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ABSTRACT

Boundary value problems for second order operator differential equations with
two boundary value conditions are studied. Explicit expressions of the solutions in
terms of data problems are given. By means of the application of algebraic techniques,
analogous expressions to the ones known for the scalar case are obtained.

1. INTRODUCTION

Infinite systems of linear differential equations occur frequently in the
theory of stochastic processes, the degradation of poiymers, infinite ladder
retwork theory in engineering [1, 20], denumerable Markov chains [14], and
moment problems [24). In mathematical formulation of physical preblems
and their solutions, infinite matrices arise more natuyally than finite matrices.
Infinite dimensional systems of differential eguations have been studied in
several papers and with several techniques {6, 12, 8, 16, 15, 19, 20, 18, 24].

In a recent paper [13], we studied boundary value problems and Cauchy
prok =ins for the equation

X4+ A XO+ A X0, (1.1)

*The work in this paper has been partially supnorted by a grant from the Conselleria de
Culturg, Educacién y Clencia de la Generzlitat de Valencia.
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where A,, for i =0,1, are bounded linear operators on a complex separable
Hilbert space H. Explicit expressions for solutions of Cauchy problems and
boundary value problems with a boundary condition are given in terms of
data problems and a solution of the algebraic operator equation

X2+ A,X+A,=0. (1.2)

See [13] for details. The algebraic equation (1.2) is solvable if the polynomial
operator L(z)=2z%+ A,z + A, is linearly factorizable. Several recent char-
acterizations about the problem of the factorization of L(z) may be found in
i2], [9), [17], and [22]. A methodology for soiving the algebraic operator
equation (1.2) is given in [13], by means of the application of annihilating
analytic functions of operators. It is easy to show that the equation (1.2) can
be unsolvable; for instance, if A, =0 anc — A, is an unilateral weighted
shift operator on H, then — A, has no square roots [23, p. 63].

This paper may be regarded as a continuation of [13]. By means of the
introduction of the concept of fundamental set of solutions for the equation
(1.1), boundary value problems for this equation, with two boundary value
conditions, are studied in Section 2. In an analogous way to the scalar case,
different fondamental sets of solutions for the equation (1.1) are obtained in
termns of solutions of the corresponding algebraic equation (1.2). Depending
on the existence of a singic root or a double root of (1.2), different explicit
expressions for the solutions of the boundary valie problem are obtained. In
Section 3 we study a nonhomogeneous boundary value probiem for the
equation

X® + A,XO+ A X =F(t) (1.3)

with two boundary value conditions, and an explicit expression for the
solution in terms of a Green operator function anslogous to the one obtained
for the scalar case is given,

Throughout this paper H will denote a separable, complex Hilbert space,
finite or infinite dimensional, and L(H) will denote the algebra of all
bounded linear operators on H with the operator norm. If T lies in L(H ), we
represent its spectrum by o(T).

2. BOUNDARY VALUE PROBLEMS: THE IOMOGENEOUS CASE

We begin this section by considering the problem of generating any
solution of the operator differential equation (1.1) when the characteristic
algebraic equation (1.2) is solvable. If we consider the algebra L(H) with the
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strong operator topology, we obtain a topological vector space, which will be
denoted by Lg(H). In either one of the two spaces Ly(H) or L(H) we can
iook at the operator differential equation (1.1).

DEeFiniTION 2.1, A solution X of the equation (1.1) on an interval J of
the real line is a L(H) valued function such that at each point ¢ of J, there
exist the strong derivatives X(X(¢) for i=1,2, and the eguation (1.1) is
satisfied for all ¢ of J.

DerFmvtTiOoN 22. Consider a pair {U},U,} of solutions of the equation
(1.1). Then we say that {U,, i = 1,2} is a fundamental set of solutions of (1.1)
on the interval J if U, and U, are solutions of (i.1) and any solution ¥ of this
equation can bc expressed in the form

=

X(t) =Uy(t)T, + Uyt)T, (2.1)

for some operators T}, i = 1,2, uniquely determined by X, and for every ¢ in
the interval J.

