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Separately continuous bihomomorphisms on a product of convergence or topological
groups occur with great frequency. Of course, in general, these need not be jointly
continuous. In this paper, we exhibit some results of Banach–Steinhaus type and use these
to derive joint continuity from separate continuity. The setting of convergence groups offers
two advantages. First, the continuous convergence structure is a powerful tool in many
duality arguments. Second, local compactness and first countability, the usual requirements
for joint continuity, are available in much greater abundance for convergence groups.
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1. Introduction

Let G , H and L be topological groups and u : G × H → L a separately continuous bihomomorphism. One need look no
further than the evaluation mapping ω : Ĝ × G → T to see that such bihomomorphisms need not be jointly continuous [13].
The problem of determining conditions on G , H and L so that u is jointly continuous is a difficult one and has a long
history in the literature. In fact the problem has been studied extensively in the larger context of topological spaces. Over
several decades, many results have appeared (see e.g. [15–18,12]) guaranteeing points of joint (quasi-)continuity for various
combinations of topological spaces G , H and L. Results involving topological groups can be found in [8] and [11]. Recurring
themes were the notions of compactness and countability, the latter usually appearing in some form of the Baire property.
The topological group case simplifies the problem considerably since joint (quasi-)continuity of a bihomomorphism at one
point implies joint continuity.

In this paper we address this problem in the context of convergence groups. Apart from providing greater generality
than topological groups, this permits the use of continuous convergence in duality arguments. With the aid of the notion
of a g-barrelled convergence group, we establish theorems of Banach–Steinhaus type and use these together with duality
arguments to establish the joint continuity of bihomomorphisms. The main result is the following: If G is a g-barrelled
convergence group, H a locally compact convergence group and L a Hausdorff locally quasi-convex topological group, every
separately continuous bihomomorphism u : G × H → L is jointly continuous. The generality of this result can be seen as
various special cases recover many of the results in the literature.
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Let X be a set and suppose that to each x in X is associated a collection λ(x) of filters on X satisfying for all x ∈ X :

(i) the ultrafilter ẋ := {A ⊆ X: x ∈ A} ∈ λ(x),
(ii) if F ∈ λ(x) and G ∈ λ(x), then F ∩ G ∈ λ(x),

(iii) if F ∈ λ(x), then G ∈ λ(x) for all filters G ⊇ F .

The totality λ of filters λ(x) for x in X is called a convergence structure for X , the pair (X, λ) a convergence space and
filters F in λ(x) convergent to x. A convergence space (X, λ) will usually be denoted by X if no confusion arises. We
write F → x instead of F ∈ λ(x). A mapping f : X → Y between the two convergence spaces X and Y is continuous if
f (F ) → f (x) in Y whenever F → x in X .

Let G be an Abelian group (all groups will be assumed to be Abelian) and assume λ is a convergence structure on G .
The pair (G, λ) is a convergence group if λ is compatible with the group operations, i.e., if the mapping

− : G × G → G, (x, y) �→ x − y

is continuous. This means that if F → x and G → y in G , then the filter F − G generated by {A − B | A ∈ F , B ∈ G}
converges to x − y in G .

Every topological space is a convergence space, the convergent filters at any point being precisely those finer than the
neighbourhood filter. Likewise, every topological group is a convergence group. The converse statements fail. Convergence
groups need not be topological (see e.g. [4, 3.1] and [4, 4.3.9]).

A convergence space X is called Hausdorff if limits are unique, i.e., if F → p and F → q in X , then p = q. It is called
compact if each ultrafilter converges and locally compact if it is Hausdorff and each convergent filter contains a compact set.

Let G , H be convergence groups and Γ (G, H) the space of continuous group homomorphisms from G to H . The contin-
uous convergence structure λc on Γ (G, H) is the coarsest convergence structure on Γ (G, H) making the evaluation mapping

ω :Γ (G, H) × G → H, (ϕ, x) �→ ϕ(x)

continuous. A filter Φ → ϕ in (Γ (G, H), λc) if, whenever F → x in G , the filter ω(Φ × F ) converges to ω(ϕ, x) = ϕ(x) in H .
The continuous convergence structure is compatible with the group operations on Γ (G, H) and the resulting convergence
group is denoted Γc(G, H). If H = T = R/Z, then Γ G = Γ (G, H) is called the character group of G and Γc G = Γc(G, H) is
called the continuous dual of G . Note that, when G is a topological group, the continuous dual Γc G is a locally compact con-
vergence group. In general it is not topological, but this is so if G is locally compact. In this case the continuous convergence
structure coincides with the compact-open topology.

