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Abstract

A logic formalizing ambiguity, which appears both in natural language and in mathe-

matical discourse, is presented, through a sequent calculus and a semantics, together

with some elementary results.
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1 Introduction

There are almost an in�nite number of situations in mathematics, logic and

everyday speech in which we have more than one object satisfying a given

property, and we would like to use a name to denote an arbitrary object of

this class.

So, in mathematics, for example, we denote a primitive of the function

de�ned by f(x) = 2x by
R
2xdx, although we know that there exists more

than one primitive for this function.

In syntax of formal logic, we usually de�ne the expression 9!xP by

9xP ^ 8x8y(P ^ P (xj y)! x = y), whereon y is the �rst variable distinct of x

which does not occur in P . It would be more natural to consider the expression

9!xP as an ambiguous reference for any expression of the form

9xP ^ 8x8y(P ^ P (xj y)! x = y),

whereon it's only requested that y is distinct from x and it does not occur in

P , dropping out the restriction about the alphabetical position of y.

In everyday speech any noun preceded by an inde�nite article is an am-

biguous reference for any object of the correspondent collection. For example,
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the expression \a 
ower" is an ambiguous reference for any speci�c 
ower.

So, the expression \a 
ower is beautiful" means, in a possible sense, that any


ower is beautiful.

Besides ambiguous descriptions, there is a kind of assertions saying that a

given object corresponds to some description.

In mathematics, by an abusive usage of the equality sign, we say that the

function de�ned by g(x) = x
2 + 3 is a primitive of f(x) = 2x by writing

\
R
2xdx = x

2 + 3".

In everyday speech, when we want to say that a rose is referenced by the

description \a 
ower", we utter \a rose is a 
ower".

So, we have isolated two key ideas concerning to ambiguous reference:

description and comprising. The symbols used in this text for description and

comprising are respectively \�" and \B" .

Roughly speaking, according to our notation, we have:

� \
R
2xdx" is a shorthand for �g(g is a primitive of the function f(x) = 2x) ;

� we can say that the function g(x) = x
2 + 3 is a primitive of f(x) = 2x by

writing \
R
2xdxB g" or \

R
2xdxB (x2 + 3)dx"; the reader should note the

use of the sign \B" instead of the equality sign, as it is usually done, in a

wrong way;

� we can also say \a rose is a 
ower" by the expression

�x(x is a 
ower)B �x(x is a rose):

A logic for dealing with these two ideas, enriching classical logic, is de�ned

here, from now on named Logic of Ambiguous Reference, shortly LAR. We

have de�ned a semantics and a sequent calculus for LAR, �tting to some

basic intuitions. We also present some basic results concerning semantics and

proof theory.

According to our intuition, such logic should take into account the following

perspectives:

� a description \�xP " should comprise, under reasonable restrictions, every

term satisfying P , and only these terms;

� there should be a replacement rule for comprising, or, in a more formal

way, \
� ` tB t

0

�; P (xk t) ` P (xk t0)
", under reasonable restrictions, should be a rule

of LAR;

� LAR should work as close as possible to classical logic, since the above

conditions be respected;

� LAR should be a conservative extension of classical logic.

Another remarkable quality of LAR is that it doesn't adopt equality as

a primitive concept. Equality is instead a concept derived from comprising.

When we have two descriptions, each comprising the other, we say that they

are equicomprising or equivalent, and we will use the sign \=" for formalizing
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this situation.

2 A Language for LAR

In this section some syntactical details related to the meaningful expressions

of LAR are provided. They are used everywhere in this paper, from results

and de�nitions related to semantics, to the rules and theorems related to the

sequent calculus of LAR.

De�nition 2.1 A language for LAR has all the signs of a standard �rst order

language, without equality, having \!", \^", \_" and \:" as connectives and

\8" and \9" as quanti�ers, plus the sign \�" as a quali�er, the adopted sign

for ambiguous description, and the sign \B" as a special binary predicate sign,

the adopted sign for comprising.

De�nition 2.2 Terms and formulas in LAR are all the terms and formulas

in a standard �rst order language 4 , plus the following ones:

� if x is a variable and P is a formula, then �xP is a term in LAR, also

called a description;

� if t and t
0 are terms in LAR, then t B t

0 is a formula in LAR.

Terms and formulas in LAR are also called designators in LAR.

Unless stated otherwise, for some syntactical variables, with or without

primes and subscripts, there are established special usages: c is a constant;

x,y,z are variables; f ,g,h are function signs; p,q,r are predicate signs; t,u,v

are terms in LAR; P ,Q,R,S,T are formulas in LAR, D,E are designators in

LAR, �;� are collections of formulas in LAR, and L is a language for LAR.