Notice that for the scalar case this definition coincides with the usual
concept of a fundamental set of solutions. In an analogous way to the scalar
case, we are interested in finding fundament:{ sets of solutions for (1.1) in
terms of solutions of the algebraic operator cquation (1.2). The following
result contains different fundamental sets of soiutions of {1.1) in terms of a
double root of the equation (1.2), or in terms of two different roots satisfying
a certain additional condition.

HEGREM 2.1.

() Let X, be a double root of the eguation (1.2), that is, a solution of
(1.2) such that

2X,+ A, =0. (2.2)

Then the operator funciions U(t) = exp(iX,) and Uyt) = texp(iX,) define
« furvizmental sei of solutions of (1.1) on the real line.

(ii) If X,, X, are two solutions of the equation (1.2) such thai X, — X,, is
an invertible operator in L(H), then U(t) = exp(tX,) and Uyt) = exp(iX,)
define a fundamental set of solutions of (1.1) on the real line.

Proof. (i): It is easy to show that under the hypothesis (2.2), U(t)=
exp(iX,) and Uy?) =t exp(tX,,) are solutions of the equation (1.1). Let X be
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a solution of the equation (1.1} in the real line, and let Cy= X(0) and
C; = X™(0). Now, we consider the operator function U(¢) = exp(tX,) T, +
t exp(tX,) T, = exp(tX,)(T; + tT,), where T, and T, are unknown operators
in L(H). In order to satisfy the Cauchy problem
Y&+ A YD+ AY=0,
Y0)=C, YN0)=C, (23)
the operators T; and T, must verify the following conditions:
U(O) = T.l = Co, U(i)(ﬁ) = Tg +X oTl- (2 .4)

The system (2.4) is equivalent to the system

[gio 2][2]= [3‘1] (2.5)

Thus, the system (2.4) is uniquely solvable if the operator matrix

[ 0]
S=1% i

is an invertible operator in L(H® H), and it is clear that

S"=[-Ixo ‘I’] (2.6)
From this and (2.5) it follows that
Tl —o-1 CO - CO
[Tz]—s [CI]'[CI—XOCO]‘ &7

(ii): Let X be a sohution of the equation {11} with X(0)=C; and
XMO) = C,. Considering the operator function U(t) = exp(tX,) T +
exp(tX,)T,. where T, ard T, are unknown operators in L(H), the Cauchy
problem (2.3) is satisfied if T, and T, verify the conditions

| (2.8)
U(l)(O) = XOTI + X1T2 = Cl'
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The system (2.8) is equivalent to the system

1 1T, Co
[Xo Xl][Tg] B [Cl ’ (29)
Thus (2.9) is uniquely solvable if the operator matrix
1 I
R= [xo X,]
is an invertible operator in L(H® H). Taking into accouit the decomposition

r=[%, Ol =22 2}

it follows that R is invertible if and only if the operator V=X, - X, is
invertible in L(H). From the hypothesis, V is invertible, and computing, one
gets

1 +V-lv .....V"1.i
R = “o 1. (2.10)
—V—IXO V-l J
From (2.9), it follows that
c I+V-X,)C,-V~iC
[TI] = R-l["ﬂ] . ( O)CO 1 . (2.11)
I, C, -V-1X,C, +VIC,

Notice that the Cauchy problem (2.3) has only one solution, because this
problem is equivalent to the extended Cauchy problem

LARZON N BN ]Y,(t) [Yl(o) =[Co]
vl i-A —AllY@)] %O LGf

and this problem has only one solution [12]. As the operator function U(t)
defined by exp(tX,) T, + texp(tX,) T, in (i), where Ty, T, are given by (2.7),
and by exp(tX,)T, +exp(¢X,)T, in (ii), where T, T, are given by (2.11),
satisfy the Cauchy problem (2.3), from the uniqueness [12] it turns out that U
coincides with X on the reg! ine. o
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Remark 1. Unlike the scalar case, two different characteristic roots of
the algebraic equation (1.2) do not necessarily define a fundamental set of
solutions of (1.1), taking the corresponding exponential functions. In fact, if
we consider the differential equation X® — XV =0, then the characteristic
equation X2 — X = 0 is satisfied by any projection on H, but it is clear that if
P and Q are projections in L(H) such that P — Q is not invertible, then (2.9)
is not uniquely solvable and thus T, and T, are not determined by the initial
conditions G, and C;. In fact, if we consider the finite dimensional Cauchy
problem

