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where A,, for i = 41, are bounded linear operators on a complex separable 
HiIbert space I?. Ekplicit expressions for sohnions of Gauchy problems and 
boundary value problems with a bouudary condition are given in terms of 
data problems and a sokion of the algebraic operator equation 

XB+AIX+A,=O. (12) . 

See [13] for details. The aIgebraic equation (1.2) is &able if the polynomial 
operator L(z) = zs + A,a =+ A, is Iinearly factorizable. Several recent char- 
acterizations about the problem of the factorization of E(z) may be found in 
[Z], [9], [17j, and [22]. A methodology for solving the algebraic operator 
equation (1.2) is given in [13], by means of the apphcation of am&king 
analytic functions of operatorsk It is easy to show that the equation (1.2) can 
be urn&able; for instance, if A, = 0 an6 - A, is an uniIateral weighted 
shiftoperatoronH,then -A,hasnosquareroots[23,p.63]. 

Thispapermaybereg;ardedasa~~~nof[13].Bymeansofthe 
introdu&iou of the concept of fundamental set of solutions for the equation 
(1.1X boundary value problems for this equation, with two boundary value 
condr’tiorrs,~~~insecticM2.In~analogcwswaytothescalarcase, 
different fundamental sets of solutions for the equation (1.1) are obtained in 
terms oZ solutions of the cowesponding algebraic equation (1.2). Depending 
on the existence of a s&k root or a double root of (L2), different explicit 
expressions for the solutions of the boundary value problem are obtained. In 
Section 3 we study a nonhomogeneous boundary value problem for the 
HJldiO?l 

X(‘) + A,#‘) + A,X = F( t ) 03) 

with two boundary value conditions, and an explicit expression for the 
solution in terms of a Green operator function analogous to the one obtained 
for the sc&r case is &$veu. 

Throughout this paper H will denote a separable, complex IIilbert space, 
finite or infinite dimensional, and L(H) will deuote the algebra of all 
bounded linear operators on I? with the operator norm. If T lies in L(H), we 
represent its s by $T?, 

2, BOUNDARY VALUE PROBLEMS: THE HOMOGENEOUS CASE 

We begiu this section by considering the problem of generating any 
solution of the operator differential equation (1.1) when the characteristic 
algebraic equation (1.2) is solvable. If we consider the algebra L(H) with the 



strong operator topology, we obtain a topological vector space, which will be 
damted by L,(H). In either one of the two 8qnce-s L,(H) or L(H) we can 

look at the operator differential eqmtion (1.1). 

DEFMTIOIU 2.1. A solution X of the equation (1.1) on an interval J of 
~~reel’rfneisaL(H)valued~~~spnchthatateach~~ttofI,tbere 
exist the strong derivatives X(‘)(t) for i = 1,2, and the equation (1.1) is 
satisfiedforalltofJ 

WON 2.2. Consider a pair (U1, U.} of soIutions of the equation 
(1.1). Then we say that (Ut, i = 1,2) is a fundamentaI set of sohtions of (l.l)- 
on the interval J if U1 aud Uz are solutions of (1.1) and any solution .Y of this 
equation cau be expressed in the form 

for some operators T,, i = 1,2, uniquely determined by X, and for every t in 
the iuterval J. 

Notice that for the scalar case this definition coincides with the usuz-4 
concept of a fundamental set of sohtions. In au anaIogous way to the scalar 
case, we are interested in findiug fundament9. sets of sohtions for (1.1) in 
terms of solutions of the algebraic operator quation (1.2). The following 
result contains different fuudamentaI sets of sohtions of (1.1) in terms of a 
double root of the equation (1.2), or in terms of two different roots satisfyiug 
a certaiu additional condition. 

RYiEmim 2.1. 

