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Soluble inorganic pyrophosphatases (PPases) catalyse an essential reaction, the hydrolysis of pyro-
phosphate to inorganic phosphate. In addition, an evolutionarily ancient family of membrane-
integral pyrophosphatases couple this hydrolysis to Na* and/or H" pumping, and so recycle some
of the free energy from the pyrophosphate. The structures of the H*-pumping mung bean PPase
and the Na*-pumping Thermotoga maritima PPase solved last year revealed an entirely novel
membrane protein containing 16 transmembrane helices. The hydrolytic centre, well above the

membrane, is linked by a charged “coupling funnel” to the ionic gate about 20 A away. By comparing
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the active sites, fluoride inhibition data and the various models for ion transport, we conclude that
membrane-integral PPases probably use binding of pyrophosphate to drive pumping.
© 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Inorganic pyrophosphatases (PPases) are essential enzymes that
are important in controlling the cellular concentration of inorganic
pyrophosphate (PP;) and thus driving biosynthetic reactions like
nucleic acid and protein synthesis to completion. PP; is formed in
large quantities as a by-product of biosynthetic reactions [1], and
the PP; concentration affects the intracellular equilibria of these
important physiological reactions. PPases catalyse the simplest
phosphoryl transfer reaction imaginable, the hydrolysis of the
symmetrical pyrophosphate (PP;) substrate to two molecules of
inorganic phosphate (P;).

Of the four different classes of PPases (membrane-integral M-
PPase and the soluble Family I, Family II and Family IIl PPases),
the Family III S-PPases [2], which are in fact modified haloalkane
dehalogenases, have not been extensively characterised and are
present in only a few bacterial species. We therefore focus on the
other three PPase families, as they represent enzyme solutions that
are mostly or entirely devoted to pyrophosphatase catalysis. The
first crystals of a pyrophosphatase were reported over 50 years
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ago [3]. What have we learnt about the structures and mechanisms
in this time?

1.1. Commonalities and differences

Catalysis by PPases requires three or four metal ions [4-7],
depending on the enzyme family, pH and PP; concentration. The
catalysis is based on leaving group activation and effective nucleo-
phile generation and proceeds without an enzyme-phosphate
intermediate [8-12]. This suggests that in each case catalysis hap-
pens inside an inorganic metal-phosphate cage, with the protein
side-chains occupying mostly supporting roles [9,13]. Three of
the biggest differences between the various enzymes in terms of
pyrophosphate hydrolysis are their responses to two different
inhibitors: fluoride, and the diphosphonates, especially to amin-
omethylenediphosphonate (AMDP), as well as the types of divalent
cations required (Table 1). In terms of catalysis M-PPases are the
slowest (kear~10s1), while the activity of family I PPases is
roughly one order of magnitude higher (ki ~200s~!) and that
of family Il enzymes again one order of magnitude higher than
the activity of family I enzymes (kcac &~ 2000 s™1) (Table 1).

Due to the detailed structural and functional information avail-
able, the soluble PPases, especially the Family I enzymes, represent
one of the better understood phosphoryl-transfer enzymes. Precise
mechanisms have been proposed to account for their catalytic effi-
ciency, a factor of 10'%"!! compared with the rate of PP; hydrolysis
in solution [4,14]. The biological function of the Family I and
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Table 1
Selected kinetic properties of PPases and their inhibition by F~ and AMDP.
Mg?* Mn?* K; for AMDP (uM) K; for F~ (uM)” keae (s1)
Family I PPase Req. 11-150 [62-64] <11-90 [65,66] 200-400 [67]
Family I PPase Req. Activates 1000 [64] 6 [68] 1700-3000 [33]
M-PPase Req. 1.2-1.8 [63,69] 3000-4800 [63] 3.5-20 [70,71]

“ In the presence of Mg?*. The K; for F~ inhibition in Family II PPases in the presence of Mn?* is much higher, because Mn?* binds F~ poorly. Req. = required for function.