X®-X®=0, X(0)=2"0)=0

and P,Q are two proper projections in L(H) such that {0} Gran(P) ¢
ran(Q) # H, then Q — P is not invertible. From the above comments, the
operator

ol

is not invertible in L(H®H). Let N be the orthogonal subspace of ran(R) in
HoH, and let N, and N, be the subspaces of H® H defined by N, = N n(H
® {0}), N, = N n{{0}®H). Then if we consider the projections T, and T,
in L{H) such that ran(T,) = N, and ran(T,) = N;, then it follows that

T 0
R[TJ - [o]'

Thus one gets two different representations of the null function of the type
0 = exp(tQ)0+exp(tP)0 = exp(tQ) T, +exp(tP) T,, for all ¢ on the real line.
In consequence the pair { P, Q} does not yield a fundamental set of soluticns
of (1.1) taking the corresponding exponential functions.

When double eigenvalues exist, it is well known that for the scalar case,
the pair exp(éx,) and ¢exp(tx,) defines a fundamental set of solutions of the

equation (1.1) if x, is a double root of the equation (1.2). From Theorem
2.1(i), the result is also verified for the operator case.

The following result yields an explicit expression for the sclution of a
boundary value problem of the type

@1 A XD+ A X =0,
X(b)-X(0)=E, XO(b)-X®O0)=F, b>0 (2.12)

where E, F, Ay, and A, are operators in L(H).
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Before the statement of the uext theorem, let us consider the following
decomposition of an operator matrix $=(§;;), for i=i, j=2, and §,,
invertible. One can write $ in the following way:

| Oils,, ol s:'s
S= - [ u ][ 1 12], 2.13
[821511‘ I ] 0 Llilo I (2.13)

where L = S,, — S5,51;!S,5. Thus, as the third and the first operator matrix on
the right hand side of (2.13) are invertible operators in L(H® H), it turns out
that S is invertible if and only if L is invertible in L{H),

TreorEM 2.2.

(i) Let X, be a double root of the algebraic equation (1.2), that is, such
that 2X,+ A, =0, and such that

2kxi
forallzin o(X,), z+ o k integer. (2.14)

Then the boundary value problem (2.12) has only one solution in [0, b},
given by the expression X(t)=exp(tX,)(T,+ tT,), where T, and T, are
given by
T, = [exp(bX,) 1] 'E
+ bexp(bX,) [exp(bX,) — 1] "H(X,E—~F),  (2.15)
Ty = [exp(bXo) — I] “}(F — X,E).
@) If {X,y, X,) is a pair of solutions of the equation (1.2) such that
X, ~ X, is invertible in L(H) and such that both satisfy the condition (2.14),

then the boundary value problem (2.12) has only one solution in [0, b), given
by the expression

T,= fexp(bX,) — 1] ~"[1+(X,~ Xo) 'K, | E
- X ~1V XX, ~X,) 'F,
[exp( o) — I} (X, X,) (2.16)
T, = — [exp{bX,) - I} “(X,— X,) "' X E

+ [exp(bX,) - 1] ~}(X, - X,) " *F.
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Proof. (i): From the spectral mapping theorem (7] and from the hy-
pothesis (2.14) the operator exp(bX,)—I is invertible in L(H). From
Theorem 2.1(i), the general solution of the operator differential equation
arising in (2.12) can be expressed in the form X(¢) = exp(tX()(T; + tT,). In
order to determine the operators T; and Ty, considering the boundary value
conditions of (2.12), it follows that T, and T, must verify the following
system:

exp(on) (ng + Tl) - Tl = E,

(2.17)
X, [exp(bX,) — I]T, + [exp(bX,) (bXo + 1) —I] T, =F.