De�nition 2.3 An occurrence of a variable in D is said bound in D if it

succeeds \8", \9"or \�" in D, or D has a subdesignator of one of the forms

8xP , 9xP or �xP , such that this occurrence occurs in P . An occurrence of

a variable in D is said free if it is not bound in D. A variable is said free in

D if it has at least a free occurrence in D.

De�nition 2.4 An occurrence of a designator D in a designator D0 is said

real in D
0 if it doesn't succeed \8", \9"or \�" 5 in D

0.

De�nition 2.5 A designator D is said to accept a term t for a variable x if

D has no subdesignator of one of the forms 8yP , 9yP or �yP , in which x is

free in P and y is free in t.

De�nition 2.6 A designator D is said to be in the scope of a variable x in a

designator D
0 if there is a subdesignator in D

0 of one of the forms 8xP , 9xP

or �xP , such that there is a real occurrence of D in P ; otherwise D is said to

be out of the scope of x in D
0.

4 See [8], for example.
5 It can occur if D is a variable.
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De�nition 2.7

� D(xj t) denotes the designator obtained from D by replacing all free occur-
rences of x by t;

� E(D k D0) denotes the designator obtained from E by replacing all real
occurrences of D by D0.

>From now on, unless stated otherwise, the expression \D(x j t)" will be
used only in the cases in which D accepts t for x.

De�nition 2.8 A designator in LAR is said pure if it has no occurrence of
\�" outside of the scope of \B" .

De�nition 2.9 An occurrence of a designator in a designator in LAR is said
a top occurrence if it's real and it's out of the scopes of \�" and \B" .

De�nition 2.10 A variable x is said top in a designator D if all free occur-
rences of x in D are top occurrences.

De�nition 2.11 A formula having no top occurrence of some formula of the
form \uB v" is said a basic formula.

3 A Semantics for LAR

De�nition 3.1 A simple structure for L is a pair h�; �i,whereon � is a non
empty set, called the universe of the structure, and � is a function, called the
sign assignment of the structure, whose domain is the collection of constants,
function signs and predicate signs in L, obeying the following conditions:

� �(c) is an element of �;

� if n is the arity of f , �(f) is a function from �n to �;

� if n is the arity of p, �(p) is a subset of �n.

A LAR-structure for L is a simple structure for L.

De�nition 3.2 Let A = h�; �i be a simple structure for L. A �-assignment

is a function from the collection of variables in L to �. A simple interpretation
for L is a pair hA; si, whereon s is a �-assignment, also called the variable

assignment of the interpretation. A LAR-interpretation for L is a simple
interpretation for L.

De�nition 3.3 Let s be a �-assignment and d be an element of �. s(xj d)
denotes the �-assignment de�ned from s by

s(xj d) =

�
s(y), if y is distinct from x;
d, if y is x.

If I = h�; �; si is a simple interpretation, then I(x j d) denotes the inter-
pretation h�; �; s(xj d)i. Consider also de�ned s(x1; : : : ; xn j d1; : : : ; dn) and
I(x1; : : : ; xn j d1; : : : ; dn).
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Next a semantics for LAR is provided. For expressing possible ambigu-

ity, each term is associated, by the function ID de�ned below, with a set of

elements of the universe of discourse, in the same sense by which, for ex-

ample, in a natural language like English, the expression \an orange" is as-

sociated with the set of all oranges, although, of course, \an orange" does

not mean the set of all oranges, but it is an ambiguous representation for

an arbitrary orange of this set. This set can be empty; in this case the

term is said to be vacuous, there is, it's a name for nothing. For example,

\�x(x 6= x)" is a vacuous term, according to the usual meaning ascribed to

the sign \ 6=", whereas \�x(x 2 N ^ x > 2)" is instead an ambiguous term,

and \�x(x 2 N ^ x is even ^ x is prime)" is a univocal term.

Let P be a basic formula such that x1; : : : ; xn are distinct variables top

in P , and consider P (x1; : : : ; xn j t1; : : : ; tn) the formula obtained from P by

simultaneous replacement of x1; : : : ; xn by t1; : : : ; tn.

The true values of LAR are victory (or true) and defeat (or false), repre-

sented here by 1 and 0.

The function IS, de�ned below, is a LAR-valuation, that is, it is the

function which assigns a true value for each formula, whereas the function IN ,

which also assigns a true value for each formula, is an auxiliary one, used for

de�ning IS in a simultaneous recursive way.

