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Analysing the accessibility disparity between different travel modes is recognised as an efficient way to
assess the environmental and social sustainability of transport and land use arrangements. Travel times
by different travel modes form an essential part of such an analysis. This paper aims to assess the com-
parability of different methods for calculating travel time by different travel modes. First, we briefly
review the methods used in previous studies and identify different typical approaches, which we then
compare. We use three computational models respectively for car and public transport (PT), imple-
mented in our case study area, the capital region of Finland. In the car models, (1) the simple model
ignores congestion and parking in travel time calculation; (2) the intermediate car model accounts for
congestion but ignores parking; and (3) the more advanced car model takes into account all parts of
the journey, including congestion and parking. For PT, (1) the simple model accounts for transit routes
but ignores schedules; (2) the intermediate model incorporates schedule data in a simplistic way; and
(3) the more advanced model adopts a door-to-door approach where true schedules (incl. congestion)
and realistic route combinations are accounted for. Our results show that absolute differences in car
and PT travel times are notable in the Greater Helsinki area, no matter which models are used for com-
parison. Modal travel time disparity appears smallest in the city centre area. We conclude that using con-
ceptually corresponding models for car and PT travel time calculations is the key to achieving a reliable
analysis of modal accessibility disparity. A door-to-door approach in travel time calculations (adopted in
the most advanced models) also makes the results truly comparable in absolute terms. Finally, the more
advanced the applied methods are, the more data hungry the analysis is. Here, recent developments in
open data policies among urban transport data producers become very helpful.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-SA license.  
1. Introduction

Accessibility analysis is considered an appropriate way to assess
interactions between transportation and land use (Bertolini et al.,
2005; Silva and Pinho, 2010). Different distance measures typically
form an integral part of accessibility indicators and travel time is
often considered to be an intuitive measure that corresponds well
to people’s perceptions of friction of distance (Frank et al., 2008;
Mavoa et al., 2012). Traditionally travel time has been calculated
using the privately owned car as the subject but concern over
the environmental and social sustainability of land use and trans-
portation solutions has in recent years highlighted the need to
incorporate different modes of transport in accessibility analyses.
Comparing the accessibility provided by different travel modes
and identifying modal accessibility disparities can provide a useful
approach in assessing the degree of auto-orientation in the urban
structure (Kawabata, 2009). Given the challenges of sprawl in
many urban regions (EEA, 2006; Hepinstall-Cymerman et al.,
2013) and the related development of car dependency (Filion,
2000), this is particularly topical. Modal comparisons are also
interesting from the social equity point of view: people who are
not driving for financial, physical or lifestyle-related reasons may
face considerable difficulties in accessing services and opportuni-
ties (Kawabata, 2003; Martin et al., 2002).

The few existing studies on modal accessibility disparity show
that in the majority of US and European urban regions private
car provides much better levels of access than public transport
(Hess, 2005; Kawabata, 2003; Kawabata and Shen, 2007; Levinson,
1998; Shen, 2001; Silva and Pinho, 2010). Hong Kong seems to be
the only exception in that accessibility between traffic zones was
actually found to be much better by public transport than by car
(Kwok and Yeh, 2004). The comparability of these studies remains
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questionable though, given that the spatial scale of analysis varies
between studies and the accessibility analyses are based on differ-
ent types of methods and data. In some cases, travel times are pro-
vided by the authorities (and it remains unclear how these were
produced) whereas in other cases travel time calculations form
an integral part of the analysis. Even within each of the above men-
tioned papers the modal comparison might prove problematic be-
cause methods used to produce accessibility values for the
different modes are either not reported in detail or are incompati-
ble (see also Benenson et al., 2011). Indeed, several simplifying
assumptions are typically made when modelling either car or pub-
lic transport travel times. Yet, making solid decisions on data,
parameters and assumptions underlying travel time analyses is
of fundamental importance for the reliability of the results.