The weak convergence structure on Γ (G, H) is the initial convergence structure induced by the family of mappings
(ϕ �→ ϕ(x))x∈G . The resulting convergence group is denoted by Γs(G, H). As above, when H = T, this becomes ΓsG .

If u : G → H is a continuous homomorphism between convergence groups, then u∗ :Γ H → Γ G is defined by
u∗(ψ) = ψ ◦ u. It is continuous if both character groups are endowed with either the continuous convergence structure
or the weak convergence structure. In this way Γc becomes a functor which has strong categorical properties. It is a left
adjoint and takes final structures to initial structures, in particular quotients to embeddings and direct limits to inverse
limits.

If G is any convergence group, then the canonical mapping κG : G → ΓcΓc G defined by

κG(x)(ϕ) = ϕ(x) for all x ∈ G and all ϕ ∈ Γ G

is always continuous. A convergence group G is called embedded if κG is an isomorphism onto its range and reflexive if κG

is an isomorphism.
A convergence space is called first countable if, to each convergent filter, there is a coarser filter with a countable base

converging to the same point. Clearly, a mapping between convergence spaces is called sequentially continuous if each con-
verging sequence is mapped to a converging sequence. It is a consequence of [4, 1.6.14] that, if X is first countable and Y is
topological, then every sequentially continuous mapping f : X → Y is continuous.

Finally, ρ : R → T denotes the canonical projection and we set

T+ = ρ
([−1/4,1/4]).

If T is realized as the unit circle, this is the right half of it.
Further information on convergence spaces and, in particular, convergence groups can be found in [6] and [4].

2. g-barrelled convergence groups

In a linear setting, topological vector spaces and convergence vector spaces, the Banach–Steinhaus theorem relates point-
wise bounded and equicontinuous sets as well as pointwise and continuously convergent sequences (see, e.g., [7,4,5]).
Whereas the notion of equicontinuity generalizes very naturally to the setting of convergence groups, the notion of (point-
wise) boundedness is usually not available and must be replaced.
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Definition 2.1. Let G , H be convergence groups. A set M ⊆ Γ (G, H) is called equicontinuous if and only if, for all filters F
which converge to 0 in G , the filter M(F ) converges to 0 in H . Here M(F ) denotes the filter generated by {M(F ): F ∈ F } =
{ω(M × F ): F ∈ F }.

It is clear that, when G and H are topological groups, this coincides with the usual definition of equicontinuity.
As the next proposition shows, equicontinuity is preserved as G and H pass to final and initial structures respectively.

Proposition 2.2. Let G and H be convergence groups. If G carries the final group convergence structure with respect to a family of
homomorphisms (ui : Gi → G)i∈I and H carries the initial group convergence structure with respect to a family of homomorphisms
(v j : H → H j) j∈ J , then a set M ⊆ Γ (G, H) is equicontinuous if and only if for all i ∈ I and j ∈ J the set

v j ◦ M ◦ ui = {v j ◦ w ◦ ui: w ∈ M}
is an equicontinuous subset of Γ (Gi, H j).

Proof. An easy argument shows that v j ◦ M ◦ ui is equicontinuous for all i ∈ I and j ∈ J if M is equicontinuous. To show
the converse, assume that F → 0 ∈ G . Since G carries the final group convergence structure with respect to (ui) there are
i1, . . . , in ∈ I and filters Fk → 0 ∈ Gik such that

F ⊇ ui1 (F1) + · · · + uin (Fn).

By assumption, (v j ◦ M ◦ uik )(Fk) converges to 0 in H j for all j ∈ J and k ∈ {1, . . . ,n} and therefore v j(M(F )) = (v j ◦ M)(F )

converges to 0 for all j. Since H carries the initial group convergence structure with respect to (v j), we get M(F ) → 0 ∈ H
as desired. �

What makes equicontinuous sets valuable for our purposes is the following result (see [4, 2.4.2] for a general formula-
tion).

Proposition 2.3. Let G and H be convergence groups and let M ⊆ Γ (G, H) be an equicontinuous set. Then the weak convergence
structure and the continuous convergence structure coincide on M.

The following notion was defined for topological groups in [10].

Definition 2.4. A convergence group G is called g-barrelled if the compact subsets of ΓsG are equicontinuous.