(ij Lb x, be a double ?wt Of&i& t3qwh (1.;2’3, #aat is, CL solutiorz of 

(1.2) au& thut 

2X,+A,=O. (2.2) 

(ii) If X0, X, me two soluticms of the etp4ution (1.2) s&a that X, - X, is 
an irevertible operator in L(H), then &(t) = exp(tX,) and Vi(t) = exp(tX,) 
d$kae dz jicndanzental si?t of miaeti of (Ll) m the liYM. 

Proof. (i): It is easy to show that under he hypothesis (2*2)* &(t ) = 
exp(tX,) and U&j = te-xpjtX,j are solutions of the equation (1.1). Let X be 



a solution of the equation (1.1) in the real line, and let Co= X(O) and 
Cl = X(l)(O). Now, we codder the operator faction U(f) = exp(fXo)Tl + 
t exp(fX,) TB = exp(fX,)(T, + tTe), where Tl and TB are unknown operaton 

in L(H). In order to satisfy the Cauchy problem 

Y@) + A,Y('> + AoY = 0, 

the operators Tl an d T, must verify the following conditions: 

U(O)=T,=cg, wyo) = Ts + XOT,. 

The system (2.4) is equivalent to the system 

[:, q[:]=[:]* 

Thus, the system (2.4) is uniquely solvable if the operator matrix 

is an invertible operator in L(H@H& and it is clear that 

s-l= _!, f . [ I 
From this and (2.5) it follows that 

(ii): J&t x be a sdutiorl of the cm (1.1) with X(O) = Co and 
X(l)(O) = C,. Considering the operator function U(t) = exp(tX,) TI I- 
e(fX,)T,, r;- -- w WKG TI and T, are unhewn operators in L(H), the Catchy 
problem (2.3) is satisfied if T, and T, verify the conditions 

~J(O)=T,+T,==(&; 

U(‘)(O) = X,T, -!- X,T, = Cl. 
(2.8) 
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The system (2.8) is to the 
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(2 9) . 

Thus (2.9) is uniquely sohble if the operator m 

R=: ; I 1 0 1 

is an invertible operator in L(HeBH). Takiiig into acwwt tlics decomposition 

’ R=[ko !q[: x,fx,1[: 3 . 
it follows that R is invert&le if and only if the operator V= X,- X, is 
invert& in L(H). From the hypothesis, V is invertible, and computing, one 

R-l= 
I +v-lx, -v-q 
- vxo v-’ 1’ (2.10) 

From (2.91, it follows that 

[~]=$j-[ (I +v-‘x,)rg-v-w, 
_v-lx&+\_?-lcl 11 

Notice that the Cauchy problem (2.3) has only ane solution. 
problem is equivalent to the cxtaded Cauchy problem 

and this pbkm has only one solution [aZ]. As the operator function U(t) 
defined T,, T, are given by (2.7), 
and by 
satisfy the Cauchy problem (2 
coincides wit& X on the ra! 13~~ 



78 LUCAS JODAR 

IlEMAmc 1. the scak case, two different chankctektic roots of 
the algebraic equation (1.2) do not necessarily define a fundamental set of 
solutions of (l.l), taking the corresponding exponential functions. In fact, if 
we consider the diffezreutial equation X@- XcU = 0, then the characteristic 
equationXB-X=OissatisfiedbyauyprojectiononH,butitisckarthtif 
P and Q are projections in L(H) such that B - Q is not invertible, then (2.9) 
is not uniquely solvable and thus T1 and TB are not determined by the initial 
conditions Co and 6,. In fact9 if we consider the finite dimensional Cauchy 
problem 

XCB, _ x(1) = 0, x(0) = x”‘(0) = 0 . 

and P,Q are two proper projections in L(H) such that (0) sh(P)s 
ran(Q) # H, then Q - P is not invertible. From the above comments, the 
OpX&S 

is not invertible in L(HQH). Let N be the orthogonal subspace of ran(R) in 
HsH,~dl~tN,andNsbe~esubspacesafHteHdefinedbyN,=hPnfH 
0 {0)x -V* = N n{(O) @IS). Then if we cousider the projections T1 and T. 
iu L(H) such that rau( T1) = N1 and ran( T,) = N,, then it follows that 

Thus one gets two different repmentations of the null function of the type 
0 = exp(tQ)O+exp(tl))O = eq(tQ)Tl +exp(tP)T,, for alI t on the real line. 
Iu consequence the pair (P, Q} does not yield a fundamental set of solutions 
of (1.1) takiug the correspondiug exponential fuuctions. 