We say that d1; : : : ; dn satisfy P (x1; : : : ; xn) (according to a given simple

interpretation I) if I(x1; : : : ; xn j d1; : : : ; dn)S(P ) = 1.

If, according to ID, each of the terms t1; : : : ; tn denotes at least one object,

then IS assigns victory to P (x1; : : : ; xn j t1; : : : ; tn) if, and only if, for each

d1; : : : ; dn, such that d1; : : : ; dn are respectively elements of the universe of

discourse denoted (ambiguously) by t1; : : : ; tn, d1; : : : ; dn satisfy P . If some of

these terms denotes no object, according to ID, and P is an atomic formula,

then P (x1; : : : ; xn j t1; : : : ; tn) is evaluated as a (vacuous) victory according

to IS.

IN presents, in a sense, a complementary behavior. If each of the terms

t1; : : : ; tn denotes at least one object, then IN assigns victory to

P (x1; : : : ; xn j t1; : : : ; tn) if, and only if, for all objects d1; : : : ; dn denoted by

t1; : : : ; tn, d1; : : : ; dn don't satisfy P . If some of these terms denotes no object,

and P is an atomic formula, then P (x1; : : : ; xn j t1; : : : ; tn) is evaluated as a

(vacuous) victory according to IN .

This kind of semantics was inspired by our previous work about paraconsis-

tent and/or paracomplete logics [2,9] and, recently, by some ideas about game

based semantics [1,7]. The letter \S" in \IS" comes from the word \subject",

whereas the letter \N" in \IN" comes from the word \nature". The basic idea

is relative to an imaginary game between the subject, who wants to prove that

a given formula is true, and the nature, who wants to prove that the negation

of this formula is true.
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De�nition 3.4 Let I = h�; �; si be a LAR-interpretation for L. The fol-

lowing clauses specify the functions ID, IS and IN , whereon ID is said the

LAR-denotation for L de�ned by I, and IS is said the LAR -valuation for L

de�ned by I:

� ID is a function from the collection of terms in L to P(�);

� ID, IS are functions from L to f0,1g;

� ID(c) = f�(c)g;

� ID(x) = fs(x)g;

� ID(f(t1; : : : ; tn)) = f�(f)(d1; : : : ; dn) j d1 2 ID(t1); : : : ; dn 2 ID(tn)g;

� ID(�xP ) = fd 2 � j I(xj d)S(P ) = 1g;

� IS(p(t1; : : : ; tn)) = 1 i� for each d1 2 �; : : : ; for each dn 2 �, hd1; : : : ; dni 2 �(p);

� IN(p(t1; : : : ; tn)) = 1 i� for each d1 2 �; : : : ; for each dn 2 �, hd1; : : : ; dni =2 �(p);

� IS(tB t0) = 1 i� IN (tB t0) = 0 i� ID(t) � ID(t
0);

� IS(:P ) = IN(P );

� IN(:P ) = IS(P );

� IS(P !Q) = maxfIN(P ); IS(Q)g;

� IN(P !Q) = minfIS(P ); IN(P )g;

� IS(P ^Q) = minfIS(P ); IS(Q)g;

� IN(P ^Q) = maxfIN(P ); IN(Q)g;

� IS(P _Q) = maxfIS(P ); IS(Q)g;

� IN(P _Q) = minfIN (P ); IN(Q)g;

� IS(8xP ) = minfI(xj d)S j d 2 �g;

� IN(8xP ) = maxfI(xj d)N j d 2 �g;

� IS(9xP ) = maxfI(xj d)S j d 2 �g;

� IN(9xP ) = minfI(xj d)N j d 2 �g.

This semantics re
ects a non alethic logic (a logic that is both paraconsis-

tent and paracomplete), there is, a logic in which both P and :P can be true

(both the subject and the nature can win; it is shared by all paraconsistent

logics), or in which both P and :P can be false (both the subject and the

nature can lose; it is shared by all paracomplete logics). Classical references

for this kind of logics can be found in [3,5,4]. Besides being non alethic, LAR

is also a non re
exive logic, that is, it is a logic in which \P!P" can be false.

De�nition 3.5 A term t is said vacuous with respect to a simple interpreta-

tion I if ID(t) is the empty set, existential if ID(t) is non empty, univocal if

ID(t) is a singleton, and ambiguous if ID(t) has at least two members.

Example 3.6 Consider p(x) a basic atomic formula, and I a simple interpre-

tation.
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� If t is vacuous with respect to I, then both p(x j t) and :p(x j t) are true

according to IS, so con�rming the paraconsistency of LAR. For example,

both the formula \�x(x 6= x) is even" and its negation are true.