In this paper, we evaluate the comparability of different meth-
ods for calculating travel times by car and by public transportation.
We identify three travel time calculation models for both these tra-
vel modes based on approaches presented in the literature. We
implement these models for Greater Helsinki and to a varying de-
gree include the typical ‘‘simplifying assumptions’’ that are com-
monly used in travel time analysis. The different models are then
used for measuring travel times from all the inhabited grid squares
of Greater Helsinki (n � 6900) to relatively equally distributed
real-life points of interest (the 59 public libraries of the region).
We compare the results of different models, assessing their suit-
ability for studies that focus on modal accessibility disparity. A
simple travel time ratio between the analysed travel modes is used
to measure the modal accessibility disparity. We aim at under-
standing how the different analysis methods affect travel times
and trip distances on the one hand, and the range and spatial dis-
tribution of the modal travel time ratio on the other.
2. Different approaches to measuring travel time

2.1. Travel time by private car

Many countries maintain digital road databases with road
centreline geometries and extensive attribute information (speed
limits, one-way streets, etc.). Network analysis tools in standard
GIS software provide an easy way to conduct car drive-time anal-
ysis based on such data: road segment length divided by the
respective speed limit provides an estimate of ‘‘free-flow’’ drive-
through time for the segment, and the optimal route between gi-
ven origins and destinations is calculated using a shortest path
algorithm. The problem with such an approach is that it ignores
congestion, time spent to find a parking space and necessary walk-
ing times to and from the parking space – all of which may sub-
stantially alter travel times in urban settings (Christie and Fone,
2003; Martin et al., 2008; Yiannakoulias et al., 2013).

There are studies that in some way incorporate congestion or
other local conditions when determining travel speeds (e.g. Hess,
2005; Lovett et al., 2002). Often the ways in which this is realised
are not reported in detail – rather the authors state that they have
used ‘‘realistic average travel speeds’’ but the grounds for these
estimates are not described. Christie and Fone (2003) tested how
analysis results on hospital access in Wales are affected if travel
speeds underlying travel time calculations are altered and con-
cluded that the measurements are highly sensitive to the assumed
travel speeds. Yiannakoulias et al. (2013) tested the effect of
including congestion values and turn penalties in travel time calcu-
lations in Edmonton and suggested that absolute travel times are
drastically changed by including these factors while gravity-based
relative accessibility measures are more robust to travel time met-
rics. The fact that absolute travel times are sensitive to changes in
impedance values is hardly surprising as such, but the above exam-
ples provide a good reminder of how important it is to try to find
the most appropriate impedance values for travel time analysis.

2.2. Travel time by public transport

Unlike car and other personal modes of transport, public trans-
port is bound to predefined routes and schedules that depend on
the time of day and the day of the week and are subject to frequent
alteration. Typical shortcomings in public transport travel time cal-
culations are simplifying assumptions related to travel speeds
along the route and transfer times between different lines (Lei
and Church, 2010). Given the lack of detailed schedule information,
average travel speeds are typically assigned to the whole route,
ignoring differences between different parts of the route (Liu and
Zhu, 2004; Moniruzzaman and Páez, 2012; O’Sullivan et al.,
2000; Peipins et al., 2011). Similarly, transfer waiting times are
either ignored altogether or assumed to be constant in all transfers,
for example one half of the headway time (time interval between
vehicle departures) (Hess, 2005; Mavoa et al., 2012; O’Sullivan
et al., 2000; Peipins et al., 2011; Tribby and Zandbergen, 2012).
Furthermore, few studies in reality incorporate scheduled arrival
or departure times in the analysis (however, see Lei and Church,
2010).

Standard GIS software rarely provide adequate tools and data
structures for multi-modal routing that would be able to handle
the temporal elements of public transport services (Martin et al.,
2008). However, the recent development of data formats (such as
the General Transit Feed Specification (GTFS)) has opened up
new opportunities, and electronic journey-planning services based
on such data are now also provided for transit users (cf. car route
search sites). Although the potential of these data formats and
web-based services from the research point of view was antici-
pated over a decade ago (Martin et al., 2002), their use for research
purposes has only recently begun (e.g. Eluru et al., 2012; Jäppinen
et al., 2013; Lei and Church, 2010).

