Here we report that this modification also alters the Heme planarity and accessibility. Using the known x-ray crystallographic structure of HRP, two 3D models of HRP representing the native and modified enzyme, were constructed. Molecular dynamics simulations showed that upon modification, the accessibility of the heme prosthetic group to the substrates increased from 39.6 to 99.7 Å². Moreover, the Heme Planarity also affected significantly. While in the native structure the heme plane is concave and curves toward the proximal His, in the modified enzyme the heme assumes a planar conformation and shifts the position of the proximal His. This change causes the heme iron to become more exposed on the distal side of the porphyrin plane and so more accessible to the peroxide substrate. This result agrees well with the experimentally observed enhanced reactivity of the modified enzyme to the peroxide substrates.

2993-Pos Board B40

Thermodynamic and Structural Analysis of Domain Interactions in PKR
Jennifer VanOudenhove1, Eric Anderson1, Susan Krueger2, James Cole1.
1University of Connecticut, Storrs, CT, USA, 2NIST Center for Neutron Research, National Institutes of Standards and Technology, Gaithersburg, MD, USA.

PKR (protein kinase R) is induced by interferon and is a key component of the innate immunity antiviral pathway. Upon binding dsRNA, PKR undergoes autophosphorylation reactions that activate the kinase, leading to phosphorylate the translational initiation factor eIF2α, thus inhibiting protein synthesis in virally-infected cells. PKR contains a dsRNA binding domain (dsRBD) and a kinase domain. The dsRBD is composed of two tandem dsRNA binding motifs. An autoinhibition model for PKR has been proposed whereby dsRNA binding activates the enzyme by inducing a conformational change that relieves the latent enzymatic activity. We report on the dsRNA and the kinase. We have probed the stability of the PKR domain contacts by comparing the relative stability of isolated domains with the same domain in the context of the intact enzyme using equilibrium chemical denaturation experiments. The two dsRNA binding motifs fold independently, with the C-terminal motif exhibiting greater stability. The kinase domain is stabilized by about 1.5 kcal/mol in the context of the dsRNA and we detect a low-affinity interaction between the kinase domain and dsRBD constructs in solution, indicating that these domains interact weakly. We have observed that the stability of the PKR domain contacts in solution occurs within a range of open and compact conformations. Our results do not support the autoinhibition model where latent PKR is locked in a stable, closed conformation and the dsRBD interacts with the kinase domain to block substrate binding.

2994-Pos Board B41

Substrate-induced Conformational Transition Of The CBS-PPase Of
Moorella thermoaceta Is Regulated By pH And Adenine Nucleotide Binding

Joonas Jämsen1, Alexander A. Baykov2, Reijo Lahti1.
1University of Turku, Turku, Finland, 2University of Moscow, Moscow, Russian Federation.

CBS domains are putative energy-sensing modules, form a dimer in solution and have been shown to bind adenine nucleotides in a hydrophobic central cavity. Point mutations in either repeat can cause hereditary disorders, depending on the protein in which they are embedded. Inorganic pyrophosphatases (PPases), on the other hand, are ubiquitous phosphohydrolases which break down pyrophosphate (PPi) and release the resulting energy as heat into solution. Previously we characterized a CBS-PPase from Moorella thermoaceta, containing a CBS repeat in its C-terminus. We showed that it has an absolute requirement for transition metal ions for maximal activity, is a dimer in solution and is regulated by adenine nucleotides where AMP and ADP inhibit activity, while ATP activates (2-fold). During the study, we noticed a lag in the time-course of mtCBS-PPase, where introduction of substrate to the reaction causes a putative conformational transition from inactive to active state. In the current study we characterized the lag in different conditions and with different methods, such as steady state kinetics, transient kinetics, fluorescence titration, filtration, equilibrium dialysis, and absorbance spectroscopy.

2995-Pos Board B42

Interaction Among The Stalk Modules Of Thrombospondin-1

Yuanxuan Li1, Douglas S. Annis, Deane F. Moshesh.
University of Wisconsin-Madison, Madison, WI, USA.