� If t is ambiguous according to I such that there are d1 and d2 belonging

to ID(t) for which I(xj d1)S(p(x)) = 1 and I(xj d2)S(p(x)) = 0, then both

\p(xj t)" and \:p(xj t)" are false according to IS, so con�rming the para-

completeness of LAR. It also happens in this case that \p(xj t)!p(xj t)" is

false, so con�rming the non re
exiveness of LAR. For example, the formula

\�x(x = 1 _ x = 2) is even" is false together with its negation, and

�x(x = 1 _ x = 2) is even!�x(x = 1 _ x = 2) is even

is false too.

De�nition 3.7 LAR-satis�ability, LAR-validity and LAR-consequence are

de�ned in the same way it is done in classical logic. For example, LAR-

consequence is de�ned by the following clause:

� P is a LAR-consequence of � if every LAR-valuation satisfying � also

satis�es P ; we denote it here by � j= P .

Next a basic semantic result concerning replacement is provided.

Theorem 3.8 Let I be a simple interpretation for L.

(i) If t is a pure term, then

� ID(u(xj t)) = I(xj tI)D(u);
� IS(P (xj t)) = I(xj tI)S(P );
� IN(P (x j t)) = I(x j tI)N(P ), whereon tI is the unique element of the

singleton ID(t).

(ii) If x is top in u, then

� ID(u(xj t)) �
S

d2ID(t)

I(xj d)D(u).

(iii) If x is top in P , then

� IS(P (xj t)) � minfI(xj d)S(P ) j d 2 ID(t)g;
� IN(P (xj t)) � minfI(xj d)N(P ) j d 2 ID(t)g.

(iv) If

(
x is top in u,

x has only one free occurrence in u,

ID(t) 6= ;,
then

� ID(u(xj t)) =
S

d2ID(t)

I(xj d)D(u).

(v) If

8<
:
x is top in P ,

x has only one free occurrence in P ,

ID(t) 6= ;,
then

� IS(P (xj t)) = minfI(xj d)S(P ) j d 2 ID(t)g;
� IN(P (xj t)) = minfI(xj d)N(P ) j d 2 ID(t)g.
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(vi) If x has a top occurrence in u, then
� ID(t) = ; implies that ID(u(xj t)) = ;.

(vii) If

8>><
>>:

� P is a basic atomic formula or a negation

of a basic atomic formula,

� P has at least one top occurrence of x,

� ID(t) = ;,

then

� IS(P (xj t)) = IN(P (xj t)) = 1.

4 A Sequent Calculus for LAR

In this section LAR is characterized as a sequent calculus. Some basic syn-
tactic results concerned with this sequent calculus are also provided.

De�nition 4.1 We de�ne when variables are free in a designator in an anal-
ogous way by which it is done in a standard �rst order language, taking in
account that \�" is a variable binding term operator (or a quali�er).

De�nition 4.2 From now on, together with the known shorthands \$" and
\ 6=", we also adopt the following ones (consider x and y the �rst two variables
which are not free in t):

� t = t
0 
 tB t

0 ^ t
0 B t;

� vac(t)
 :9x(t B x); \vac(t)" is read \t is vacuous";

� ex(t)
 9x(tB x); \ex(t)" is read \t is existential";

� un(t)
 8x8y(tB x ^ tB y! x = y); \un(t)" is read \t is univocal";

� amb(t)
 9x9y(tB x ^ tB y! x 6= y); \amb(t)" is read \t is ambiguous".

Below we give the sequent rules of LAR, which characterize syntactically
this logic.

De�nition 4.3 [Structural Rules]

� Antecedent Rule: If � j �0, then
� ` P

�0 ` P
;

� Assumption Rule: If P 2 �, then � ` P ;

� Chain Rule:
� ` P �; P ` Q

� ` Q
.

De�nition 4.4 [Connective Rules]

� Modus Ponens: if P is a pure formula, then P; P !Q ` Q;

� Deduction Rule: if P is a pure formula, then
�; P ` Q

� ` P !Q
;

� ^̂̂-Elimination Rule:

�
P ^Q ` P ;
P ^Q ` Q;

� ^̂̂-Introduction Rule: P;Q ` P ^Q;
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� Proof by Cases Rule:
� ` P _Q �; P ` C �; Q ` C

� ` C
;

� ___-Introduction Rule:

�
P ` P _Q;

Q ` P _Q;

� Non Contradiction Rule:

if P and Q are pure formulas, then
�; P ` Q �; P ` :Q

� ` :P
;

� Double Negation Rule:

�
::P ` P ;

P ` ::P ;

� Material Implication Rule:

8><
>:
P !Q ` :P _Q;

:P _Q ` P !Q;

:(P !Q) ` P ^ :Q;

P ^ :Q ` :(P !Q);

� De Morgan Rule:

8>><
>>:
:(P _Q) ` :P ^ :Q;

:P ^ :Q ` :(P _Q);

:(P ^Q) ` :P _ :Q;

:P _ :Q ` :(P ^Q).