When double eigenvahes exist, it is well known that for the scalar case, 
the pair exp@q,) and texp(&,) defines a fundamend set of solutions of the 
equation (1.1) if x0 is a double root of the equation (1.2). From Theorem 
2.1(i), the resu!t is aho verified for the opemtor case., 

The following resuh yields an ex$icit expression for the solution of a 
boundary value problem o!1 the type 

_w a 44 9 x(l) + A,X = 0, -. 

X(b) - x(0) = E, x”)(b) - xyoj = F, b> 0 (2.i2) 

where E, F, A,, and A, am operators in L(H). 
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Wore the statement of the rscsxt theorem, let us consider the following 
decomposition of an operator matrix S =(SIJ), for i = i, j = 2, and Sll 
invertible. Che can write S in the following way: 

(2.13) 

whereL=S,-$l ll w S”S Thus, as the Mrd and the first operator matrix on 
the right hand side of (2.13) are invertible operators in L(M@M), it tu.ms act 
that S is invertible if and only if L is iwetibk izz L{-!!). 

T- 2.2. 

(i) Let X, be a double mot of the ai@mzic equation (1.2), that is, such 

that 2X,+A,=O, andwc?dat 

2kWi 
fbrdzino(X,), 2+-g--, kinteger. (2.14) 

Then the bounhy due pmbltm (2.12) has only one solution in [O, b], 
given by t.?m exprmh X(t) = exp(tX,)(T, + tT,), where TI and T2 are 
@=nh 

T,= [e~(bXoj-I]-lE 

+bcxp(bX,)[exp(bX,)-I] -2(X,E-F), (2.15) 

T,= [exp(bX,) - I] ==l(F - X,E). 

(ii) If (X,, X,} is a pair of soZu* of the ef~utdun (1.2) such that 
X, - X, is inmtib~ in L(H) ad such that both sdsfy the con&ion (2.14), 
th GM bound&y oarlue pm&m (2.12) has only me solution in [O, b], ghm 
by the qmssdim 

Tl= ieffp(bXoj-ij-‘[i+(X,-X,!-‘X,]E 

- [exp(bXo) - I] -l(X,- XJ'F, 

T, = - [eq(bX,) - I] -l(X, - X,)-“&E 

+[exp(bX,)-I] -l(X,-X,)-‘F. 
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BOOS (i): From the specti mapping theorem [fl and from the hy- 
pothesis (2.14) the operator exp@X,)- I is invertible in L(H). Fzm 
Theorem 2.1(i), the general dution of the operator differential equation 
arising ip (2.12) can be expressed in the form X(t) = exp(tX,)(T, + tTs). In 
order to determine the operators Tl and TY, considering the boundary v&e 
conditions of (2.12), it follows that T1 and T, must verify the folIowing 
system: 

exp(bXo)@T,+Tl)-T,=E, 

X,[exp(bX,)-Z]T,+[exp(bX,)(bX,,+I)-Z&=Z? 
(2.17) 

Taking into account that exp(bXo)(bXo + I) - Z = [exp(bXo) - I] + 
bXoexp(bXo), and premdtiplyfng each equation of the system (2.17) by 
[W&J - II-l, this system may be written in the form 

Tl + b[exp(bX,)] [exp(bX,) - i] -kg 

= [exp(bX,) -I] -lE, 

X,T,$(Z+~X,~(~X,jje~~(~Xo)~=Z]-l)T, 
(2.18) 

= [exp(bX,) -I] -‘P. 