The standard examples of g-barrelled topological groups are countably Čech-complete topological groups so, in par-
ticular, complete metrizable or locally compact ones. Also separable Baire or metrizable hereditarily Baire groups are
g-barrelled [15,20,10]. Finally, the additive group of a barrelled topological vector space is g-barrelled [14]. To obtain an
example of a non-topological g-barrelled convergence group we recall that a topological group G is said to respect compact-
ness if each σ(G,Γ G)-compact subset of G is compact [19]. Here σ(G,Γ G) denotes the initial topology on G with respect
to Γ G .

Proposition 2.5. If G is a reflexive topological group that respects compactness, then Γc G is g-barrelled.

Proof. Since G is reflexive, the natural mapping κG : G → ΓcΓc G is an isomorphism and therefore κG : (G, σ (G,Γ G)) →
ΓsΓc G is an isomorphism. If M ⊆ ΓsΓc G is compact, then κ−1

G (M) is a σ(G,Γ G)-compact subset of G and therefore
compact. This implies that M = κG(κ−1

G (M)) is compact in ΓcΓc G . So it is equicontinuous by the Arzelà–Ascoli theo-
rem [4, 2.5.8]. �
Corollary 2.6. If G is a nuclear group, then Γc G is g-barrelled.

Proof. If G is a complete nuclear group, it is reflexive by [4, 8.4.19] and it respects compactness by [3]. Therefore Γc G is g-
barrelled by Proposition 2.5. If G is an arbitrary nuclear group, then its completion G̃ is nuclear by [1, 21.4]. Also Γc G = Γc G̃
by [4, 8.4.4] and so the result follows. �

It should be noted that the reflexive locally convex topological vector spaces which respect compactness are precisely
the Montel spaces [19, Theorem 1.4].

The next several propositions derive permanence properties of g-barrelled convergence groups.
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Proposition 2.7.

(i) Let G and G ′ be convergence groups with the same underlying group such that Γ G = Γ G ′ . If the identity mapping id : G → G ′ is
continuous, then G is g-barrelled if G ′ is.

(ii) A convergence group which carries the final group convergence structure with respect to a family of group homomorphisms from
g-barrelled convergence groups is g-barrelled.

(iii) A topological group which carries the final group topology with respect to a family of group homomorphisms from g-barrelled
topological groups is g-barrelled.

Proof. (i) Evidently ΓsG = ΓsG ′ , so if M ⊆ ΓsG is compact, then M is compact in ΓsG ′ and therefore equicontinuous. If F
converges to 0 in G then it converges to 0 in G ′ and therefore M(F ) converges to 0. So M is an equicontinuous subset
of Γ G .

(ii) Assume that G carries the final group convergence structure with respect to a family of group homomorphisms
(Gi → G)i∈I such that all Gi are g-barrelled. If F converges to 0 in G , there are finitely many i1, . . . , in ∈ I and filters F j
converging to zero in Gi j such that

F ⊇ ui1 (F1) + · · · + uin (Fn).

Take any compact subset M of ΓsG . Then u∗
i (M) is compact in ΓsGi for all i and therefore equicontinuous. So M(ui j (F j)) =

u∗
i j
(M)(F j) converges to 0 in T and so does

M
(
ui1 (F1)

) + · · · + M
(
uin (Fn)

)
.

The claim now follows from

M(F ) ⊇ M
(
ui1 (F1) + · · · + uin (Fn)

) ⊇ M
(
ui1 (F1)

) + · · · + M
(
uin (Fn)

)
.

(iii) This is [10, 1.9]. �
Lemma 2.8. Let (Gi)i∈I be a family of convergence groups, G = ∏

i∈I Gi their product and let ei : Gi → G be the natural injections. If
M ⊆ ΓsG is compact, then there is a finite subset I0 ⊆ I such that ϕ ◦ ei = 0 for all ϕ ∈ M and all i ∈ I \ I0 .