Family II PPases is also identical, as their sole purpose is the
removal of pyrophosphate, although only the Family Il PPases in-
clude members that are allosterically regulated [15]. As we discuss
below, Family I and Family Il PPase sequences and structures are
unrelated, and the mechanisms, too, seem not to be the same.
Membrane integral PPases (M-PPases), on the other hand, are very
different to their soluble counterparts; they are functionally (but
not structurally) similar to membrane integral ATPases in that they
couple P-O-P anhydride hydrolysis/synthesis to the pumping of
protons or sodium ions. M-PPases have also a broader biological
function than soluble PPases as they are crucial for the survival
of plants and bacteria under various low-energy stress conditions
(see below) [16-18].

In the discussion that follows we endeavour to combine our
current knowledge of the structures and mechanisms of PPases
including their differential sensitivity to inhibition by F~ (Table 1)
to try to distinguish between three different proposals for coupling
pyrophosphate hydrolysis to ion pumping in M-PPases [12,19,20].

2. Structure and mechanism of soluble pyrophosphatases

Family I PPases, first crystallised in 1952 [3], have been exten-
sively-studied, especially those from Escherichia coli (EPPase)
[13,21] and Saccharomyces cerevisiae (YPPase) [9,14,22-25] well
characterised. The work has included atomic resolution structures
[25] as well as extensive structures of mutants that have led to a
full structural description of the entire catalytic cycle [14]. Family
I PPases are found in all kingdoms of life.

Family I PPases fold into a compact single domain structure, the
core of which is a conserved five-strand OB-fold B-barrel [9] on top
of which sits the active site (Fig. 1). The oligomeric states vary, as
the eukaryotic enzymes are usually dimers [26], while the bacterial
enzymes are typically hexamers [27]. The eukaryotic enzymes are
larger; YPPase has an extra B-sheet and N- and C-terminal

extensions to the core structure. Even though sequence conserva-
tion in Family I PPases barely extends outside the 20 charged and
hydrophilic residues in the active site, they can be reliably identi-
fied by the conserved D-(S/G/N)-D-P-ali-D-ali-ali motif (ali = C[I/L/
M/V) [28]. This motif contains D120, which binds the two activat-
ing metal ions M1 and M2 present before substrate binds (Fig. 2),
as well as D117, which helps activate the water molecule [25].
The distinguishing features of catalysis in family I PPases are that
all lone pairs in the substrate are coordinated and that PPi hydro-
lysis is carried out by an associative mechanism in which an acti-
vated water molecule nucleophile attacks the electrophilic
phosphate moiety of PP;. The water, activated by M1, M2 and
D117, deprotonates at pH 6 [13]. The metal-coordination of the
nucleophile makes the family I PPases very susceptible to F~ inhi-
bition as this ion can easily replace the incipient hydroxide ion, and
an inhibited complex (E:Mg4FPP;) is stable enough to be isolated
chromatographically [29]. In the substrate-bound state of Family
[ PPases, the binding of the electrophilic phosphate of PP; is coordi-
nated by metal ions, while the leaving group phosphate is bound
by the protein side-chains (Fig. 2). This is consistent with the idea
that activating the leaving group by partial transfer of a proton is
more effective than activation by a metal ion [9].

Family II PPases, identified only 15 years ago [30,31], occur in
bacterial and archael lineages, in particular Bacilli and Clostridia,
including several human pathogens. Family Il PPases are structur-
ally completely unrelated to Family I PPases [10,11] (Fig. 1); these
homodimeric two domain proteins belong to the “DHH” phospho-
esterase superfamily [32], where DHH refers to a conserved Asp-
His-His motif in the N-terminal domain that is critical for metal
ion binding specificity. Other proteins in this family include cyto-
solic exopolyphosphatases, a cyclic AMPase and Rec], a single-
stranded DNA exonuclease [32]. The active site of Family II PPases
is located between the N-terminal DHH and C-terminal DHHA2
domains [10,11]. About a quarter of them also contain additional