The system (2.18) may be expressed in the following compact form: 

z bexdb&) [=P@%) - 11 ml Tl 
X, Z+bX,&p(bX,)[exp(bX,)-I]-’ I[ 1 5 

I iexp(b&) - I] -lE 
[exp(bX,) -Z] -“I? 1 ’ (2.19) 

If *we denote by S the coefficient opezator matrix of &e system (2.19), from 
(2.13) it follows that S is invertiile if and only if L =SB - S&%,, is 
invertible. In this case one has 

L = I + bX~e~(bX~) [exp(bX,) - Z] -’ 

- bX,exp(bX,) [exp(bX,) - Z] -‘= 1. 
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Thus S is invertible, and kox~~ (2.19) one gets 

[exp(bK,) -II -‘zz 
[exp(bX*) -I] -‘F 1 * 

An easy computation shows that the inverse of the operator matrix S is given 
bY 

S-‘N 

[ 

S,-,‘S,E-‘S~lSi~l + Sr;l - Sii!S,L-’ 

- L-%&3,-,’ 
I 

L-1 l 

(2.21) 

lntbiscasewebave 

s_1_ i+bXo~~bX~~~bXo)-i]-’ 

[ 

-bexp(bXo)[exp(bXo)-I]-' . 

0 i I 
From this and (2.20) it f&w that 

- bexpl(b&) [=p(bx,) -I] -“F 

= [exp(bX,,)-I] -$+bexp(bXoj[exp(bX,)-I] -‘(X&-F) 

Ts= -X,[exp(bX,,)-Z]-lE+[exp(bXo)-Z]-lF 

= [exp(Bx,) - I] -‘(F-X&). 

Thus (2.w) is established and (i) is paled. 
(3): Fmm T’k- Z.l(ii) and the hypothesis, the of the 

qwator ~%fferenti equation of (2.12) is given by the expression X(t) = 
exp(tX,,)Tl+exp(tXl)T,. If we require X(b) to satisfy the boundary value 
ax&ions of (2.l2), the operators Tl and Te must verify 

(b&j - Z’?Td= 

[eorp(bX~)-Z]XoT~+[exp(bX,j-Z]X,T,=F. 
(2m22j 
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This system is equivalent to the fohving 
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From the invertibilty of the operator exp(bX,) - I and (2.13) it follows that 
the cw&ient operator matrix S of the system (2.23) is invertible if and only 
if the operator L = [exp(bX,) - I]X, - [exp(bX,) - I]X&xp(bXo) - 
I]-‘[exp(bX,) - I] = X,[exp(bX,) - i] - X&xp(bX,) - I] =(X, - X,) 
iexdbX,) - I] is. From the invertibility af Xl - X, and exp(bX,) - 1, it 
divs &at L-is hmrtible. So, solving (2.23) arid taking into account that 

T.-L_ 
3 - 

~Tem(bxn)-‘]~~+(Xi-X~)-‘X~] -[~bX,)-I]-‘(X,-X,) 

1 

_ _ 

- [exp(bXJ - f] - yx, - x0) --lx0 bdw - ml - x0) - 1 

one gets 

T,= [exp(bX,)-I] -‘[I+(&-x0)-‘x,]E 

- [exp(bX,)-I] -L(Xl-Xo)-lF, 

Tz = -[exp(bX,)-I) -l(Xl-x,)-‘~,~ 

+[e;np(bX,)-I]-‘(Xl-X,))-‘F. 

Hence the result is estallished. 

3. 

g@’ + A,#” + A,y = At), 

&y(Q) + Fly(b) = 0, E,y”~(O) + F,y’l’( b) = @. ,k> 0, (3.1) 

1 

1 

, 

where the given function f and the unknown y m vector functions with 
values in C” (where 0: denotes the complex plane) and the coefficients A,, 
A_ P --*r -8, aL”,Au j$ &g &=Q we m X m matrices. The bouudary value condi- 



tions adsing in (3.1) are said to be well set if the correspondent hm~nmw 
equatim has the trivial s&&n only, and in this case the solution of the 
problem (3.1) may be written g(t) = jtG(t, s)fls)& where G{t, s) is t&e 
Green’s function of (3.1); SB [4, Chapter 7]. The following uesults are 
concerned with an kamlogous operator case. 