Proof. Since the mapping

Γc G −→
⊕
i∈I

Γc Gi, ϕ �→ (ϕ ◦ ei)

is an isomorphism by [4, 8.1.18], we will regard the elements of Γ G as elements in
⊕

Γ Gi . The claim then is that there is
a finite set I0 ⊆ I such that ϕi = 0 for all ϕ ∈ M and all i ∈ I \ I0. So assume that this is not true. For shorter reference, for
all ϕ ∈ Γ G we set Supp(ϕ) = {i ∈ I: ϕi �= 0}. These sets are all finite. Define inductively sequences (ϕn) in M and (in) in I
in the following way:

Choose any ϕ1 ∈ M , ϕ1 �= 0 and any i1 ∈ I such that ϕ1,i1 �= 0. (Here and in what follows ϕn,i denotes the ith component
of ϕn .) Assume that ϕ1, . . . , ϕn−1 and i1, . . . , in−1 have been chosen. Then there is a ϕn ∈ M such that Supp(ϕn) � Supp(ϕ1)∪
· · · ∪ Supp(ϕn−1). Choose any in ∈ Supp(ϕn) \ (Supp(ϕ1) ∪ · · · ∪ Supp(ϕn−1)). Then ϕn,in �= 0.

Note that, by construction, we have

ϕ j,in = 0 for all j < n

and therefore, in particular, i j �= in for all j < n.
Now choose any x = (xi) ∈ G such that xi = 0 if i /∈ {in: n ∈ N}. Then for all r ∈ N we get:

ϕr(x) =
∑
i∈I

ϕr,i(xi) =
∑
n∈N

ϕr,in (xin ) =
∑
r�n

ϕr,in (xin ) =
∑
n<r

ϕr,in (xin ) + ϕr,ir (xir ).

Set T0 = ρ([−1/16,1/16]). We show that for each finite set J ⊆ I there is an element x ∈ G such that xi = 0 for all i ∈ J
and ϕn(x) /∈ T0 for all but finitely many n.

Choose a finite set J ⊆ I and a k ∈ N such that in /∈ J for all n � k. Now define x ∈ G in the following way: xi = 0 if
i /∈ {in: n ∈ N} and also xi = 0 for all i ∈ {in: n < k}. Then xi = 0 if i ∈ J . Define xin for all n � k inductively as follows: One
has

ϕk(x) = ϕk,ik (xik )

and since ϕk,ik �= 0 there is some xik ∈ Gik such that ϕk,ik (xik ) /∈ T0.
If xik , . . . , xir−1 have been constructed, we get

ϕr(x) =
∑

ϕr,in (xin ) + ϕr,ir (xir ).
n<r
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If
∑

n<r ϕr,in (xin ) /∈ T0, then set xir = 0 otherwise there is some xir ∈ Gir such that ϕr,ir (xir ) /∈ T+ and then ϕr(x) /∈ T0.
Assume now that the sequence (ϕn) has a cluster point ψ ∈ ΓsG . Then there is a finite set J ⊆ I such that ψi = 0 for

all i ∈ I \ J . Choose x as above. Then ψ(x) = 0 and so there must be infinitely many n such that ϕn(x) = ϕn(x) − ψ(x) ∈ T0,
contradicting the construction of x. �
Proposition 2.9. Let (Gi)i∈I be a family of g-barrelled convergence groups. Then

∏
i∈I Gi is g-barrelled.

Proof. Set G = ∏
i∈I Gi and let M ⊆ ΓsG be a compact set. Since e∗

i :ΓsG → ΓsGi is continuous for all i, also e∗
i (M) is

compact in ΓsGi and therefore equicontinuous. By Lemma 2.8, there are elements i1, . . . , in ∈ I such that ϕ ◦ ei = 0 for all
ϕ ∈ M and all i �= i1, . . . , in . Take any filter F which converges to 0 in G . Then pi(F ) converges to 0 in Gi , where pi denotes
the projection, and therefore M(ei(pi(F ))) = e∗

i (M)(pi(F )) converges to 0 for all i. Choose a zero neighbourhood U in T.
Then there is a zero neighbourhood V in T such that nV = V + · · · + V ⊆ U . Then there is a set F ∈ F such that

M
(
ei1

(
pi1 (F )

)) + · · · + M
(
ein

(
pin (F )

)) ⊆ nV ⊆ U .

Take now any ϕ ∈ M and x ∈ F . Then we have

ϕ(x) =
∑
i∈I

e∗
i (ϕ)(xi) =

∑
i∈I

ϕ ◦ ei(xi) =
n∑

j=1

ϕ ◦ ei j (xi j ) =
n∑

j=1

ϕ
(
ei j

(
pi j (x)

)) ∈ U

and so M(F ) ⊆ U . �
Locally quasi-convex topological groups were studied in [2]. Since they will be of importance in the sequel, we introduce

them here as well as the locally quasi-convex modification.
A subset A of a topological group G is called quasi-convex if for each x ∈ G \ A there is a character ϕ ∈ Γ G such that

ϕ(A) ⊆ T+ while ϕ(x) /∈ T+ . Furthermore, G is called locally quasi-convex if it has a zero neighbourhood base consisting of
quasi-convex sets. As it turns out each Hausdorff topological group G is locally quasi-convex if and only if it is embedded
(see [4, 8.4.7]).