Thrombospondin-1 is a trimeric multi-domain calcium-binding glycoprotein that is involved in important biological processes, such as angiogenesis, signal pathway, tumor formation and synaptogenesis. The subunit is composed of an N-terminal module, oligomerization module, the stalk modules, which including von Willebrand Factor type-C (vWF-C) module, three propeptide or thrombospondin type 1 (TSR) modules, and three EGF-like modules, and finally the C-terminal calcium-binding wire module and the lectin-like module. Recent research indicates that conformational changes in the C-terminal modules influence ligand binding to the N-terminal modules. The second and the third EGF-like modules have been shown to interact closely with both the wire and the lectin-like modules. My work focuses on the interaction among the stalk modules and if they can propagate conformational changes between C-terminal and N-terminal elements of TSR-1 and interact with other extracellular molecules. Series of recombinant proteins have been generated based on the sequence of stalk modules. We have applied biophysical methods including far UV circular dichroism, intrinsic fluorescence, differential scanning calorimetry, isothermal titration calorimetry, and competitive ELISA. We have found there are strong interactions among the three EGF-like modules. There is one calcium binding site with in the second EGF-like module, the calcium concentration influences the stability of all the three modules from the ITC results. Based on DSC, far UV CD and fluorescence results, there are also strong interaction among the three TSRs and between TSRs and EGF-like modules. We did not find evidence for the interaction between vWF-C and TSR modules. Overall, we have demonstrated that there are strong interactions among the stalk modules of TSR-1, which help relay conformational information between the N-terminal and C-terminal parts of the protein.

2996-Pos Board B43

pH Induced Conformational And Structural Alterations On Choline Oxidase

Azadeh Hekmat, Ali Akbar Saboury, Adeleh D'isvalar.
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran, Islamic Republic of.

Choline oxidase (ChOx) catalyzes the four-electron oxidation of choline to glycine betaine (GB). This reaction is of considerable importance for medical and biotechnological reasons; due to the accumulation of GB has been observed in a number of human pathogenic bacteria and the cytoplasm of many plants in response to hyperosmotic and temperature stresses, hence resulting in the prevention of dehydration and cell death. To complete the investigation, we employ different pH values subsequently measuring the function and activity of choline oxidase. Our results demonstrated that a reversible effect of pH on the ionization of amino acid residues at the active center of choline oxidase was observed near the optimum pH (8). The maximum inactivation of choline oxidase took place in the pH ranges 3.6 and 9.1 in which irreversible changes in the structure occurs leading to the enzyme inactivation. Furthermore, at higher pH a transition from α-helix to β-structure was appeared. It is interesting to point out that after lower pH the content of α-helix structure was increased. In addition, results of thermal denaturation of the enzyme at different pH by far-UV CD evaluated that ChOx has the most stability structure at pH 8 and the most instability occur at higher pH values. Altogether low and high pH caused significant alteration on secondary and tertiary structures and activity of choline oxidase.

2997-Pos Board B44

Regulation of mGluR potentiation by Pin1 peptidyl-prolyl isomerase

Alesandr Milshiteyn.
HHMI/Brandeis University, Waltham, MA, USA.

Group 1 metabotropic glutamate receptor (mGluR1/5) signaling has been implicated in mechanisms of cortical development, neurodegenerative diseases, associative learning, addiction and neural plasticity. These receptors are localized to the post-synaptic density and upon activation evoke a slow inward current. Strong stimuli, such as seizures, activation of dopamine receptors by amphetamines or exposure to new environment, act via the TrkB kinase cascade to phosphorylate the C-terminal domain of mGluR5 and result in subsequent prolonged potentiation of the mGluR-mediated slow inward current. This phosphorylation dependent signaling pathway has been shown to rely on the rapid upregulation of an immediate early gene coding for Homer 1 protein and its interaction with a specific proline-directed phosphorylation site in the mGluR. Homer 1a was believed to act via simple competition with other Homer family proteins that contain a coiled-coil multimORIZATION domain, absent in Homer1a, thus disrupting physical receptor-receptor couplings maintained by these proteins. More recently, electro-physiological experiments performed at Dr. Worley’s lab have indicated that catalytic action of Pin1 peptidyl-prolyl isomerase is essential in the regulation of this pathway. However, the actual mechanism of this three-component switch remains unknown. We are using NMR techniques to investigate the molecular basis for Pin1-mediated regulation of mGluR5. Our results so far suggest a kinetic-trap based switching mechanism for mGluR5-mediated current potentiation.