2.3. A door-to-door approach

Some studies take into account every stage of a journey be-
tween its origin and destination when analysing travel times
and distances (Benenson et al., 2011; Lei and Church, 2010; Liu
and Zhu, 2004). In this paper, we define this ‘‘door-to-door ap-
proach’’ as follows (Fig. 1): By car, a door-to-door journey in-
cludes (1) walking from the point of origin to the place where
the car is parked; (2) driving from the parking space to near
the destination; (3) looking for a parking space near the destina-
tion, and, finally, (4) walking from the parking space to the desti-
nation itself (cf. Benenson et al. (2011) whose approach is
otherwise similar but ignores the time needed for finding a park-
ing space (step 3 in our approach)). By public transport, the jour-
ney may be slightly more complicated. The basic parts include (1)
walking from the point of origin to the appropriate stop (‘‘access
time’’); (2) waiting for the transport vehicle to arrive and to de-
part; (3) sitting in the vehicle between the initial and final stops;
and (4) walking from the last stop to the final destination (‘‘egress
time’’). In addition, many public transport journeys include trans-
fers from one route to another, which possibly imply walking
from one stop to another and waiting for the next vehicle to de-
part (see Benenson et al. (2011) and Lei and Church (2010) for
similar approaches).
3. Greater Helsinki as the case study area

The empirical part of this paper takes place in Greater Helsinki,
the capital region of Finland (Fig. 2). Greater Helsinki comprises
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four municipalities and has approximately one million inhabitants.
The highest population densities are found in the city centre of
Helsinki and along suburban railway lines.

In 2008, 39% of daily trips in the Greater Helsinki area were
done by car whereas the share of public transport trips was 26%
(HRT, 2010). The road network of the region relies on a few large
ring roads (west-east) and several radial roads originating from
the city centre of Helsinki (Fig. 2). Congestion during the rush hour
is concentrated on the area inside the inner ring road and on the
radial roads leading to the city centre, and congestion charges
are a hot topic in contemporary urban politics (Välipirtti et al.,
2011). Parking is challenging particularly in the city centre (Kurri
and Laakso, 2002).

The public transport system of Greater Helsinki relies on an
extensive bus network and a few railway lines, complemented by
trams and a metro within the municipality of Helsinki. In total,
there are roughly 600 transit lines in the region (excluding service
lines and night buses). Overall, the current structure of the public
transport network is highly city centre oriented and crosstown
connections are one of the key development areas of public trans-
port planning.

4. Materials and methods

4.1. Study design

In order to test the comparability of travel time analyses by dif-
ferent travel modes, we performed a set of routing analyses for
Fig. 2. Study area. Background map � The City Survey Division of
both car and public transport (Fig. 3). As route origins we used cen-
troids of inhabited grid cells in Greater Helsinki. The alignment of
the 250 m � 250 m cells corresponded to the Grid Database of Sta-
tistics Finland (2012) and the inhabited grid cells were identified
based on building-level population data in SeutuCD 2009 (Table 1).
The routes’ destinations were 59 public libraries, which are one of
the most actively used public services in Finland (Vakkari and
Serola, 2012). Here, the type of destinations was fairly unimpor-
tant, since the primary aim of this paper is to perform methodolog-
ical comparisons – thus, rather than the type of facility, their
spatial distribution was the main criterion for their selection. Pub-
lic libraries are quite evenly distributed in the study area (Fig. 2)
and thus provide a relatively representative sample of different
areas around Greater Helsinki.

We calculated travel times and network distances between all
origins and all destinations, using three different models for each
travel mode, here named as simple, intermediate and advanced
model. We also computed Euclidean distances between all origins
and destination, in order to show how much more complicated
real-life travel routes are in our study area in comparison to Euclid-
ean distances which in many cases are used as accessibility surro-
gates (e.g. Boscoe et al., 2012; Phibbs and Luft, 1995). The chosen
grid cell resolution naturally affects the distance calculations (lar-
ger grid cells leading to increased inaccuracy in results) and we
deemed the 250-m cell to be sufficiently detailed for our purposes.
With this grid cell size, the time needed for computations was rea-
sonable, and yet, the positional error resulting from aggregation of
the building level data was rather minor and did not have consid-
Helsinki, municipalities of Greater Helsinki, HSY, 01.01.2012.



Fig. 3. Workflow of the study.
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erable effect on the accuracy of the distance (and time)
calculations.

We compared travel times and distances between the different
models by calculating their mutual ratios and correlations: For
example, travel times produced by the simple and intermediate
car models (see Section 4.2) were compared for each origin–desti-
nation pair by calculating the ratio between the two. These ratios
were then averaged and the Pearson correlation coefficient was
calculated to reveal how well the values produced by the different
models correlated with each other. Similar assessments were done
between all models, both for travel times and trip distances
(including Euclidean distances).