If G is a convergence group, then the finest locally quasi-convex topology on G which is coarser than the convergence
structure of G is called the locally quasi-convex modification of G and the resulting topological group is denoted by τ (G). In
order to give an explicit description thereof, for subsets A ⊆ G and H ⊆ Γ G we define

A◦ = {
ϕ ∈ Γ G: ϕ(A) ⊆ T+

}
and

H = {
x ∈ G: H(x) ⊆ T+

}
.

In this terminology A is quasi-convex if and only if A = A◦ .

Theorem 2.10. Let G be a convergence group. Then

B := {
H: H ⊆ Γ G equicontinuous

}
is a zero neighbourhood base of the locally quasi-convex modification of G.

Proof. Clearly B is a filter basis consisting of symmetric sets and, if H is an equicontinuous subset of Γ G containing 0,
then H + H is also equicontinuous and

(H + H) + (H + H) ⊆ H.

Therefore B is the zero neighbourhood basis of a locally quasi-convex topology τ on G . If F converges to 0 in G , then H(F )

converges to 0 in T and so there is some F ∈ F such that H(F ) ⊆ T+ . This gives F ⊆ H and so the zero neighbourhood
filter of τ is contained in F which gives the continuity of the identity mapping id : G → (G, τ ). Finally, if μ is any locally
quasi-convex topology on G coarser than that of G and V is any quasi-convex zero neighbourhood in (G,μ), then V ◦
is an equicontinuous subset of Γ (G,μ), and therefore of Γ G . Consequently, V = V ◦ ∈ B and so id : (G, τ ) → (G,μ) is
continuous. �
Proposition 2.11. If G is a convergence group then Γ G = Γ τ(G) and both character groups share the same equicontinuous subsets.

Proof. Clearly each equicontinuous subset of Γ τ(G) is equicontinuous in Γ G . On the other hand, if H is an equicontinuous
subset of Γ G , then H is a zero neighbourhood of τ (G) and so H◦ is an equicontinuous subset of Γ τ(G) containing H . �
Corollary 2.12. A convergence group G is g-barrelled if and only if τ (G) is.
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Proof. It follows from Proposition 2.11 that ΓsG = Γsτ (G) and so the result follows from the second statement in Proposi-
tion 2.11. �
Corollary 2.13. A topological group which carries the final locally quasi-convex group topology with respect to a family of group
homomorphisms from g-barrelled topological groups is g-barrelled.

Proof. An easy argument shows that the final locally quasi-convex group topology is the locally quasi-convex modification
of the final group convergence structure and so the result follows from Proposition 2.7(ii) and Corollary 2.12. �

The concept of g-barrelledness allows us to relate the compact subsets of Γs(G, H) and the equicontinuous subsets
of Γ (G, H). The following two theorems can be thought of as theorems of Banach–Steinhaus type.

Theorem 2.14. Let G and H be convergence groups. If G is g-barrelled and H is locally compact, then each compact subset of
Γs(G,Γc H) is equicontinuous.

Proof. Let M be a compact subset of Γs(G,Γc H) and assume that F → 0 in G . We have to show that M(F ) → 0 in Γc H .
So let H → z in H . Since H is locally compact, H contains a compact set K and M(F )(H) is finer than M(F )(K ). We claim
that M(F )(K ) converges to 0 in T which will give the desired result.

Consider the mapping

T :Γs(G,Γc H) × H → ΓsG

given by T (u, y)(x) = u(x)(y) for all (u, y) ∈ Γ (G,Γc H) × H and all x ∈ G . An easy calculation shows that T is continu-
ous and so T (M × K ) is compact in ΓsG . Since G is g-barrelled, T (M × K ) is equicontinuous in Γ G . Hence M(F )(K ) =
T (M × K )(F ) → 0 in T as required. �
Theorem 2.15. Let G be a g-barrelled convergence group and L a Hausdorff locally quasi-convex topological group. Then the compact
subsets of Γs(G, L) are equicontinuous.

