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Abstract

We report on the development of parabolized stability equation models to predict the evolution of low frequen-
cies, large-scale wavepacket structures in turbulent jets and their radiated sound. We consider computations and data
corresponding to high subsonic and supersonic jets from circular nozzles. Previous methods are extended to con-
sider nonlinear interactions amongst the waves and use a Kirchhoff-surface type approach to project the near- eld
wavepacket amplitudes to the far- eld. Linear PSE, whose initial conditions are chosen to provide an overall am-
plitude reference, show excellent agreement for the wavepacket amplitudes and phases with microphone array data
just outside the jet shear layers, especially when the microphone data are processed to lter out contributions from
uncorrelated uctuations. Far- eld sound predictions based on the linear PSE are also in reasonable agreement with
far- eld data. In order to investigate nonlinearity, we use an LES database to evaluate initial conditions for the PSE
modes, and then compare their later evolution along the jet. Preliminary cases show some sensitivity to the initial
amplitudes and their phases, and that nonlinear effects may be important in predicting the far- eld sound based on the
initial (near-nozzle) spectrum of disturbances.
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1. Introduction

Existing methods for prediction of turbulent jet noise are alternatively based on direct solution of the governing
equations for a compressible ow, e.g. direct and large-eddy simulation (see [1]), or indirectly based on solution
of an inhomogeneous wave equation (or other linearized equations [2]) together with speci ed statistical models for
the equivalent sources of sound. The latter acoustic analogy approach is far less computationally intensive and has
been pursued intensively since Lighthill’s pioneering paper [3]. But despite recent advances (e.g. [4]), it is unclear
that equivalent sources are universal or that they can be determined based solely on the mean jet ow eld. These
approaches would appear to be particularly fragile in cases where geometrical perturbations such as nozzle serrations
or active control are considered. These noise suppression techniques generally produce modest sound reductions
that are likely to be within the uncertainty inherent in the speci cation of statistical models of equivalent sources,
especially when projected to the far eld.

We are developing an alternative direct approach that is based on a coarse description of the large-scale turbu-
lent structures, and a projection (or Kirchhoff surface approach) of near- eld pressure signals associated with these
structures to the far eld. Large-scale structures in turbulent jets are associated with (inviscid) instabilities of the
in ectional mean jet pro le. Their large scale makes their evolution relatively insensitive to the ner-scale turbulence
in the nozzle boundary layers, except through the impact of these scales on the jet mean ow eld. If this is the case,
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and depending on the delity required, the disturbances could, in principle, be predicted by solving for disturbances
to the jet mean ow eld, which in turn might be rapidly predicted via Reynolds Averaged Navier-Stokes (RANS)
equations. The approach of considering direct sound radiation from instabilities of turbulent shear layers has been
considered in the past [5, 6, 7, 8]. Except for forced, supersonic jets, where near- eld uctuations were found to be in
good agreement with predictions of linear stability theory [9], these previous efforts have not resulted in quantitative
predictions of sound generation in natural (unforced) jets.

In our earlier work [10], we in fact showed that the pressure uctuations measured just outside the jet shear layers
were consistent with the evolution inferred from modeling them as linear instability waves computed by a locally
parallel ow analysis of the jet mean ow eld, provided that a suitable frequency-dependent number is chosen for
amplitude near the nozzle exit. More generally, a weakly non-parallel analysis [11, 12] or a global mode analysis [13]
could provide the description of the uctuations. In what follows, we refer to the disturbances as wave packets (or
instability waves), regardless of the particular methodology used to describe their evolution. The name is based on the
wave-packet structure of the pressure eld evident in experimental data and numerical simulations. In this paper, we
show that a Parabolized Stability Equation (PSE) approach [14] provides a reasonable compromise between delity
and rapid computation for prediction of the wave packets.

Because of ambiguity inherent to a linear approach, these analyses have not yet demonstrated that the representa-
tion of the structures as linear disturbances is sufficient and consistent with the actual measured disturbance spectrum
in the near-nozzle region. Indeed, there is some evidence [15] that nonlinear interactions play a signi cant role in
determining the wavepacket evolution. If nonlinear interactions are important, PSE may be generalized to consider
nonlinear interactions amongst the modes. Further discussion of this point and preliminary results of nonlinear anal-
ysis are discussed later in the paper.