Fig. 1. Side by side comparison of overall ribbon views of substrate bound conformations of Family I yeast PPase (YPPase, left) (1E6A [25]), Family II B. subtilis PPase (BsPPase.
middle) (2HAW [4]) and H*-pumping mung bean PPase (VrPPase, right) (4A01 [12]). The domain structure is shown, as is the membrane region in mung bean PPase. This and
Fig. 2 were drawn with PyMol (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrodinger, LLC).
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Fig. 2. Side by side comparison of the hydrolytic sites of YPPase (left), BsPPase (middle) and VrPPase (right), emphasising the difference in detailed active site geometry
between the three enzymes. In all cases the scissile bond is vertical, with the nucleophile directly underneath. Key side chains are shown in atom colours, as are Mg?* (green),
F~ (cyan), the Mn?* (BsPPase) light purple, and the K* (VrPPase) purple. The nucleophilic water in VrPPase is labelled Wn and shown in red; the electrophilic phosphorus P1 is
the lower in each figure. Hydrogen bonds and ionic interactions are shown as dotted lines.

regulatory domains such as CBS and DRTGG domains inserted in
the first DHH domain [15].

As stated above, Family Il PPases show highest catalytic activity
in the presence of transition metal ions Mn?* or Co?*, which bind to
the enzyme with nanomolar affinity, while they show lower activ-
ity with Mg?*, which binds with just micromolar affinity [33]. The
binding and kinetic preference for transition metals can be under-
stood on the basis of the architecture of the active site. First, even
though M1 and M2 are coordinated by a single Asp as in Family I
PPases [11], they are also coordinated by H9 and H97 (Fig. 2) in
Family Il PPases. This leads to the strong preference for Mn?* in
the active site, as transition metals prefer soft ligands such as
Cys or His, while Mg?* prefers carboxylates. Second, catalysis is fas-
ter in the presence of Mn?* because of changes in metal coordina-
tion. During catalysis, the C-terminal domain closes over the N-
terminal domain, and the coordination of M2 changes from five-
coordinated to six-coordinated [4,34]. Transition metals tolerate
this change much better than Mg?*.

The structure of the substrate bound-state of Bacillus subtilis
PPase (BsPPase) [4] shows coordination of a nucleophile in the ac-
tive site by three metal ions: M1, M2 and M4 (Fig. 2). This tri-metal
coordination could explain why Family Il enzymes with Mg?*
bound have a higher affinity for F~ than Family I enzymes (Table 1),
while the tri-metal coordination and stronger F~ binding together
suggest that Family Il PPases deprotonate the water molecule even
more effectively than Family I PPases. Finally, the substrate-bound
structures show that H98 is positioned to donate a proton to the
leaving group phosphate (Fig. 2). This, and the distortion of the
substrate molecule seen in our high-resolution structures, led us
to suggest that, unlike Family I PPases, Family Il PPases could em-
ploy a dissociative mechanism [4], where a strong electrophile,
such as metaphosphate, could “pull” the hydroxide in for nucleo-
philic attack. Overall, Family I and Family II PPases are thus not re-
lated in sequence, structure nor apparent catalytic mechanism,
even though the formal reaction is the same. We return to this
point below.

3. Membrane-integral pyrophosphatases
M-PPases have a completely different architecture and func-

tion, as they are primary ion pumps in plants, algae and some
protozoans, bacteria and archae, producing proton and/or sodium

gradients. They are reversible, coupling the phoshorolysis/
synthesis of PP; to H" and/or Na* pumping [35]. They are highly
hydrophobic ion pumps with no recognisable separate soluble
domains. The structure of these enzymes was unknown until just
last year, when the structures of the mung bean PPase (VrPPase)
and T. maritima PPase (TmPPase) were solved [12,19]. Before then,
only the positions of conserved sequence motifs involved in metal
binding and PP; hydrolysis, and the topology and organisation
of the secondary structure of the enzyme were known [16].
Mutational analysis and sequence comparison identified three con-
served cytoplasmic “acidic motifs” necessary for activity between
TM helices 5 and 6, 11 and 12, and 15 and 16. FRET-measurements
[36], and studies with covalent inhibitors [37-42] showed that
ligand binding causes the movement of the conserved motifs and
the protection of various conserved residues (TmPPase: R191,
K199, D232, K499, €599 and H681).