Proof. Since L is a Hausdorff locally quasi-convex topological group, it is an embedded convergence group, and therefore
isomorphic to a subgroup of ΓcΓc L. Set H = Γc L. Then H is locally compact. So if M is a compact subset of Γs(G, L), it
can be considered a compact subset of Γs(G,Γc H) and is therefore equicontinuous by Theorem 2.14. Clearly M is then
equicontinuous in Γ (G, L). �

Since the weak convergence structure and the continuous convergence structure coincide on equicontinuous sets by
Proposition 2.3, Theorem 2.15 gives conditions under which each compact subset of Γs(G, L) is even compact in Γc(G, L).

3. Joint continuity of bihomomorphisms

In this section we make use of the results of the previous section to extract the joint continuity of separately continuous
bihomomorphisms in several special cases. A key observation here is the following:

Proposition 3.1. Let G, H and L be convergence groups and u : G × H → L be a separately continuous bihomomorphism. Then the
mapping

uH : H −→ Γs(G, L)

defined by uH (y)(x) = u(x, y) is continuous. Furthermore, u is jointly continuous if and only if

uH : H −→ Γc(G, L)

is continuous.

Proof. The first part is clear. Now from the universal property of the continuous convergence structure, uH is continuous if
and only if the mapping

ω ◦ (idG × uH ) : G × H → L

is continuous. But evidently ω ◦ (idG × uH ) = u and so the claim follows. �
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Proposition 3.2. Let G, H and L be convergence groups such that the compact subsets of Γs(G, L) are equicontinuous. Assume further
that u : G × H → L is a separately continuous bihomomorphism. Then u is jointly continuous in either of the following two cases:

(i) H is locally compact.
(ii) G and H are first countable and L is topological.

Proof. (i) By Proposition 3.1 it is sufficient to show that uH : H → Γc(G, L) is continuous. By the same proposition,
uH : H → Γs(G, L) is continuous. Let F → y0 in H . Then uH (F ) converges to uH (y0) in Γs(G, L). Since F contains a com-
pact set, uH (F ) contains a compact subset of Γs(G, L). By assumption, this set is equicontinuous and so uH (F ) converges
to uH (y0) in Γc(G, L) by Proposition 2.3.

(ii) We first show that uH is sequentially continuous: If (yn) is a sequence which converges to y0 in H , then B =
{yn: n ∈ N} ∪ {y0} is a compact subset of H and therefore uH (B) is a compact subset of Γs(G, L) and hence equicontinuous.
Again, this implies that (uH (yn)) converges to uH (y0) in Γc(G, L), and so uH is sequentially continuous.

Next we show that u is sequentially continuous. Let (xn, yn) be a sequence in G × H which converges to (x0, y0) in
G × H . Since uH is sequentially continuous, (uH (yn)) converges to uH (y0) in Γc(G, L) and so (u(xn, yn)) = (uH (yn)(xn))

converges to u(x0, y0) = uH (y0)(x0) in L. Thus u is sequentially continuous.
Since G and H are first countable so is G × H [4, 1.6.8] and, since L is topological, u is continuous. �
From Propositions 3.1, 3.2 and Theorem 2.15 we get the main result of this section:

Theorem 3.3. Let G and H be convergence groups, G g-barrelled, and let L be a Hausdorff locally quasi-convex topological group. Then
every separately continuous bihomomorphism u : G × H → L is jointly continuous in either of the following cases:

(i) H is locally compact.
(ii) G and H are first countable.

Part (ii) of the above theorem yields joint continuity results for first countable convergence groups. It uses duality
arguments. One can also obtain joint continuity in first countable situations using standard Baire category techniques.

Proposition 3.4. Let G and L be topological groups, G Baire, and let H be a first countable convergence group. Then each separately
continuous bihomomorphism u : G × H → L is jointly continuous.

Proof. Since u is separately continuous, it suffices to show that u is continuous at (0,0). So assume that F converges to 0
in H . Since H is first countable, there is a filter V ⊆ F with a countable base (Vn) which also converges to 0. Take a closed
zero neighbourhood W in L. For all n ∈ N consider the set

An = {
x ∈ G: u(x × Vn) ⊆ W

}
.

We first claim that
⋃

An = G: For any x ∈ G , u(x,0) = 0. Since u(x, ·) is continuous, there is an n ∈ N such that
u(x × Vn) ⊆ W . This means x ∈ An .