Evidence suggests that the wave-packet structures which dominate the near pressure eld are sufficiently acous-
tically efficient so as to also represent a signi cant portion of the far- eld sound [16]. Thus our premise, supported
by previous work and the analysis presented below, is that if the near pressure eld associated with the large scales
can be predicted accurately enough, then prediction of the far- eld sound will follow directly by a Kirchhoff surface
strategy. Further support for this stance follows from prevailing theories and data that show that the highly directive
aft-angle radiation is dominated by disturbances associated with the large scales [17].

To summarize, we argue for direct noise prediction strategy that is based on a coarse description of the large-
scale turbulent structures, which is in turn based on linear or nonlinear PSE together with a RANS-based mean ow
prediction, and an extrapolation of the pressure eld from just outside the shear layer to the far eld. To be fully
predictive, of course, we must also have knowledge of the near nozzle spectrum of disturbances that provide initial
conditions for the PSE computation. This is a difficult challenge that has not yet been met, but even in the absence
of a de nitive initial spectrum much can be learned about the sensitivity (or lack thereof) of the far- eld sound to the
near-nozzle disturbance amplitudes. An advantage of the model is that it provides a direct assessment of the sound
emitted by the large-scale structures which are, in turn, the feature of the jet ow eld that is most amenable to control
by perturbation of the near nozzle ow eld.

The remainder of this paper provides some details on the individual components that comprise the model, as well
as validation of the modeling with data from experiments and large eddy simulations. In the next section, we brie y
describe the PSE formulation. Results based on linear PSE are then compared to rawmicrophone data in both near and
far- elds. Next, we present preliminary results obtained using nonlinear PSE to describe the wave packet evolution.

2. PSE Formulation

Parabolized stability equations [18, 14, 19, 20, 21, 22, 23, 11] represent an ad hoc but powerful generalization of
parallel- ow linear stability analysis for convectively unstable ows. In our version of PSE, we decompose the ow
into a mean (time-average) component and its uctuations:

q = q̄ + q′,
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where q =
[
ux ur uθ T ρ

]T
. The mean ow, q̄ is given either from a RANS model or from experimental data

(PIV). In the PSE Ansatz, the uctuations are further written as

q′(x, r, θ, t) =
N∑

n=−N

M∑
m=−M

q̃mn(x, r) exp (i(mθ − nωt)) ,

where q̃mn is then decomposed into a slowly varying shape function and a rapidly varying wave-like part:

q̃mn(x, r) = q̂mn(x, r) α̂mn(x) = q̂mn(x, r) exp

(
i
∫ x

αmn(ξ)dξ

)
, (1)

where αmn and q̂mn upon numerical discretization will be represented with a coarse spatial increment, Δx. The real
and imaginary parts of αmn represent the axial wavenumber and growth rate, respectively. Here m is the azimuthal
wavenumber and ω is the angular frequency. The modes are truncated to some nite number M and N, respectively.
This expression is substituted into the full compressible Navier-Stokes, energy, and continuity equations, resulting in
the following system of equations:

(A(q̄, α,m, ω) + B(q̄)) q̂ + C(q̄)
∂q̂
∂x
+ D(q̄)

∂q̂
∂r
=
1
Re
E(q̄) q̂ +

F̂mn(x, r)
α̂mn

. (2)

For brevity, the linear operators A to E are not written out, we refer the reader to ref [24] for details. All nonlinear
terms are lumped into F̂mn, and, when present, this term is evaluated using a pseudo-spectral approach using a Fourier
transform and performing nonlinear multiplications in physical space.

Under the slowly varying approximation, the viscous terms are simpli ed by only retaining terms involving deriva-
tives in the radial direction (thin shear layer approximation).