M-PPases are an evolutionarily ancient protein family. In
eukaryotes, they occur predominantly in the vacuolar membranes
of plants [43] and in the acidocalcisomal (acidic calcium storage
compartments) membranes of protista [44]. They occur in species
where energy limitation is frequent, and are important under star-
vation and stress conditions (drought, nutrient deficiency, anoxia,
cold stress, low-light intensity, salt stress) to provide ion gradients
when ATP is scarce [16-18]. In plants, however, M-PPase is also
necessary for the removal of PP; during maturation [45]. Elegant
detective work by the Lahti and Baykov laboratories has shown
that M-PPases can be divided into four families (see below) based
on their ion-pumping specificity, Na* and/or H*, and whether they
are activated by K* or not [35,46,47]. Unsurprisingly, Na*-pumping
M-PPases have an absolute requirement for Na* (or Li*) for enzy-
matic activity [47,48].

3.1. Structure

Membrane PPases have a single large transmembrane domain
with 15-17 transmembrane (TM) helices [49] with large hydro-
philic regions on the cytoplasmic side of the protein. All M-PPases
studied so far are homodimeric, although the active site is con-
tained within a single monomer [19].

The structures of VrPPase with imidodiphosphate (PNP) bound
[12] and of TmPPase with product bound [19] are, as expected,
very similar (root mean square deviation/Cot 1.57 A), suggesting
that the hydrolytic mechanism is conserved, while the ion
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specificity varies. Both structures reveal a dimer of two 80 kDa
monomers with 16 transmembrane helices, with an unusual inter-
nal organisation of three intertwined four-helix “splayed bundles”
formed from TM 3-6, 9-12 and 13-16. These form the core of the
monomer structure. The TM-helices extend above the lipid bilayer
on the cytoplasmic side by about 20 A (Fig. 1), and the catalytic res-
idues thought to reside in the cytoplasmic loops actually occur on
these long helices (Fig. 1). The structure is a unique new membrane
protein structure, completely unrelated to e.g. the ATPase ion
pumps or — more obviously - the soluble PPases.

The functional core of the ion pump is formed by six central
helices, TM 5-6, 11-12, and 15-16. There are four catalytic re-
gions: the hydrolytic centre, where the inhibitor PNP and product
bind in the solved structures, a unique “coupling funnel” [19], an
ion gate formed by charged residues and the exit channel towards
the luminal or periplasmic side of the membrane. In all solved
structures the gate and exit channel are closed. The hydrolytic cen-
tre is well above the membrane plane and the coupling funnel cuts
through the membrane with the gate in approximately in the mid-
dle of the membrane. The distance from the gate to the PP; binding
site is about 20 A. The active site is closed by a long loop between
TM 5 and 6 (residues 206-225 in TmPPase) on substrate binding,
and opened again after the hydrolysis and pumping have occurred
(see below) [12,19]. This loop movement explains the results of
FRET measurements and the protection of conserved residues from
modification upon ligand binding [36-42] (see above).

In the VrPPase hydrolytic centre, the inhibitor PNP is coordi-
nated by five Mg?*-ions and conserved lysines 250, 694 and 730
(TmPPase K199, K663 and K695), residing in TMs 5, 15 and 16,
respectively. The MgZ*-ions are coordinated by six conserved Asps
253,257,283, 507,691 and 727 in the six central helices. Residues
of the “acidic motif” (see above) in the loop between TM 5 and 6 do
not take part directly in substrate binding, even though earlier
trypsin digestion [50] and enzyme activity measurements [51,52]
seemed to indicate so. However, they form an intricate salt-bridge
network together with conserved lysines, arginines and aspartates
found in TM 5, 12, 13 and 15 that seems to play a major part in the
closing of the active site cavity upon substrate binding.

Of the five Mg?* seen in the hydrolytic centre, two are part of
the Mg,PPi substrate [5], and two are the previously identified
[5,6] activating Mg?*-ions. The fifth Mg?*-ion is putatively inhibit-
ing, which, even though it has very low binding affinity (Kjy -
~100 mM, [53]), could well bind due to the high MgCl,-
concentration (0.2 M) in which the protein was crystallised. In
addition to the Mg?*-ions, there is also a K" ion, which coordinates
the electrophilic phosphorus (P1) of the PNP (Fig. 2). The hydrolytic
centre also contains a water molecule coordinated by the con-
served aspartates D287 and D731 (D236 and D696 in TmPPase)
that is positioned for inline nucleophilic attack on the P1 (see
Section 3.3).