Finally, travel time ratios between the travel modes (PT travel
times divided by car travel times) were visualised as maps.

4.2. Car models

The simple car model used the national road and street database
Digiroad as the routing network dataset (Table 1). Each road seg-
ment had a speed limit attributed to it, and these speed limits to-
gether with the segment lengths determined the drive-through
time of each segment. Digiroad was also used in the intermediate
car model but the speed limit-based impedances were adjusted to
fit the real-life driving times in the case study area. This was done
by assigning cross roads a deceleration value which was different
for each road class (cf. Määttä-Juntunen et al., 2011; Thériault
et al., 1999; Yiannakoulias et al., 2013). The deceleration values
were derived from floating car measurements (for more on the
floating car method, see Li et al., 2011) where real travel speeds
along different roads of the study area were measured during nor-
mal weekdays in spring and autumn 2009, at different times of the
day (data sources in Table 1). Based on a regression analysis, the
effect of functional road classes and crossroads on travel speeds
was formulated to deceleration values which in this case corre-
sponded to average deceleration during a day (Jaakkola et al., in
press). Crossroads on road classes 1 and 2 (regional main roads/
streets) got a daily average deceleration value of 11.31 s; cross-
roads on road class 3 (local main streets/regional roads) got
9.44 s; and crossroads on road classes 4–6 (collector streets/con-
necting roads, feeder streets and private roads) got 9.36 s. Drive
times were calculated using the Network Analyst extension in Arc-
GIS 10 where the route optimisation was based on the fastest (not
necessarily the shortest) route between all origins and
destinations.

The advanced car model was built on the intermediate model
but it also included the time spent walking from the point of origin
to the parking space at the start of the journey, the time spent
searching for a parking space at the destination, and, finally, the
time spent walking from the parking space to the destination –
in other words, the advanced model used the previously presented



Table 1
Data sources.

Dataset Referencea Description Phase of analysis

Driving speeds Helsinki Region Transport/Helsinki
City Planning Office

Floating car measurements of real-life driving speeds along main
roads

Preparation of intermediate and
advanced car routing data

Parking studies Kurri and Laakso (2002)/Kalenoja
and Häyrynen (2003)

Empirical studies on parking conditions in the Greater Helsinki area
and other city areas in Finland

Preparation of advanced car routing
data

Digiroad Finnish Transport Agency (2011) National road and street database Simple car model
Modified

Digiroad
Jaakkola et al. (in press) Digiroad data modified to correspond to local driving conditions Intermediate and advanced car

models
Public transport

routes
SeutuCD (2009) Geometry of the public transport network in the Greater Helsinki

area
Simple and Intermediate PT model

Average PT route
times

Helsinki Region Transport (2012) Average route times for each public transport route Simple and intermediate PT model

Average PT
headway
times

Helsinki Region Transport (2012) Average headway times for each public transport mode Intermediate PT model

Journey Planner
API

Helsinki Region Transport (2011) Application Programming Interface to Helsinki region public
transportation timetable and route database

Advanced PT model

Population
statistics

SeutuCD (2009) Building-level statistics on population in the study area, aggregated
in 250 � 250 m cells

OD-matrix (origins)

Libraries Helmet libraries Location of public libraries in the Greater Helsinki area OD-matrix (destinations)

SeutuCD (2009). Produced by Helsinki Region Environmental Services Authority.
Helsinki Region Transport (2012). http://www.hsl.fi/EN/timetablesandroutes/Pages/default.aspx.
Helsinki Region Transport (2011). http://developer.reittiopas.fi/pages/en/home.php.

a Finnish Transport Agency (2011). http://www.digiroad.fi/en_GB/.

Table 2
Mode-specific average speeds and transfer times used in the simple and intermediate
PT models.