The decomposition of (1) is ambiguous in that the streamwise development of q̃ can be absorbed into either
the shape-function q̂ or in the wavenumber/growth-rate function α̂. Following Herbert [14], we use a normalization
condition on the shape function ∫ ∞

0
q̂
∂q̂∗

∂x
r dr = 0, (3)

which removes any exponential dependence on the shape function q̂.
We discretize equations (2) using fourth-order central differences in the radial direction, closing the domain with

the characteristic boundary conditions of Thompson [25]. The streamwise derivative is approximated via rst-order
implicit Euler differences, and this results in a system of equations to solve for the shape functions at each position
on the jet axis. When nonlinear terms are retained, the equations must be solved iteratively. Parabolization implies
some restrictions on the step size, Δx, which are discussed in [24]. The wavenumber is also updated on each step by
solving [21]

αn+1j+1 = α
n
j+1 −

i
Δx

∫ ∞
0
(q̂nj+1)

∗(q̂nj+1 − q̂nj) r dr∫ ∞
0
|q̂nj+1|2 r dr

, (4)

where n is the iteration step index.
Initial conditions (q̂mn, αmn)x0 for (2) are obtained by solving a parallel ow stability problem for the velocity

pro le at the initial position (which is typically just downstream from the nozzle lip). The initial stability problem is
solved by a standard shooting approach [24].

The nonlinear forcing term provides a nonzero contribution at zero frequency, zero azimuthal wavenumber. Some
investigators have used this term to solve an additional “mean ow correction” to the speci ed initial base ow. This
approach has the merit of consistency and can provide reasonable predictions for low Reynolds number, transitional
shear layers [26]. However, for model and full-scale jets, we do not expect the Reynolds stresses associated with the
limited large-scale PSE description to provide the full Reynolds stresses that would be consistent with the measured
or RANS-computed mean ow eld used in our decomposition. We therefore discard any mean ow correction in
our approach. However, we note that the nonlinear contribution to the mean ow from the uctuations may in fact
provide useful additional data that could be used in future to supplement the PSE formulation with a turbulence model
that would attempt to account for the unresolved scales of turbulence.



T. Colonius et al. / Procedia IUTAM 1 (2010) 64–73 67

3. Linear PSE and microphone array data

In this section and the next one, we study two M∞ = Uj/a∞ = 0.9 jets, one unheated and one with T j/T∞ = 2.7
(and Mj = 0.56), and a single unheated supersonic jet with Mj = 1.5. The subsonic jets both used a 2 inch converging
nozzle and mean ows were measured using stereoscopic PIV in the SHJAR facility at NASA Glenn Research Center
[27, 28]. The supersonic jets were measured at the ART facility at United Technologies Research Center using a
CD (method-of-characteristics) nozzle with a 3 inch exit diameter that was close to perfectly expanded [29]. For this
ow, we used a mean ow predicted using RANS, computed by Cascade Technologies [30], using the same nozzle
speci cations as the experiment. Further details regarding the mean ows may be found in the references.

We compare the PSE results to pressure uctuations measured by microphone arrays placed just outside the jet
shear layer. For the subsonic jets, the Glenn microphone array consisted of 13 concentric rings of 6 microphones on
a conically expanding surface (cone angle 11.2o). Near the nozzle lip, the rst ring had a diameter of 1.75D, and this
increased to 4.75D just after x/D = 8. The 78 microphones recorded the pressure simultaneously.

For the supersonic jets, measurements were conducted at the ART facility using a novel rotating array [29] which
consisted of two linear microphone arrays, with one xed and the other rotated automatically in the azimuthal di-
rection. The second array (i.e. the reference array) is also movable, but requires manual adjustment. For a given
position of the reference array, phase-locked data between the two arrays is acquired for each location. With this
approach, the modal content at any axial location is determined by Fourier transformation of the two-point azimuthal
correlation. For the results reported here, 8 microphones were used on each linear array, encompassing approximately
10D. Microphones were spaced axially by 1.25D, with a spreading angle (cone half- angle) of ± 7 degrees. The
rst microphone was located at 1.13D from the nozzle exit, at a radial distance of 0.97D from the jet centerline. The
downstream-most microphone was located at 9.88D, at a radial distance of 2.05D.

It should be noted that the microphone arrays were carefully positioned to attempt to place them in a location near
enough to the shear layer such that the signal would be predominantly hydrodynamic (convective), but sufficiently far
so that uctuation levels were very low and one may assume that they are linear (such that we can project the data
to the acoustic far- eld with as little ambiguity as possible). In practice, and depending on the speci c conditions,
there are uncorrelated acoustic waves arising from other sources of sound (e.g. ner scale turbulence) that are also
measured by the arrays. We discuss this issue further below.