De�nition 4.5 [Quanti�er Rules]

� 888-Elimination Rule: if t is a pure term, then 8xP ` P (xj t);

� Generalization Rule: if x is not free in �, then
� ` P

� ` 8xP
;

� Witness Rule: if y is not free in � [ f9xP;Qg, then
�; P (xj y) ` Q

�; 9xP ` Q
;

� 999-Introduction Rule: if t is a pure term, then P (xj t) ` 9xP ;

� Alternation Rule:

8><
>:
:9xP ` 8x:P ;

8x:P ` :9xP ;

:8xP ` 9x:P ;

9x:P ` :8xP .

De�nition 4.6 [Comprising Rules]

� Transitivity Rule: tB u; uB v ` tB v;

� Extension Rule: if x is not free in t; t0, then 8x(tB x! t0 B x) ` t0 B t;

� Globalization Rule: if

(
x is not free in t,

x is top in P ,

x has only one free occurrence in P ,

then

ex(t); 8x(tB x! P ) ` P (xj t);

� Replacement Rule:

� t1 B u1; : : : ; tn B un ` f(t1; : : : ; tn)B f(u1; : : : ; un);

� t1 B u1; : : : ; tn B un; p(t1; : : : ; tn) ` p(u1; : : : ; un);

� t1 B u1; : : : ; tn B un;:p(t1; : : : ; tn) ` :p(u1; : : : ; un);

� Unity Rule: if t,t0 are pure terms, then tB t0 ` t0 B t;
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� Vacuity Rule:

if

�
P is a basic atomic formula or a negation of a basic atomic formula,

P has at least one top occurrence of x,

then vac(t) ` P (xj t);

� Function Rule: if

�
u is a pure term,

x1; : : : ; xn are not free in u; t1; : : : ; tn,
then

` f(t1; : : : ; tn)Bu $ 9x1 : : :9xn(t1Bx1 ^: : :^ tnBxn ^ u = f(x1; : : : ; xn));

� Description Rule: if t is a pure term, then

�
�xP B t ` P (xj t);

P (xj t) ` �xP B t.

Next some basic results about the sequent calculus for LAR are provided.

Theorem 4.7 Replacing in terms and formulas, with no occurrence of \�" ,

the sign \B" for the sign \=", they behave in LAR as in classical equational

logic.

Next two more kinds of implication are de�ned. The �rst one has modus

ponens property and a corresponding deduction theorem, and the second both

modus ponens and modus tollens properties. For each one of these implica-

tions, it is also de�ned a corresponding equivalence.

De�nition 4.8

� P _Q
 �xQB �xP , whereon x is the �rst variable not free in fP;Qg;

� P ]Q
 (P_Q) ^ (Q_ P );

� P )Q
 (P_Q) ^ (:Q_ :P );

� P ,Q
 (P )Q) ^ (Q) P ).

Theorem 4.9

� P; P_Q ` Q;

� if �; P ` Q, then � ` P_Q;

� P; P )Q ` Q;

� :Q;P )Q ` :P .

Theorem 4.10

� ` 8x(P _Q),�xQB�xP ;

� ` 8x(P ]Q),�xQ = �xP .

Theorem 4.11 (Replacement Rule for Comprising)

If

�
u has only top occurrences in P ,

u is out of the scope in P of any variable free in � \ ft; t0g,
then

� ` tB t0

�; P (uk t) ` P (uk t0)
.
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Example 4.12 In the above theorem, the condition that u has only top oc-

currences in P is essential. Consider I a simple interpretation having N as its

domain, which assigns to \<" its traditional meaning. Then

�x(�x(x = 2 _ x = 3) < 3) < 2

and

�x(x = 2 _ x = 3)B�x(x = 2)

are true, but \�x(�x(x = 2) < 3) < 2" is false, according to I.