PT travel
mode

Average speed
(km/h)

Transfer time (average headway time
(min)/2)

Bus 26.3 12.3
Tram 13.3 4.7
Metro 39.9 4.5
Train 54.1 14.9
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door-to-door approach. We used empirical studies on parking con-
ditions in the Greater Helsinki area and other city areas in Finland
to determine the average walking distances between the point of
origin and the parking space and between the parking space and
the destination: in the city centre area the average distance was
defined as 180 m and outside the city centre as 135 m (Kurri and
Laakso, 2002). These were average distances for all types of parking
spaces, and determined based on a survey that was conducted in
May 2000 (most of the answers were gathered on normal week-
days, but part of the answers during a Saturday) (Kurri and Laakso,
2002). We applied these distances both at the beginning of the
journey (distance from the origin to the parking space) and at
the end of the journey (distance from the parking space to the des-
tination). Distances were then transferred as times, using a walking
speed of 70 m/min which is a default value for walking speed in the
Journey Planner route search application (see Section 4.3) (HRT,
2011). The time spent in searching for a parking space at the des-
tination was defined as 0.73 min, which is an average value for on-
street parking on a normal weekday (Kalenoja and Häyrynen,
2003).
4.3. Public transport models

The simple PT model was based on a multimodal network data-
set created in ArcGIS 10. In the dataset, public transport routes and
their associated stops were grouped by travel mode, and each
mode formed its own connectivity group in the network dataset.
These groups were connected to each other through a pedestrian
network represented by the Digiroad data (which contains pedes-
trian roads in addition to roads for motorised transport). The time
needed to cover each pedestrian segment was calculated using a
walking speed of 70 m/min. Connections between the PT network
and the pedestrian network were modelled by straight lines be-
tween each PT stop and the closest edge element along the pedes-
trian network (boarding/exit lines). Travel times by each mode
were calculated based on an average speed of the respective travel
mode (derived from route lengths and approximate route drive-
through times on a normal weekday during the winter schedules)
(Tables 1 and 2). Walking from the origin point to the closest PT
stop and walking from the last PT stop to the final destination were
ignored, and the origin and destination locations were snapped di-
rectly to the closest PT stop. The simple model also ignored transfer
times.

The intermediate PT model used the same network dataset struc-
ture and the same mode-specific average speeds as the simple
model. It differed in that it accounted for transfer times: half a
headway time was added to the in-vehicle travel time when the
first PT vehicle was entered and if transfers occurred from one tra-
vel mode to another. Headway times were mode-specific and
based on average scheduled headway times around the morning
rush hour (8 am) and outside rush hour (12 pm) on a regular week-
day during the winter schedules (Table 2). In the network dataset,
transfer times were assigned to the boarding lines.

The advanced PT model used the Journey Planner API (HRT,
2011), which contains data on up-to-date public transport routes
and schedules in the study area. The PT schedules are planned to
take into account congestion-related delays in route drive-through
times. The databases of the API were queried using tools developed
in-house (see Jäppinen et al., 2013; the source codes of the tools
are available in Github https://github.com/matti/reittihaku). In or-
der to account for the daily variation in schedules, we performed
four route searches between each origin and destination, two dur-
ing the rush hours and two outside the rush hours. Each route
search resulted in three alternative route suggestions and the final
travel times and distances are the average values of these 12 routes
(4 timeslots � 3 route suggestions). The door-to-door approach is
inherently included in the Journey Planner routes, which include
the walk from the origin to the first PT stop, all the necessary PT



Fig. 4. 20-min catchment areas around the main library produced by (a) car models and (b) PT models. Background map � The City Survey Division of Helsinki, municipalities
of Greater Helsinki, HSY, 01.01.2012.
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routes and transfers, and the walk from the last PT stop to the final
destination. All route searches were performed using the winter
schedules and a normal weekday. Route search settings were the
default settings provided by the Journey Planner (e.g., walking
speed 70 m/min) (for more detailed description of default values,
see HRT, 2011).
5. Results

5.1. Model comparisons within each mode

The differences between the models are illustrated in Fig. 4,
where a 20-min catchment area around a selected destination
(the main library) is drawn using all the models (4a: car models;
4b: PT models). In the simple car model, a majority of inhabited
grid cells (5914) is reached within a 20-min drive. Within the same
time, the intermediate car model reaches 1982 cells and the ad-
vanced car model reaches 861 cells. The 20-min catchment areas
in the PT models are much smaller than in the car models but there
are notable differences between the PT models: the simple model
reaches 985 cells, the intermediate model 85 cells and the ad-
vanced, 234 cells.

When looking at trips from all origins to all destinations, corre-
lations between all the models are high and statistically significant
(>0.82**) (Table 3). In the car models, travel times in the advanced
model are on average over twice as long as in the simple model. In



Table 3
Pair-wise comparison of different models: Average ratios between median travel times and trip distances in the different models (Pearson correlations in parentheses).