Due to space limitations in this paper, we present results which are representative of a much more extensive set
of comparisons. These further comparisons are available in [24]. The conclusions demonstrated here apply broadly
across the conditions we have considered.

We begin by looking at linear PSE, where we set F̂mn = 0. In gure 1 we compare PSE to experimental data for the
M∞ = 0.9 unheated jet. Because linear uctuations are independent of the overall amplitude and phase of each mode
(frequency and azimuthal wavenumber), we take the liberty of adjusting each mode by a single complex number to
obtain the best t at the array’s microphone locations. In this way we are only assessing the shapes and relative phases
of each mode as compared to the PSE predictions. This issue is discussed further in the context of nonlinear results in
section 4.

Overall the raw microphone data (open circles) are in reasonable agreement with the linear evolution from PSE.
With the exception of the lowest frequency, axisymmetric mode, the early evolution up to about x/D = 4 is in very
good agreement. For x/D > 4, the microphone data is more energetic than the PSE. To better assess this discrepancy,
we applied a statistical technique called the proper orthogonal decomposition (POD) to the microphone data. For each
azimuthal mode, the cross-spectral matrix of the 13 microphone rings is found and the eigenvector corresponding to
its greatest eigenvalue is retained and plotted as the open squares in the gure. This technique should suppress parts
of the microphone signal that are uncorrelated with the dominant portion of the signal, such as acoustic waves that
might arise from uncorrelated sources (or other pressure uctuations from ner scale turbulence). Indeed, the linear
PSE evolution displays a remarkable agreement with the rst POD mode of the microphone data. This agreement
extends to the phase of the wave packets, as demonstrated in gure 2.

The POD slightly cleans up the agreement for the lowest frequency m = 0 mode, but this mode remains more
poorly predicted by PSE. We note that at other conditions (particularly at lower M), we obtain a better representation
of the lowest frequency mode [24]. The discrepancy for this mode may be related to nonlinear effects discuss in the
next section.



68  T. Colonius et al. / Procedia IUTAM 1 (2010) 64–73

m = 0

(i)

m = 1 m = 2

(ii)

P
re
ss
ur
e
A
m
pl
it
ud
e
[P
a]

(iii)

(iv)

x/D
0 2 4 6 80 2 4 6 80 2 4 6 8

0 2 4 6 80 2 4 6 80 2 4 6 8

0 2 4 6 80 2 4 6 80 2 4 6 8

0 2 4 6 80 2 4 6 80 2 4 6 8

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

Figure 1: Pressure amplitude along the microphone array for the cold Mj = 0.9 jet: (◦) microphone data; (�) rst POD-mode of cross-spectral
matrix; ( ) PSE-predictions, all at frequencies (i) S t = 0.25; (ii) S t = 0.35; (iii) S t = 0.5; (iv) S t = 0.65.

We now turn to the far- eld sound associated with the wavepackets. In Reba et al. [16], wavepackets as directly
measured along the NASA near- eld array were projected to the acoustic far eld using a Kirchhoff surface method-
ology. Due to the limited streamwise extent of the microphone array measurements, the predictions were based on
curve- ts to the two-point pressure correlations measured along the array, and then extrapolated to greater distances
downstream based on an assumed Gaussian-type model for the wave packet. It was shown that the far- eld pressure
was reasonably well predicted at aft angles, and over a range of low frequencies and operating conditions, by the
modeled correlation functions. This provided direct evidence that large-scale wave-like structures dominated the aft
radiation at high subsonic speeds (jets with Mj = 0.9 and temperature ratios of 1.76 and 2.7 were considered).