Theorem 4.13 (Replacement Rule for Equivalence)

If � ` P , P
0, then

� if Q is out of the scope in R of any variable free in � \ fP; P 0g,

then � ` R(Qk P ),R(Qk P 0);

� if Q is out of the scope in t of any variable free in � \ fP; P 0g,

then � ` t(Qk P ) = t(Qk P 0).

Theorem 4.14 (Replacement Rule for Equality)

If � ` t = t
0, then

� if u is out of the scope in P of any variable free in � \ ft; t0g,

then � ` P (uk t), P (uk t0);

� if u is out of the scope in v of any variable free in � \ ft; t0g,

then � ` v(uk t) = v(uk t0).

Theorem 4.15 (888-Elimination Rule for general terms)

If x has at most one free occurrence in P , then 8xP ` P (xj t).

Theorem 4.16 (999-Introduction Rule for general terms)

If x has at most one free occurrence in P , then ex(t); P (xj t) ` 9xP .

Theorem 4.17 (Congruent Descriptions Rule)

If y is not free in P , then ` �xP = �yP (xj y).

Theorem 4.18 (Context Rules) If x is top in Q, then

� Q(xj�xP ) ` 8x(P_Q);

� if x has exactly one free occurrence in Q, then 9xP; 8x(P_Q) ` Q(xj�xP ).

Corollary 4.19 If

8
>><
>>:

� x is top in Q,

� x has exactly only one free occurrence in Q,

� Q is a basic atomic formula or a negation

of a basic atomic formula,

then

� Q(xj�xP ) ` 8x(P_Q);

� 8x(P_Q) ` Q(xj�xP ).
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5 Elimination of Descriptions

In this section it is provided a translation from LAR to Classical Equational

Logic (P 7�! PS), in which all occurrences of \�" are eliminated and the

remaining occurrences of \B" can be interpreted as the equality sign.

De�nition 5.1 The following clauses specify the functions P 7�! PS and

P 7�! PN :

� if P has no occurrence of \�" , then PS = PN = P ;

� if P has one the forms R(xj�xQ) or R(y j�xQ),

whereon

8<
:

� R is a basic atomic formula,

� \�xQ" is the �rst occurrence, from left to right,

of a description in P,

then

3 if P is of the �rst form and�
x is top in R,

x has only one free occurrence in R,
then

�
PS = 8x(QS !RS),

PN = 9x(QS ^RN );

3 if P is of the second form and y is the �rst variable such that(
y is top in R,

y has only one free occurrence in R,

y is free in Q,

then

�
PS = 8y(Q(xj y)S !RS),

PN = 9y(Q(xj y)S ^ RN);

� if

�
t is a non pure term,

x is the �rst variable that is not free in t,t0,
then

(t0 B t)S = (t0 B t)N = 8x((tB x)S ! (t0 B x)S);

� if

�
t is a pure term,

x1; : : : ; xn are the �rst n variables that are not free in t1; : : : ; tn; t,
then

(f(t1; : : : ; tn)B t)S = (f(t1; : : : ; tn)B t)N =

= 9x1; : : :9xn((t1 B x1)S ^ : : : ^ (tn B xn)S ^ (tB f(x1; : : : ; xn))S);

� if t is a pure term, then (�xP B t)S = (�xP B t)N = PS(xj t);

� (:P )S = :PN ;

� (:P )N = :PS;

� (P !Q)S = PN !QS;

� (P !Q)N = PS !QN ;

� (P ^Q)S = PS ^QS;

� (P ^Q)N = PN ^QN ;

� (P _Q)S = PS _QS;

� (P _Q)N = PN _QN ;

� (8xP )S = 8xPS ;

� (8xP )N = 8xPN ;
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� (9xP )S = 9xPS ;

� (9xP )N = 9xPN .

Theorem 5.2

� ` P] PS;

� if P is a pure formula, then

�
` P] PS;

` P]PN .

Corollary 5.3 (Correctness and Completeness)

For LAR, � ` P if, and only if, � � P .

Corollary 5.4

� ` (P !Q)] (PN !QS);

� ` (P $Q)] ((PN !QS) ^ (QN ! PS);

� ` (P_Q), (PS !QS);

� ` (P]Q), (PS $QS);

� ` (P )Q), (PS !QS) ^ (PN !QN );

� ` P ,Q), (PS $QS) ^ (PN $QN ).

Corollary 5.5 (Modus Ponens (rewritten)) PN ; P !Q ` Q.

Corollary 5.6 (Deduction Rule (rewritten))
�; PN ` Q

� ` P !Q
.