Simple car Intermediate car Advanced car Simple PT Intermediate PT Advanced PT Euclidean distance

TT TD TT TD TT TD TT TD TT TD TT TD TD

Simple car
TT 1 (1.00**)
TD � (.972**) 1 (1.00**)

Intermediate car
TT 1.76 (.977**) � (.938**) 1 (1.00**)
TD � (.973**) 1.05 (.980**) � (.956**) 1 (1.00**)

Advanced car
TT 2.20 (.976**) � (.934**) 1.24 (.998**) � (.953**) 1 (1.00**)
TD � (.973**) 1.08 (.980**) � (.956**) 1.03 (1.00**) � (.954**) 1 (1.00**)

Simple PT
TT 2.18 (.928**) � (.924**) 1.25 (.903**) � (.914**) 1.02 (.903**) � (.914**) 1 (1.00**)
TD � (.933**) 1.06 (.961**) � (.901**) 1.02 (.942**) � (.897**) 0.99 (.942**) � (.928**) 1 (1.00⁄⁄)

Intermediate PT
TT 3.41 (.954**) � (.969**) 1.94 (.928**) � (.959**) 1.57 (.925**) � (.959**) 1.61 (.953**) � (.967**) 1 (1.00**)
TD � (.955**) 1.00 (.977**) � (.927**) 0.96 (.962**) � (.923**) 0.94 (.962**) � (.925**) 0.95 (.972**) � (.981**) 1 (1.00**)

Advanced PT
TT 3.53 (.869**) � (.855**) 2.01 (.843**) � (.847**) 1.62 (.847**) � (.847**) 1.67 (.888**) � (.861**) 1.04 (.878**) � (.861**) 1 (1.00**)
TD � (.938**) 1.19 (.955**) � (.912**) 1.14 (.939**) � (.910**) 1.11 (.939**) � (.946**) 1.14 (.960**) � (.962**) 1.20 (.962**) � (.919**) 1 (1.00**)

Euclidean distance
TD � (.948**) 0.72 (.974**) � (.916**) 0.69 (.963**) � (.913**) 0.68 (.963**) � (.907**) 0.69 (.955**) � (.962**) 0.73 (.973**) � (.830**) 0.62 (.937**) 1 (1.00**)

TT = Travel time.
TD = Travel distance.
** Correlation is significant at the 0.01 level (2-tailed).
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Fig. 5. Spatial distribution of travel time ratios in the (a) simple car and simple PT models; (b) intermediate models and (c) advanced models. Note that class intervals vary
between maps. Background map � The City Survey Division of Helsinki, municipalities of Greater Helsinki, HSY, 01.01.2012.
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comparison to the intermediate model, the advanced model travel
times are less than 25% longer. Differences in trip distances are, at
the most, 8% (advanced vs. simple car model).

In the PT models, travel times in the advanced model are nearly
70% longer than in the simple model. In comparison to the inter-
mediate model, the advanced model travel times are 4% longer.
Differences in trip distances are, at the most, 20% (advanced vs.
intermediate PT model).

Euclidean distances are around 30% shorter than trip distances
along the road network in all the models. The biggest difference
found was between the advanced PT model and Euclidean dis-
tances: Euclidean distances account for up to 62% of trip distances
in the advanced PT model.
5.2. Intermodal model comparisons

When travel modes are compared to each other, the largest dif-
ferences in average travel times are found between the advanced
PT model and the simple car model (PT travel times over 3.5 times
as long as car times) (Table 3). When the supposedly conceptually
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corresponding models are compared (i.e. simple PT vs. simple car;
advanced PT vs. advanced car), differences in average travel times
are smallest between the advanced models (PT travel times on
average are 1.62 times longer than car travel times). Among the
simple models the average travel times are 2.18 times longer by
PT and among intermediate models 1.94 longer by PT.

In trip distances the largest difference between the travel
modes is found between the advanced PT model and the simple
car model (1.19 times longer trips in the PT model). When the cor-
responding models are compared, the largest differences are found
between the advanced models (on average 11% longer distances by
PT).

The spatial distributions of modal travel time ratios are shown
in Fig. 5((a) simple models; (b) intermediate models; (c) advanced
models). The grid cell values reveal how much longer PT travel
times are on average when looking at journeys to all destinations
from the respective origin cell.