Here we use this methodology to project the PSE-predicted, linear wave packets to the far eld. In gure 3
(left 4 panels), the pressure autocorrelation is plotted at positions along the microphone array are shown for 4 low
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Figure 2: Phase-angle along the microphone array for the cold Mj = 0.9 jet: (◦) ensemble-average; (�) rst POD-mode; ( ) PSE-predictions,
at frequencies (i) S t = 0.25; (ii) S t = 0.35; (iii) S t = 0.5; (iv) S t = 0.65.

frequencies and for m = 0, for the M∞ = 0.9, heated (T j/T∞ = 2.7) jet. Superposed on the experimental data (from
the near eld array) is the Gaussian wave-packet model of Reba et al. [16] as well as the PSE predicted evolution,
where the amplitude has been set in each case to give the best agreement with the microphone data over the rst 6 to 8
jet diameters. Despite the (surprisingly large) discrepancy between PSE and the assumed (and extrapolated) form of
the correlations, the right panels of gure 3 show that the far acoustic eld at aft angles is reasonably well predicted
by both the model and the PSE. The more compact, lower amplitude shape of the PSE correlation, in general, results
in lower sound, but the peak radiation at aft angles is within a few dB of the data. Neither model nor PSE performs
well at angles closer to sideline, but this is expected since small scale turbulence contributes a large portion of the
radiation observed at those angles. Overall, the comparison is encouraging and demonstrates the feasibility of using
PSE to directly predict acoustic radiation of large structure noise in the jet.
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Figure 3: Left: Pressure correlation along microphone array. Right: Far- eld projection. (�) near- eld and far- eld microphone data, respectively;
( ) PSE solution; ( ) Gaussian model of [16]. For Mj = 0.9, T j/T∞ = 2.7, m = 0.

4. Nonlinear PSE

In this section we provide a preliminary overview of the non-linear implementation of our PSE method (NPSE).
Non-linear effects are likely to be important for the lower-order modes, particularly near and beyond the closing of
the jet potential core where the wave amplitudes have obtained their maximum values. One critical aspect of the
NPSE method is the requirement to provide a correct estimate of the near-nozzle disturbance spectrum as the initial
condition. Linear solutions do not require this and their evolution is independent of the initial amplitude. In principle,
experimental data or high- delity simulations could provide such data; the hope is that there is some measure of
universality in the initial spectra, or that initial amplitudes can at least be systematically varied in order to determine
the bounds on the resulting noise radiation.

As we do not have experimental data for matching conditions as the microphone arrays, we turn to an LES
simulation [30] of the same Mj = 1.5 jet discussed in the previous section to provide the initial conditions for the
purposes of model development and validation. The LES data include both near and far- eld pressure uctuations,
which we use for comparison with NPSE. We also used the LES to provide the mean ow for the NPSE. It is also
noted that the LES computations included the solid geometry of the nozzle, which imitated the experimental CD
nozzle of Schlinker et al. [29].

Before discussing the results, we provide a brief discussion of the validation of the NPSE code that we developed.
NPSE provides further challenges in that it is not known a priori how many modes need to be retained and what is
the sensitivity to the initial amplitudes. Often times, the marching algorithm (parabolization) fails to converge when
nonlinear interactions become signi cant [26]. To validate our implementation, we rst compared our results for a
two-dimensional, planar shear layer that was considered by Day [26] and is based on a low Reynolds number DNS
of the same ow [31]. The growth rates of the fundamental and rst two subharmonic frequencies were examined in
detail (results are not presented here for brevity), and showed excellent agreement with the previous NPSE and the
DNS. We note that in this case, we retained the mean- ow correction discussed in section 2.

Next, we used the NPSE to simulate a recently proposed nonlinear wave interaction model [15]. This study
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Figure 4: Comparison of radial pro les of LES uctuations ( ) with nonlinear PSE ( ) predictions for Mj = 1.5 jet at S t = 0.3, m = 0.
The initial amplitudes at x/D = 1 were set to obtain the best visual agreement of the pro les and amplitudes at x/D = 4.

stressed the importance of interactions between instability mode pairs and how the resulting “difference-frequency”
mode is expected to dominate far- eld radiation. Our present interest is simply con ned to reproducing some of
the near- eld non-linear interaction results, which were obtained using a DNS approach. An analytical base ow is
used as described in the reference [15] and not repeated here. Input disturbances come from LST solutions, where
the amplitudes A of the dominant mode pair at the inlet, is chosen from the reference [15]. We consider two cases
corresponding to cases A2 and A3 of Suponitsky et al. In these cases, axisymmetric modes, m = 0, were initialized
at S t = 0.3 and 0.5. The two cases consisted of initializing these modes at low amplitude and examining the energy
transfer to the difference mode at S t = 0.2. We compared the pressure magnitudes at different streamwise positions at
r/D = 0.7 to the data reported by Suponitsky et. al., and found good agreement with the predicted amplitudes of the
nonlinearly generated difference mode at S t = 0.2.