Corollary 5.7 (Non Contradiction Rule (rewritten))

�

�; P ` Q �; P ` :QS

� ` :PS
;

�

�; P ` QN �; P ` :Q

� ` :PS
;

�

�; PN ` Q �; PN ` :QS

� ` :P
;

�

�; PN ` QN �; PN ` :Q

� ` :P
.

De�nition 5.8 Let P be a basic formula, �x1P1; : : : ;�xnPn be all top oc-
currences of descriptions in P . For each i = 1; : : : ; n, let pi be the number of
variables free in �xiPi such that �xiPi is in their scope in P , and let yi

1
; : : : ; y

i
pi

be these variables in alphabetical order. The following formulas are speci�ed
from P :

� vac(P )

nV
i=1

Qi, whereon Qi = 8y
i
1
: : :8y

i
pi
vac(�xiPi);

� ex(P )

nV
i=1

Ri, whereon Ri = 8y
i
1
: : : 8y

i
pi
ex(�xiPi);

� un(P )

nV
i=1

Si, whereon Si = 8y
i
1
: : : 8yipi un(�xiPi);
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� amb(P )


nV
i=1

Ti, whereon Ti = 8yi
1
: : :8yi

pi
amb(�xiPi);

� \vac(P )" is read \all top descriptions in P are vacuous", or simply

\P is vacuous";

� \ex(P )" is read \all top descriptions in P are existential", or simply

\P is existential";

� \un(P )" is read \all top descriptions in P are univocal", or simply

\P is univocal";

� \amb(P )" is read \all top descriptions in P are ambiguous", or simply

\P is ambiguous".

The next result provides simpler equivalent forms for PS and PN , given a

formula P satisfying some reasonable restrictions.

Theorem 5.9 (Easy Elimination of Descriptions)

Let P be a basic formula of the form Q(x
1
; : : : ; xnj�x

1
P
1
; : : : ;�xnPn), obtained

from Q by replacing x
1
; : : : ; xn simultaneously by �x

1
P
1
; : : : ;�xnPn, satisfying

the following conditions:

� Q is a pure formula;

� x
1
; : : : ; xn are distinct variables top in Q;

� for i 6= j, no xi is free in some Pj;

� each xi has only one free occurrence in Q;

� each description �xiPi is not in the scope in P of some variable free in this

description;

� for i = 1; : : : ; n, � ` 9xiPi.

Then the following propositions are valid:

� � ` PS ,8x
1
: : :8xn((P1)S ^ : : : ^ (Pn)S !Q);

� � ` PS ,8x
1
: : :8xn(P1 ^ : : : ^ Pn_Q);

� � ` PN ,9x
1
: : :9xn((P1)S ^ : : : ^ (Pn)S ^Q).

For the following �ve corollaries, consider that P is a basic formula.

Corollary 5.10 (Uniqueness Rule)

�
un(P ) ` P , PS;

un(P ) ` P ,PN .

Corollary 5.11 (Existence Rule) ex(P ); PS ` PN .

Corollary 5.12 (Non Ambiguity Rule) : amb(P ); PN ` PS.

Corollary 5.13 (Modus Ponens (clean version)) ex(P ); P; P !Q ` Q.

Corollary 5.14 (Deduction Rule (clean version))
�;: amb(P ); P ` Q

� ` P !Q
.
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De�nition 5.15

� �P 
 :PS;

� P o

 �(P ^ :P );

� P �


 P _ :P .

Observe, by a simple reasoning, that ` P �

, (P ! P ).

According to the following lemma, the sign \�" works as classical negation.

Lemma 5.16

�

�;�P ` Q �;�P ` �Q

� ` P
.

Theorem 5.17 (Non Contradiction Rule (�rst clean version))

�

� ` P �

� ` Qo
�; P ` Q �; P ` :Q

� ` :P
.

Lemma 5.18 If P is a basic formula, then

� ex(P ) ` P o
;

� : amb(P ) ` P �

.

Corollary 5.19 (Non Contradiction Rule (second clean version))

If P is a basic formula, then

�

� ` : amb(P ) � ` ex(Q) �; P ` Q �; P ` :Q

� ` :P
.

Sometimes it is not possible to prove \P ! Q" in some environment by

using some of the results given above. Taking into account this possibility,

another version of a deduction rule is provided below.

Theorem 5.20 (Deduction Rule (practical version))

Let P be a basic formula of the form Q(x1; : : : ; xnj�x1P1; : : : ;�xnPn), obtained

from Q satisfying the same conditions of theorem 5.9.

If

�
�; (P1)S ^ : : : ^ (Pn)S ^Q ` R,

x1; : : : ; xn are not free in �[fRg,
then � ` P !R.

