ/2, where Er and Γ are the
resonance energies and the decay widths, respectively. In the wave
function, the θ dependence is included in the coefficients in Eq. (3)
as {C J ,θ

c }. The value of the angle θ is determined to search for the
stationary point of each resonance in a complex energy plane [21–
23]. We take θ as 20 degree in the 8He calculation. In CSM, the
amplitudes of the obtained resonances are finite and normalized
to be unity totally, as

∑
c(C J ,θ

c )2 = 1. Here, the Hermitian product
is not applied due to the biorthogonal relation [30].

In this study, we calculate the monopole strength function of
8He into the unbound states. To calculate the strength function,
one needs the extended completeness relation (ECR) of 8He con-
sisting of bound, resonant, and continuum states, which are con-
structed using the complex-scaled eigenstates Ψ

J
θ in Eq. (7). We

briefly explain ECR of 8He using CSM [20,25,30]. When we take
a large θ sufficiently, five-body unbound states of 8He are de-
composed into several classes of the state, which consist of the
five-body ECR of 8He as

1 =
∑
ν

∣∣Ψ θ
ν

〉〈
Ψ̃ θ

ν

∣∣
= {

bound state of 8He
} + {

resonances of 8He
}

+ {
two-body continuum states of 7He(∗) + n

}
+ {

three-body continuum states of 6He(∗) + 2n
}

+ {
four-body continuum states of 5He(∗) + 3n

}
+ {

five-body continuum states of 4He + 4n
}
, (8)

where {Ψ θ
ν , Ψ̃ θ

ν } forms a set of biorthogonal bases with a state ν .
For simplicity, we here do not write the spin index explicitly. The
expressions of 2n, 3n and 4n in Eq. (8) mean no-interacting states
of multi-neutrons.

We explain how to calculate the strength function using ECR
within CSM. To do this, we define the complex-scaled Green’s func-
tion Gθ (E) with the energy E of the system as
Fig. 2. Energy levels of He isotopes measured from the 4He energy. Units are in
MeV. Black and gray lines are theory and experiments, respectively. Small numbers
are decay widths. For 8He, the experimental data are taken from Ref. [6], and only
the 0+ states are shown in theory.

Gθ (E) = 1

E − Hθ

=
∑
ν

|Ψ θ
ν 〉〈Ψ̃ θ

ν |
E − Eθ

ν

, (9)

where, the complex-scaled eigenvalue Eθ
ν is associated with the

wave function Ψ θ
ν . The strength function Sλ(E) for the operator

O λ with rank λ is defined in terms of Green’s function without
CSM as

Sλ(E) =
∑
ν

〈Ψ̃0|O †
λ|Ψν〉〈Ψ̃ν |O λ|Ψ0〉δ(E − Eν) (10)

= − 1

π
Im

[〈Ψ̃0|O †
λG(E)O λ|Ψ0〉

]
, (11)

where Ψ0 is the initial state. We operate the complex scaling on
the strength function of Eq. (11) and insert the complex-scaled
Green’s function in Eq. (9).

Sλ(E) =
∑
ν

Sλ,ν(E), (12)

Sλ,ν(E) = − 1

π
Im

[ 〈Ψ̃ θ
0 |(O †

λ)
θ |Ψ θ

ν 〉〈Ψ̃ θ
ν |O θ

λ|Ψ θ
0 〉

E − Eθ
ν

]
. (13)

From the decomposed strength function Sλ,ν(E), we can identify
the contributions of each state ν in the total strength Sλ(E). It
is noted that the functions Sλ(E) and Sλ,ν(E) are independent of
θ [20,25]. This is because any matrix elements are obtained in-
dependently of θ in CSM, and also because the state ν of 8He is
uniquely classified according to ECR in Eq. (8). As a result, Sλ,ν(E)

is uniquely obtained. This method has been applied to the calcula-
tions of scattering amplitudes of the breakup reactions [31–33].

Here, we discuss the properties of the function Sλ,ν(E). The
total strength function Sλ(E) is an observable being positive def-
inite for every energy. On the other hand, the decomposed one
Sλ,ν(E) is not necessarily positive definite at all energies, because
Sλ,ν(E) cannot be directly observed, similar to resonant poles.
This means that Sλ,ν(E) can sometimes have negative values. This
property of the decomposed strength has been generally discussed
in Refs. [25,26].

In this study, we discretize the continuum states in terms of
the basis expansion, as shown in Fig. 3. The reliability of the con-
tinuum discretization in CSM has already been shown using the
continuum level density [31–33].

We show the obtained energy spectra of He isotopes in Fig. 2.
One can see a good agreement between theory and experiment.
For 6He, the position of the 2+ state is good and its decay width
of 0.132 MeV agrees with the experiment of 0.113(20) MeV [34].
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Fig. 3. Energy eigenvalue distribution of 8He(0+) in complex energy plane.

Table 1
Matter (Rm) and charge (Rch) radius of 6He and 8He in comparison with the exper-
iments. Units are in fm.