Returning now to the Mj = 1.5 cold jet, the rst task is to match the modal amplitudes near the nozzle exit to
provide initial conditions for NPSE. In reality, LES uctuations involve a much wider range of scales than can be
represented in a PSE Ansatz. To provide the best representation of the NPSE near-nozzle input uctuations, these
uncorrelated components need to be ltered out via techniques like the Proper Orthogonal Decomposition (POD). In
the present paper, instead, the LES data is simply time-Fourier-transformed while retaining the phase information.
This is important, since the non-linear interactions depend on the initial phases as well as amplitudes. For NPSE, the
initial modal pro les are obtained via Linear Stability (LST) solutions, but their amplitudes are adjusted by tting the
NPSE with the LES radial pro les at some streamwise locations close to the nozzle exit. This is an iterative procedure,
where the method is designed to obtain the “best” visual match between x/D = 1 and x/D = 4. The position x/D = 1
was chosen to avoid the expected “numerical transition” of the LES data closer to the nozzle, which may render the
turbulent uctuations upstream of this point unrealistic.

Figure 4 shows the radial evolution of the Mj = 1.5 cold jet for one of its modes (S t = 0.3,m = 0) at some
streamwise locations obtained by the aforementioned iterative procedure for determining the initial amplitudes. By
x/D = 4, a reasonable quantitative agreement of modal shapes emerges between LES and NPSE, despite the relatively
crude representation at x/D = 1. Obviously the LES data is richer and includes contributions beyond what NPSE can
capture. Similarly, it should be cautioned that a relatively short period of LES data (about 100 convective units)
was used in performing the Fourier transforms, and there is a signi cant amount of statistical scatter for the low
frequencies.

The NPSE simulations were performed by retaining 15 modes (5 frequencies from 0.1 to 0.5 and azimuthal modes
m = 0, 1, 2). In general, we have observed that retaining moremodes typically results in better agreement, but owing to
the incomplete parabolization of the PSE equations there is a restriction on the minimummarching step size associated
with the highest frequency, that can be destabilizing for lower order modes[21]. The range of frequencies we retained
in this calculation balanced the competing demands, but, nevertheless, we could only obtain converged results up to
x/D = 7.5 for this case. Further study will be required to sort out these convergence issues.

Figure 5 shows the streamwise evolution of pressure uctuation amplitudes for selected modes. Two different
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Figure 5: Evolution of pressure amplitude of all frequencies and wavenumbers along the UTRC microphone array. LES data (◦) is compared to
linear PSE ( ), NPSE with different phases to the modes at the inlet ( ), and another NPSE with zero phase ( ). Mj = 1.5.

NPSE runs are shown; they differed in that in one case the initial phases were taken from the LES signals, whereas in
the second case, all modes were initiated at the same phase. Linear PSE runs which selected initial amplitudes that
gave the best overall agreement with the LES data are also presented. The NPSE solutions generally appear to be in
reasonable agreement with the LES data for lower frequencies and for the axisymmetric mode. Although the linear
PSE does as well or better, note that the initial amplitudes at x/D = 1 are very different, especially for some of the
higher modes. This indicates the importance of non-linearity in the solutions, and potential problems with specifying
an initial disturbance amplitude solely on the basis of an assumed linear evolution. Nonlinearity is also evident in
the differences between the two NPSE cases with different initial phases, especially for those modes that do not agree
well with the LES data, and so an “appropriate” choice of phase could potentially improve the NPSE predictions.

Clearly the results in this section are but a rst step in a more systematic study to follow. However, we can conclude
that some effects of nonlinearity are evident in the Mj = 1.5 wavepacket evolution. Relatively good agreement for
some of the modes in the NPSE solutions (and the good comparison with full DNS results of ref [15]), however,
provides some optimism that rapid NPSE predictions may yield acceptable predictions for the wave packet amplitude,
and, based on the results of the previous section, its extension to the far eld.
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