Taking into account that exp(bX,)(bX,+ I)— I = [exp(bX,) — I]+
bX,exp(bX,), and premultiplying each equation of the system (2.17) by
[exp(bX,) — I] !, this system may be written in the form

T, + bexp(bX,)] [exp(bX,) - 1] ~'T,

= [exp(bX,) - I] 'E,

i (2.18)
XoTy+ {1+ bXyexp{bX,) {exp(5X,) ~ 1] 7'} T,
= [exp(bX,) - I] 'F.
The system (2.18) may be expressed in the following compact form:
I bexp(bX,)[exp(bX,) - 1] ~* [Tl]
Xo I+bXgexp(bX,)[exp(bX,) 1] * |LTe
bX,)-11"'E
- [exp( o) -1l . ] (2.19)
[exp(bX,) - 1] ~'F

If we denote by S the coefficient operator matrix of the system (2.18), from
(2.13) it foliows that S is invertible if and only if L =S, — S,,S1;'S;, is
invertible. In this case one has

L=1+bXyexp(bX,) [exp(bX,) - 11"

— bXyexp(bX,) [exp(bXo) - 1] ' =1.
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Thus § is invertible, and from (2.19) one gets

[:1], g-1| [ex(Bo) - 1] ‘E] @20

) [exp(on) = I] 'F

I;\n easy computation shows that the inverse of the operator matrix $ is given
y

S—l -1 -1 -1 - Q-1 -1
§-la [ 1 Sl '8g Sy + 8y Si SieL ] 2.21)

- L-lsﬂsﬁl L~ 1

In this case we have

§1lm [I+ EXo exp{ 5X, }{exp(BXy) — I] - bexp(bX,) [exp(X,) - ] _l]
"Xo i )

From this and (2.20) it follows that

T, = [exp(bX,) — 1] T'E+ bXoexp(bX,) [exp(bX,) ~ 1] ~*
— bexp(bX,) [exp(bX,) ~ 1] T°F
= [exp(BX,) — I] "E + bexn(bX,) [exp(bX,) — 1] ~*(X,E - F)
T, = ~ Xo[exp(bX,) = 1] T'E + [exp(bX,) ~ I] ~'F
= [exp(BX,) - ] '(F ~ X,E).
Thus (2.15) is established and (i) is proved.
(ii): From Theorem 2.1(ii) and the hypothesis, the general solution of the
vperator differential equation of (2.12) is given by the expression X(¢)=

exp(tX,) T, +exp(tX,)T,. If we require X(¢) to satisfy the boundary value
conditions of (2.12), the operators T, and T, must verify

texp(bX,) — I] T, +[exp(BX,) - I1T, = E,
(2.22)
[exp(bX,) — I] X,T; + [exp(bX,) - I] X,T, = F.
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This system is equivalent to the following

exp(bX,) — I exp(bX,) -1 T,] [E
[exp(X,) - 11X, [exp(BX,) — I]XI][TS] = [F] (2.23)

From the invertibility of the operator exp(bX,) — I and (2.13) it follows that
the coefficient operator matrix S of the system (2.23) is invertible if and only
if the operator L = [exp(bX,) — I]1X, — [exp(bX,) — I1X,[exp(bX,) —
I1"[exp(bX,) — I] = X, [exp(bX,) — i] — X,[exp(bX,) — I] = (X, — X,)
fexp(bX,) — I] is. From the invertibility of X,— X, and exp(bX,)—1, it
follows that L is invertible. So, solving (2.23) and taking into account that

"‘3—[[exp(bxe)_I![I+(Xi-xo)_lX0] _[exP(on)"I]_l(xl—xo)—l]
| - lembx) -1 ' (K- X)X [emplBX) - 1K~ X0) ! |

one gets

7 ]-s[5]

T, = [exp(bX,) - I] —1[1 +(X; - Xy) —lxo] E
— [exp(bXy) - 1] ~(X, - X,) "'F,
3= — [exp(bX,) — I] (X, - X,) "X E

+ [exp(BX, ) - I] -l(xl- Xo) ~'F.
Hence the result is established. =

3. BOUNDARY VALUE PROBLEMS:
THE NONHOMOGENEOUS CASE

Consider the boundary value problem
y®+ AP+ A= fl2),
E,y(0)+ Fiy(b) =0, En™(0)+Fy®(b)=0. k>0, (3.1)
where the given function f and the unknown g are vector functions with

values in C™ (where C denotes the complex plane) and the coefficients A,
A;, E,, and F, for i=12 are m X m matrices. The boundary value condi-
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tions arising in (3.1) are said to be well set if the correspondent homogeneous
equatica has the trivial solution only, and in this case the solution of the
problem (3.1) may be written y(t) = jPG(¢, s)f(s)ds, where G2, 5) is the
Green’s function of (3.1); sez [4, Chapter 7). The following results are
concerned with an analogous operator case.