Present Experiments
6He Rm 2.37 2.33(4)a 2.30(7)b 2.37(5)c

Rch 2.01 2.068(11)d

8He Rm 2.52 2.49(4)a 2.45(7)b 2.49(4)c

Rch 1.92 1.929(26)d

a [7].
b [35].
c [36].
d [8].

Table 2
Occupation numbers of valence neutrons in 8He.

Orbit 0+
1 0+

2

p1/2 0.14 1.94 − i0.02
p3/2 3.71 2.04 − i0.02
s1/2 0.02 −0.02 + i0.003
d3/2 0.02 0.04 + i0.04
d5/2 0.10 0.01 − i0.0004

For 7He, the ground state is located by 0.40 MeV above the 6He
ground state, which agrees with the recent experiments of 0.44
MeV and 0.36 MeV [9]. For 8He, the ground state binding energy is
obtained as 3.22 MeV from the 4He + 4n threshold, which agrees
with 3.11 MeV of the experiment. We predict the 0+

2 state with
the 6.29 MeV excitation energy and the 3.19 MeV decay width. We
demonstrate the example of the 0+ eigenvalue distribution using
CSM in Fig. 3 with θ being 26 degree. We successfully obtain the
0+

2 state of 8He as a five-body resonance and confirm other con-
tinuum states such as 6He + 2n and 7He + n.

The obtained matter and charge radius of 6He and 8He for their
ground states are shown in Table 1 and reproduce the experiments.
Hence, the present model well describes the neutron halo and skin
structures in He isotopes. The proton and neutron radius are ob-
tained as 1.82 fm and 2.60 fm for 6He and 1.80 fm and 2.72 fm for
8He, respectively.

We discuss the structure of the 0+
2 state of 8He in compari-

son with the ground state. We list the occupation numbers of four
neutrons in each orbit for 8He in Tables 2. Since the 0+

2 state is
a Gamow state, its quantities become complex values with a rela-
tively small imaginary part, while their summation conserves the
valence neutron number. In the 8He ground state, the p3/2 orbit
is dominant and its number is close to four. In fact, the (p3/2)

4

configuration dominates the total wave function with a mixing
of 86.0%. The next dominant configurations are (p3/2)

2(p1/2)
2

with 6.9%, (p3/2)
2(d5/2)

2 with 4.2%, (p3/2)
2(d3/2)

2 with 0.8% and
(p3/2)

2(1s1/2)
2 with 0.6%. This result means that the j j coupling
Fig. 4. Pair numbers of the 0+
1,2 states of 8He.

scheme is well established in the ground state of 8He. In the 0+
2

state, the p1/2 orbit is dominant with the number being around
two. In this state, the (p3/2)

2(p1/2)
2 configuration dominates the

total wave function with a mixing of 96.9%, while (p3/2)
4 is given

as 2.0%. Hence, the 0+
2 state of 8He corresponds to the 2p2h ex-

cited state of the ground state.
We also calculate the pair number of four valence neutrons

in 8He, which is defined by the matrix element of the operator∑
α�β A†

Jπ (αβ)A Jπ (αβ). Here the quantum number α and β are

for the single particle state and A†
Jπ (A Jπ ) is the creation (an-

nihilation) operator of a neutron pair with spin-parity Jπ . This
pair number is useful to understand the structures of four neu-
trons from the viewpoint of pair coupling. The summation of the
pair number over all Jπ satisfies six from the total pair number
of four neutrons. In Fig. 4, we show the results of the pair num-
ber up to the 3− component. In the ground state, it is found that
the 2+ neutron pair is dominant with about 4.5 and the 0+ pair
is almost unity. This is consistent with the main configuration of
(p3/2)

4 from the CFP decomposition ( 1 and 5 for 0+ and 2+ , re-
spectively). The importance of the 2+ neutron pair is suggested in
the experiment [37], and is also obtained in the 6He +n +n model
[12]. On the other hand, the 0+

2 state has much 0+ neutron pair,
about two, in addition to the large 2+ pair number. This is also
consistent with the (p3/2)

2(p1/2)
2 configuration, which is decom-

posed into the pairs of 0+ , 1+ and 2+ with the occupations of
2, 1.5 and 2.5, respectively. The result of 0+ pair of neutrons in
the 0+

2 state is interesting in relation with the dineutron-like clus-
ter correlation in 8He suggested in AMD [38]. The analysis of the
spatial correlation of neutrons in the 0+

2 state will be performed
elsewhere.

Finally, we calculate the monopole transition of 8He into un-
bound states and see the effect of the 0+

2 resonance, because the
monopole strength is useful to investigate the configuration prop-
erties of the states [39]. Recently, Yamada et al. [40] discussed
the relation between the clustering excited state and its monopole
strength from the ground state. They mentioned that the enhance-
ment of the monopole strength can be seen in the clustering state,
because of the concentration of the strength into the relative mo-
tion of the intercluster. In 8He, hence, it is interesting to investigate
the monopole strength of 0+

2 in relation with the dineutron-like
structure. In the monopole strength, it is also important to see the
effects of the continuum states in addition to that of resonance. We
take care of not only the 0+

2 resonance, but also all of the residual
continuum states of 7He + n, 6He + 2n, 5He + 3n and 4He + 4n us-
ing ECR in Eq. (8). The angle θ in the complex scaling is taken as
20 degree to describe ECR.