The smallest differences between the simple car and simple PT
models are concentrated along the railway lines, meaning that
the PT travel times from these areas to all destinations are at
the maximum twice as long as car travel times. Southern parts
of the city centre area are characterised by smaller differences
but otherwise the city centre area is a mixture of high and low
ratios, which means that in some parts of the city centre the aver-
age travel times by PT are up to 3.6 times longer than travel times
by car. In the intermediate models, areas along the ring roads and
in the inner city are characterised by high travel time ratios.
Smaller values are found along the seashore in particular. In the
advanced models, the city centre area has a considerable concen-
tration of low ratios, meaning that in these models PT travel
times are fairly competitive in relation to car travel times in the
city centre. Other areas of low differences are found along the
railway lines. The largest differences are concentrated along the
edges of the study area, indicating that travelling by PT from
these areas to the destinations is much slower than travelling
by car.

Mean travel times are longer by public transport (36.1–
55.7 min) than by car (16.6.–34.4 min), no matter which models
are used for comparison (Fig. 5, embedded tables). Travel times
in the intermediate models are longer than in the simple models,
and, correspondingly, the advanced models produced longer travel
times than the intermediate models. Mean trip distance, in turn,
appears shorter in the intermediate PT model in comparison to
its corresponding car model (18.3 km vs. 19.4 km, respectively).
Furthermore, the mean distance in the intermediate PT model is
shorter than in the simple PT model (18.3 km vs. 19.7 km, respec-
tively). For comparison, the mean Euclidean distance is 13.5 km
(standard deviation 7.0).
5.3. Travel time to the closest destination in the different models

Cumulative travel time curves show how much time it takes for
the city’s residents to get to their closest destination (Fig. 6).
According to the simple car model, 95% of residents reach their
closest destination in less than 5 min. The corresponding values
in the intermediate and advanced car models are 9 min and
15 min, respectively. The simple PT model suggest that 95% of
the population reach their closest destination in less than 9 min,
while the corresponding value in both the intermediate and ad-
vanced PT models is 21 min.

Differences in trip distances among the models are much smal-
ler and not shown as figures.
6. Discussion

6.1. The comparability of travel modes

Advanced GIS methods, the availability of open data sources
and increasing processing capacity allow accessibility analyses to
be relatively easily incorporated into scientific work and practi-
cal-level planning. With more modelling methods available, it is
increasingly important to make sound methodological choices
when conducting such analyses.

As we have demonstrated, it is essential to use conceptually
corresponding models when comparing travel times between tra-
vel modes. Modal comparison based on conceptually different
models (e.g. advanced PT vs. simple car) may result in unrealisti-
cally large differences; in our case study area, public transport
might even appear to provide a much better level of accessibility
than the private car (cf. simple PT vs. advanced car in Fig. 6), which
is seldom realistic in the Greater Helsinki area. If travel times are to
be analysed in absolute terms, the approach taken by the more ad-
vanced models presented in this paper is more reliable than the ap-
proaches in the simple and the intermediate models: In PT
journeys, access and egress times and delays related to transfers
may make up a considerable share of the total travel time. Further-
more, average speeds used by the simple and intermediate PT
models ignore the effect of urban structural variables on speeds
in different parts of the urban region. Similarly in the car models,
congestion and time necessary for parking make the journeys last
considerably longer and affect route choices too.

Travel time in urban surroundings is to a high degree dependent
on the day of week and time of day (Lei and Church, 2010): thus,
during weekdays and weekends and during rush hours and outside
them the disparities between travel modes might appear some-
what different. At the very least, the model elements in the concep-
tually corresponding models should thus be based on the same day
of week (as was the case in all our models). Indeed, the advanced
models would allow a more detailed temporal analysis of accessi-
bility disparity. The advanced PT model takes into account exact
departure and arrival times and differences in route schedules that
have been adjusted to traffic conditions at different times of day.
Similarly, the deceleration values in the intermediate and ad-
vanced car model could be adjusted to correspond to rush/non-
rush hours. In our case, data on parking conditions (walking dis-
tances and search times) were not detailed enough to allow for a
temporal distinction but should such data be available, a temporal
comparison of accessibility disparity could be carried out. This
would definitively be an interesting theme for further examination.
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One common simplification in public transport travel time
modelling is the use of half headway time as a surrogate for trans-
fer-related waiting time. Results from our study area show that the
intermediate model (applying this assumption) clearly underesti-
mates travellers’ ability to optimise their journey: travel times on
short journeys are considerably longer in the intermediate PT mod-
el than in the advanced PT model (cf. Fig. 6), and one logical expla-
nation is that transfer times in the advanced model – based on true
schedules – are likely to be shorter than the half headway time
would suggest. Owing to this, modal comparisons based on the
intermediate models suggest unrealistically large modal disparities
on short journeys.