TueoreM 3.1. Consider the boundary value problem
XO(e)+ A XO(t)+ A X(t)=F(¢),
E,X(0)+ F,X(b)=0, b>0,

E . XD(0)+ KXY b)=0 (3.2)

where B, F,, fori=12,and A,, for j=0,1, are bounded linear operators

in L(H) and t - F(t) is a L(H) valued continuous function defined in
[0, b). If we define the operator matrices

_[E, o] [R o
E= [ 0 E2J’ F= [o FJ’ (3.3)
and

A= l "(:“-0 "IAII
denotes the companion operator of (3.2), such that
E + Fexp(bA) is invertible, (34)
then the only solution of (3.2) is given by
X(t) = LbG(t,s)F(s)ds (35)
where

G(t,s) = Cexp(tA)(I - P)exp(—-sA)B, 0<s<t<b,
i — Cexp{ At) Pexp( — sA) B, O<igs<sd

c=[1, ol P=i‘l}}, B=[E + Fex>(bA)] ~'Fexp(bA).



84 LUCAS JODAR

Proof. Let us consider the problem (3.2) and let U(t) be defined by

X(t
0= | zoch |

It is easy to show that (3.2) is equivalent to the extended boundary value
problem

UD(¢) = AU(t)+ BF(t),
ET{(0)+ FU(b) = 0. (3.6)

From [15, p. 16}, for a given initial value U(0), the operator differential
equation arising in (3.6) has oniy one solution, given by

U(t) = exp(tA) U(0) + [[expl((t — s)A) BF(s) ds.
Let us define the operator valued function
Y(t) = exp(¢A) (I - P) [lexp( ~ As) BF(s) ds
~ exp(At) P ["exp( ~ As) BF(s) ds. (3.7)
It follows that
Y(0) = ~ B ["exp( ~ As) BF(s)ds, (38)

¥(5) = exp(AB) (1 - P) [ expl( ~ As) BF(s) d,
(1-P)Y(0)+ Pexp( — Ab)Y(b) =0. (39)
From the hypothesis (3.4) and the definition of P it tums out that
I—P=]=[E+Fexp(Ab)] ~'Fexp{Ab)
= [E + Fexp(Ab)] ~'E + Fexp( Ab) — Fexp(Ab)

= [E+ Fexp(Ab)] ~'E.
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Thus, the boundary value condition of (3.6) is equivalent to the boundary
value condition (3.9). From the definition of Y(¢), given by (3.7), it follows
that

Y®(¢) = Aexp(At) (I~ P) fo ‘exp( ~ As) BF(s) ds

+exp(At ) (I - P)exp( — At) BF(t)
— Aexp{At)P ‘{bexp(—As)BF(s)ds

+exp(At) Pexp( — Az} BF{t)
= AY(t)+ BF(t).

It follows that Y satisfies the boundary value prchlem (3.6). From the
‘uniqueness prupeiiy, the operator function Y, defined by (3.7) is the only
solution of the problem (3.6). So V() = CY(t) is the only sclution of (3.2),
and it is given by (3.5). |

CoroLLARY 3.1.  Consider the boundary value problem (3.2). Under each
one of the following hyvothesis, this problem is uniquely solvable and its
goluﬁon is given by (3.5):

() E is an invertible cperator and ||F|| < ||[E exp(bA)]~ ‘||'l
(i) F is an invertible operator and ||Ejj < ||[Fexp(bA)]‘ L~
(iii) E and F are invertible operators.

Proof. From the spectral mapping theorem [7], the operator exp(bA) is
invertible. From [3, p. 2i4], the hypotheses (i), (i), and (jii) imply the
invertibility of the operator E + Fexp(bA). Now, the result is a consequence
of Theorem 3. »
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