In Fig. 5, the monopole strengths for isoscalar (IS) and isovec-
tor (IV) responses are shown. It is found that two strengths ex-
hibit a similar shape showing the low energy enhancement just
above 3 MeV in the excitation energy. There is no clear signature
of the 0+ state around its excitation energy of 6.29 MeV in both
2
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Fig. 5. Monopole strengths of 8He for isoscalar (IS) and isovector (IV) transitions
as functions of the excitation energy of 8He. The threshold energies of 7He + n,
6He + 2n, 5He + 3n and 4He + 4n are indicated by arrows with Sn , S2n , S3n and S4n ,
respectively.

strengths. In fact, the transition matrix elements from the ground
state into the 0+

2 state are obtained as 1.78 − i0.38 fm4 for IS and
−0.003 + i0.018 fm4 for IV, respectively. These values are so small
in comparison with the total strengths. This result is understood
from the single particle structures of the 0+

2 state. In the 0+
2 state,

the p1/2 orbit is largely mixed shown in Table 2, and this orbit
cannot be excited from the p3/2 orbit in the ground state by the
monopole operator. As a result, the monopole strength into 0+

2
becomes negligible. Instead, the continuum strength gives a main
contribution, which makes it difficult to observe the 0+

2 state via
the monopole transition. Our results do not support the enhance-
ment of the strength into the 0+

2 state, however, the possibility
of the dineutron-like structure in 8He should be investigated care-
fully, in addition to the monopole strength. It is also necessary to
search for the observables which are responsible for the 0+

2 state.
Since the present 8He wave functions contain not only resonances
but also continuum states, the application to the sophisticated re-
action analysis including continuum coupling would be promising.
One of the candidates of the reactions is considered to be the two-
neutron transfer into 6He to produce the excited states of 8He.
Experimentally, the 6He(t, p) 8He reaction was reported [6] and
the observed cross section shows some peaks without spin assign-
ment, around the resonance energy of 0+

2 obtained in this study.
We decompose the monopole strengths in Fig. 5 into several

continuum components using ECR and see the individual contri-
bution. From the analysis, it is found that the IS and IV strengths
both dominantly come from the 7He(3/2−

1 ) + n components. This
selectivity of the continuum states is related with the properties
of the monopole operator, which are one-body concerning with ri
in Fig. 1. By the monopole operator, one of the relative motions
of 8He can be strongly excited. As a result, the intercluster mo-
tion between the 7He cluster and a valence neutron is strongly
coupled with the ground state by the monopole excitation. The
obtained result also indicates the sequential breakup process of
8He(G.S.) → 7He(3/2−

1 ) + n → 6He(G.S.) + n + n in the monopole
excitation. Experimentally, the large contribution of the sequential
Table 3
Ratios of the integrated monopole strengths into 6He+n +n and 4He+n +n +n +n
final states.

6He + n + n 4He + n + n + n + n

IS 0.939 0.061
IV 0.690 0.310

process via 7He + n was also reported in the Coulomb breakup of
8He [2], which is dominated by the E1 transition.

It is interesting to see the components of the final states of
6He + n + n and 4He + n + n + n + n in the monopole strengths.
In Table 3, the ratios of the integrated strengths into two final
states with respect to the total ones are shown. Dominance of the
6He + n + n state is commonly found in the IS and IV cases and
more significant in the IS case. This is because one of the relative
coordinates of {ri} in 8He can be excited independently by the IS
response, and then the 7He component largely remains and decays
into 6He + n. In the IV case, protons are included only in 4He, so
that the IV response excites the relative motion between the 4He
core and the center of mass of 4n as a recoil effect. Owing to the
excitation of the relative motion, the components of 6He and 7He
in 8He are relatively dissolved than the IS case and the transition
into 4He + n + n + n + n increases in the IV response.

In summary, we have investigated the structures of the 0+
states of 8He in a five-body cluster model. The boundary condi-
tion for many-body resonances is accurately treated using CSM. We
successfully obtain the five-body 0+

2 resonance of 8He in CSM. This
state dominantly has a (p3/2)

2(p1/2)
2 configuration and mainly

consists of two of the 0+ neutron pairs. We further investigate
the monopole strengths into five-body unbound states, which are
described by using ECR within CSM. It is found that the 0+

2 contri-
bution is negligible in the strength, so that it is difficult to observe
the 0+

2 state from the monopole strength. It is dominant that the
sequential breakup process of 8He via the 7He + n states into the
6He + 2n three-body final states, instead of the 4He + 4n five-body
states.
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