6 A comparison between the quali�er \�" and other

ones

There are some approaches for the quali�ers in scienti�c literature. Maybe

the most known are Russell's and Hilbert's [11,12,10,6].

In Russell [11] it is described a version of de�nite article. Russell introduces

the symbol \�" in a contextual way:

� Q(xj �xP )
 9x(P ^Q ^ 8y(P (xj y)! y = x)).

Russell's approach doesn't consider \�xP" as a name at all, but the whole

expression \Q(xj�xP )" only as an abbreviation. Although it can be convenient
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for doing mathematics, this approach introduces a sign with no recognized

linguistic status, that is, expressions like \�xP" don't have any linguistic value

by their own, although they are in fact used.

Other approaches, like ours, consider descriptions as \�xP", \�xP" and

\�xP" as names. According to them, \�xP" denotes the only object x satis-

fying P , whereas \�xP" denotes a �xed object x satisfying P, chosen from the

collection of all objects satisfying P .

The main problem for \�" is what to ascribe to \�xP" when there is no

object or more than one object x satisfying P , whereas the analogous problem

for \�" is what to assign to \�xP" when there is no object x satisfying P . All

known approaches to these situations assign to these descriptions some object

of the domain, but their main sin is their lack of uniformity in dealing with

this kind of circumstance.

Our approach, on the contrary, has no special clause for dealing with the

circumstance in which there is no object x satisfying P . \�xP" is associated,

according to the semantics of LAR, to the collection of all objects x satisfying

P . It is implicit in LAR semantics that \�xP" is an ambiguous name when

there is more than one object x satisfying P ; there is no choice in this case (as

it is done for the \�" approach), that is, \�xP" is a name for each object x

satisfying P , with no preference or choice by a particular object over another

one. If there is only one such object x satisfying P , \�xP" becomes a de�nite

name for this object. Finally, if there is no object x satisfying P , then \�xP"

is a name for nothing, that is, it is a vacuous name.

Given a term t containing descriptions, the traditional approaches don't

inform us easily if this term is a vacuous name or not. It can be true, in some

context, for example, that t = ;, but we don't know, only by examining this

expression, if \;" was obtained as a result of some reasoning or computation,

or if \;" is being used as a label for a vacuous name. Our approach instead

has a direct way for saying that a name is vacuous, simply by writing \vac(t)".

It is equally easy to say that this name is existential, ambiguous, or univocal,

as it was already shown above.

It is also possible to de�ne in LAR a kind of de�nite article, as it is shown

below:

� �xP 
 �x(P ^ 8y(P (xj y)! y = x)).

For this \�" , according to the de�nition above, \�xP" is a name for nothing,

if there is no object x or if there is more than one object x satisfying P .

There is another important failure related to the \�" approach, which will

be shown in the following example.

Example 6.1 We know that, in category theory, two objects a; b of the same

category can have more than one product, but we represent a product of a and

b by \a� b". We also know that a� b and b�a are isomorphic objects, which

we denote by \a�b � b�a", there is, each product of a and b is isomorphic to

each product of b and a. If we de�ne categorial product by using \�" , then, as
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the collections of all products of a and b and of all products of b and a are the

same, then the expression \a� b � b� a" means only that, for each x being

a product of a and b (or of b and a), x � x, what is very poor for the original

intended meaning. If we use instead \�" for de�ning categorial product, then

the expression \a� b � b� a" has the intended meaning.

7 Conclusions

Our way in doing semantics presents a new paradigm, by dealing explicitly

with ambiguity and vacuity, on the contrary to most semantics. Even modal

logics, with non rigid designators semantics, don't deal essentially with ambi-

guity, because in the same world there are no variations of reference.

We believe traditional mathematics lacks a logical basis managing ambigu-

ity and vacuity. They appear in mathematics in many places, from set theory

to mathematical analysis and number systems. Many propositions of theo-

rems could be very simpli�ed, and maybe this expansion of language could

open fresh roads for new discoveries.

In natural language most phrases use ambiguous names for referencing

objects, so �-descriptions appear to be a natural way for modelling these

situations.

We don't claim that LAR is a kind of \�nal" or \perfect" logic for dealing

with ambiguity or with the problems just pointed out, but that it is a new

departure point, from which it is necessary a possibly long path for reaching

something very useful. While conceiving this logic, we have realized that

there are also existential descriptions, and that descriptions, being universal

or existential, can be linked or not. For modelling a reasonable logic taking

into account these new ideas, expressing in a natural way deep intuitions, all

rush is enemy of perfection.
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