Next, we show that each An is closed. For all y ∈ Vn we have u(An × y) ⊆ W . Since u is separately continuous, we have

u(An × y) ⊆ u(An × y) ⊆ W = W

and so u(x, y) ∈ W for all x ∈ An and all y ∈ Vn . This gives u(x × Vn) ⊆ W for all x ∈ An and therefore An ⊆ An .
Since G is a Baire space, some Ak has an interior point x0 and so there is a zero neighbourhood U in G such that

x0 + U ⊆ Ak . This gives

u(x0 + x, y) ∈ W for all x ∈ U , y ∈ Vk.

Furthermore, there is a zero neighbourhood V in H such that u(x0 × V ) ⊆ W and so

u(x0, y) ∈ W for all y ∈ V .

Finally we get, for all x ∈ U and y ∈ Vk ∩ V ,

u(x, y) = u(x0 + x, y) − u(x0, y) ∈ W − W

which shows that u is continuous at (0,0). �
One factor which makes the results of Theorem 3.3 strong is the size of the class of g-barrelled convergence groups.

Even if one restricts oneself to topological groups, this class remains large. As seen in the previous section, it includes all
countably Čech-complete topological groups and is closed under the formation of arbitrary products and inductive limits.
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Examples 3.5. (i) Let G be an inductive limit of locally compact topological groups, H a locally compact convergence group
and L a Hausdorff locally quasi-convex topological group. Then every separately continuous bihomomorphism u : G × H → L
is jointly continuous.

(ii) Let G be a convergence inductive limit of complete metrizable topological groups, H a metrizable topological group
and L a Hausdorff locally quasi-convex topological group. Then every separately continuous bihomomorphism u : G × H → L
is jointly continuous.

It should be mentioned that, in general, inductive limits depend very heavily on the setting in which they are taken.
It is a consequence of Proposition 2.7 and Corollary 2.12, however, that the convergence group (or topological group or
locally quasi-convex group) inductive limit of g-barrelled groups is also g-barrelled. Thus in Example 3.5(i), G may be any
appropriate inductive limit.

Another factor which adds scope to the results of Theorem 3.3 and Proposition 3.4 is the fact that, for convergence
groups, the notions of local compactness and first countability are not as restrictive as for topological groups. Convergence
group inductive limits preserve both properties. Also, for any topological group G , the continuous character group Γc G is
locally compact.

Examples 3.6. (i) Let G be a convergence inductive limit of Baire groups, H a convergence inductive limit of metrizable
topological groups and L any topological group. Then every separately continuous bihomomorphism u : G × H → L is jointly
continuous.

(ii) Let G be a convergence inductive limit of complete metrizable topological groups, H and L topological groups, L Haus-
dorff and locally quasi-convex. Then every separately continuous bihomomorphism u : G × Γc H → L is jointly continuous.

(iii) Let G and H be separable metrizable topological groups, G complete and L any topological group. Then any sepa-
rately continuous bihomomorphism u : G × Γc H → L is jointly continuous.

(iv) Let G , H and L be topological groups, G nuclear and L Hausdorff and locally quasi-convex. Then every separately
continuous bihomomorphism u :Γc G × Γc H → L is jointly continuous.

Remarks 3.7. Results on joint continuity can be viewed as results on triples (G, H, L) of convergence or topological groups.
In such situations relaxing restrictions on one variable often requires tightening them on another. Consider the following:

(i) In [12] it is shown that separate continuity implies joint continuity if G and H are both countably Čech complete
and L is metrizable. This is a relaxation of the condition of the local compactness of H in Theorem 3.3(i) but is much more
restrictive on G and L.

(ii) One can easily generalize the notion of sequential barrelledness defined in [10] and [14] to convergence groups.
A convergence group G is sequentially barrelled if every convergent sequence in ΓsG is equicontinuous. This is a large class
of groups which includes all g-barrelled convergence groups and all Baire groups. It is possible to imitate the proof of
Theorem 3.3 to obtain joint continuity for G first countable and sequentially barrelled, H first countable and L a second
countable Hausdorff locally quasi-convex topological group. This is a relaxation of the conditions on G but is much more
restrictive on L.

(iii) If G is assumed only to be g-barrelled, it does not appear that one can relax the condition of local compactness on H
very far. If G is a complete metrizable topological group which is Pontryagin reflexive but not locally compact, and H = Ĝ
is its Pontryagin dual, then G is g-barrelled and H is a k-space and k-group [9], but the evaluation mapping ω : G × H → T
is not jointly continuous [13].
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