X@)(t)+ A@‘,(t)+ A,X(t) = F(t), 

E,X(O) + F,X( b) = 0, b > 0, 

E,X(‘,(O) + F,X”!c b j = 0 (3-g) 

w.#&gy.? Ei, F;“;, ** i = 
in L(R), and t 

1,2, andAj, $iw j=O,l, arehou~Zinear~kns 
+ F(t) b a L(W) mlued wn#nwus finctim d&ntd in 

[O,b]. lfuxdjhethe~- 

and 

iI&motes the ctlmpanh tqxmator of (3.2), such that 

E + Fe& bA) is hxrtible, (34 

ther, tk only soZutkm of (3.2) is gkwn by 

whefe 

G(t,sj = 
cexp(ti)(&P)exp(-sA)B, Ogs<t<b, 

exp( -sA)B, O<,e&:s&:E, 

C=[I, 01, P= r4‘ , II B- [E+ F&?(bA)] -‘Fexp(bAj. 
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F’m$ Let us cm&k l &e problem (3.2) and lea U(t) be defined by 

x(t) 
W) - xW(t) I 1 ’ 

It is easy to show that (3.2) is equivalent to the exteudexi bo=ky value 
problem 

CJ’~~~(~) - AU(t) + BF( t ), 

lw(o)+ N(b) -0. (3 6) . 

From [15, p. l&l, for SB giwn initial value U(O), the operator differential 
equation arhng in (3.6) has ody one solutiou, given by 

u(t)=e&A)U(O)+jixp((t-s)A)BF(s)h. 
0 

Letusdefinetheoperatorvaluedfunction 

y(t)~ap(tA)(I-P)~~(-As)BF(s)ds 
0 

-exp(At)Pj~exp(-As)BF(s)ds. 
t 

It foUows that 

y(0) = - Pjb4?xp( - A#@(s)gb 
0 

Y(b)-exp(_Ab)(l-P)~bexp(-As)BF(s)da, 
0 

(I-P)Y(Q)+ Pexp(-Ab)Y(b)=O. 

F TGZ the hypothesis (3.4) and the definition of P it tums out that 

I - P = 7 - r F -?- Pexp(Ab)] -‘Fexp(Ab) r---C1U. 

= [Ed- Fexp(Ab)] “E+ Fexp(Ab) - Fexp(A&) 

= [E f Fexp(Ab)] -‘Em 
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Thus, the conciition of (3 to the 
(3.9j. From the definition of Y(t), given by (3.7)# it PoeOws 

that 

Y(l)!(r) = Aesip(At)(Z - P)lksqp( - As) W(s) da 
0 

+q(At)(I-P)exp( -At)BF(t) 

-a~~~~~)~~b~-Az)BF(a)da 
t 

+eip(At)Pexp( - At)iJF(t) 

= AY(t)+ BF(t). 

It follows that Y satisfies the bcwmky v&m prsbh (3.6). From the 
uniquam prqpaa, &s opmw iuwtion Y, de&ad by (3.7) is the dy 
ksoMon of the probhm (3.6). so v(t) = a(t) is the only m~ution of (3.21, 
anditisghmby(3S). l 

cm- 3J. ci2nsarthe g?d&?m (3.2). unaer d 
one of*fimhw-, WHqd~ mltwbce and its 
ad&ion is gb@n b (3.5). 

(i) E b an hued& qmzbr and llFll( l~[Eesp(bA)]‘l~I’l; 
{ii) F is QIL &wed& opmtm d ilE_il< II[Fexg@A)]-‘ii”; 
(iii) EcuulFtaWmmWe~. 

PLaof. Fzm &e spectral mapping theorem [7], the operator eqp@A) fs 
invepoibla From [3, p. U4], the 
in~~dtheoperstorE+F 
ofTbwm3. 
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