As our results show, travel times are much more sensitive to the
underlying model than trip distances. Travel times within each tra-
vel mode get longer as the number of associated model elements
(restricting rules) in the model grows. In terms of trip distances
the effect of additional restricting rules may be different: PT trip
distances were shorter in the intermediate than in the simple mod-
el, mainly because the simple model can ‘‘afford’’ to make longer
trips within the same time, as transfers between modes have no
cost associated with them.

6.2. Findings on accessibility disparity

In the Greater Helsinki area, absolute differences in travel times
between travel modes are notable – no matter which models are
used for comparison. When conceptually corresponding models
are compared, the relative modal differences are quite similar in
the simple and intermediate models but considerably smaller in
the advanced models.

These results partly challenge some recent findings: Benenson
et al. (2011) found in Tel Aviv that the observed accessibility gap be-
tween travel modes tends to grow if public transport analysis is done
in more detail (using the door-to-door approach). Their public trans-
port data takes into account walks at the start and end of the journey
(though not in as much detail as in our advanced model) and their
estimation of car travel times takes into account congestion but
not parking (cf. our intermediate car model). Also in our data the
modal disparity is larger if the intermediate car model is compared
to the intermediate or advanced PT models than if the comparison is
with the simple PT model. However, the difference between travel
modes actually becomes smaller if both car and PT calculations are
done at the most detailed level: in the advanced car model, park
times considerably lengthen the total travel time, particularly in
areas where public transport connections are at their best. Thus,
the observed modal disparity in the advanced models becomes
smaller than in the intermediate or simple models.

We further demonstrated that different parts of the study area
get highlighted as areas for small/large accessibility disparity by
the different models. Previous findings on modal accessibility dis-
parity in an urban structure are to some degree controversial.
Kawabata (2009) found the modal differences to be smallest in
the downtown areas of Boston and San Francisco, and Elldér
et al. (2012) demonstrated a similar pattern in Göteborg. In con-
trast, Hess (2005) found the modal difference in job accessibility
to be higher among downtown residents in Buffalo and Niagara
Falls than in the suburbs. In the Greater Helsinki area, the compar-
ison based on the advanced models intuitively produced the most
reliable results since it recognised both the city centre and the
proximity of railway lines as zones of lower accessibility disparity
and the outer ring road as a zone of higher accessibility disparity.
Given the relatively strong city centre orientation of the current
transit system in the Greater Helsinki area and the challenging
parking conditions within the city centre area, it follows that our
study area falls into the category of cities where the gap is smaller
in the city centre than outside it.
7. Conclusions

Using conceptually corresponding models for car and PT travel
time calculations is the key to achieving a more reliable analysis of
modal accessibility disparity. Furthermore, the door-to-door ap-
proach in travel time calculations also makes the results truly com-
parable in absolute terms. In all, the most detailed analyses of
accessibility disparity seem to be possible only with the more ad-
vanced models. Clearly, these models are also the most data hun-
gry and accordingly, possibilities of using such models depend
among other things on data policies of transport-related data pro-
viders. In our case, the European INSPIRE initiative (http://inspir-
e.jrc.ec.europa.eu/) and general development towards openness
in data policies among public administration have markedly in-
creased the possibilities of analysing multi-modal transport. How-
ever, certain simplifications – such as the average park search
times in our case – might be necessary if better data sources are
lacking.

Requirements of the advanced PT model (e.g. inclusion of exact
departure/arrival time and various route optimisation settings)
may be overwhelming for a standard user to implement in a stan-
dard GIS. Thus, not only open data but also open route search inter-
faces (such as the Journey Planner API) providing the necessary
algorithms and computational resources on servers, make such
massive analysis feasible. Indeed, reliable spatial analyses of mul-
timodal transport — which for long have been too data hungry
and computationally intensive to calculate over large extents —
are now more realistic for a larger group of researchers and practi-
tioners than what they used to be.
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