The hydrolytic centre is connected to the ionic gate (below) by
an unusual “coupling funnel” [12,19] consisting of an ionic net-
work of eight conserved residues, the mutation of which has major
effects on function [43]. In particular there appears to be a switch
connected to conformational changes around R191 and K499
(TmPPase) and D236; R191 forms long range ionic interactions
with D236 and D243 in the unbound state and binds to the back-
bone carbonyl of G237, acting as a switch between the two sites,
the conformation depending on whether the substrate is bound
or not.

D243, linked to the coupling funnel via R191, is part of the ion
gate triplet of D243-K707-D246. The gate is closed in all structures
solved so far. All Na* M-PPases, H"/Na* M-PPases and K*-indepen-
dent H* M-PPases and the Carboxydothermus hydrogenformans type
K*-dependent H" M-PPases have an ion triplet, while in the other
K*-dependent H* M-PPases the ion triplet is replaced by an ion pair

equivalent to D243-K707 [54]. In plant K*-dependent H" M-PPases,
there is a glutamate at the position equivalent to 250 (i.e. one turn
further down TM6 than in TmPPase), while in Flavobacterium
johnsoniae type M-PPases, the Glu residue is at the equivalent
height but on TM5 (TmPPase 184) [54]. Mutational studies show
that the E246S and G250E changes abolish Na*-pumping but with-
out leading to proton pumping, while the E185S (TmPPase 184)
and E235S (TmPPase 250) changes in F. johnsoniae and Leptospira
biflexa M-PPase, respectively, uncouple H" pumping [54]. It is clear
that changes around the gate are essential for ion selectivity, but
how remains unclear. Below the gate is the hydrophobic exit chan-
nel [12,19] that is closed in all the structures seen and so prevents
ion translocation. There are neither charged residues nor signifi-
cant sequence conservation in the exit channel.

3.2. Evolution of membrane PPases

M-PPases are abundant in sequence data banks - and found in
all kingdoms of life except the multicellular animals and fungi. All
the plant species studied have M-PPases [43] while, in algae, only
glaucophytes lack them. They are not as universal in protozoans
and prokaryotes. In prokaryotes, the distribution can also be vari-
able within a group, e.g. amongst Clostridium bacteria, some have
M-PPases while others do not, which may be related to their
respective environmental niches. Phylogenetic and functional
analyses have so far revealed four families of M-PPases. There are
K*-independent M-PPases, which all pump protons, and three vari-
eties of K*-dependent M-PPases: H*-pumps, Na*-pumps, and Na*
and H*-pumps [35]. Why is this so?

The utilisation of PP; to provide chemical energy may well have
occurred early in evolution before the adoption of ATP as an energy
source [55]. M-PPases might therefore have been the very first en-
zymes coupling hydrolysis or formation of the phosphoanhydride
bond to changes in electrical potential across membranes [56].
As membranes are less leaky to sodium ions than protons, the
use of Na* could have preceded the use of H" in the creation of
membrane potential [57,58]. The first M-PPases should therefore
have been Na*-PPases, and indeed sequence analysis suggests that
this is true: Na*-PPases, which represent the majority of the K*
dependent M-PPases, form a monophyletic clade, while the H*-
PPases form several independent clades [54], suggesting that they
evolved independently from the Na*-PPases at least four times
[20]. In addition, Baykov and co-workers [20] point out that the en-
zymes in each clade of K'-dependent H*-M-PPases come from
highly-related organisms and have very similar sequences, indicat-
ing recent evolutionary events. For instance, in the Na*/H* M-PPas-
es, four residues constitute a sequence signature: T/S82, F86, D140
and M176 (TmPPase numbering) [35], and M-PPases from the
same clade that lack one or more of the residues do not show dual
pumping [35]. The evolution of Na*/H* M-PPases thus presumably
occurred separately from the evolution of H-specificity [35].

One well-established fact is the basis of K'-dependence. As
Belogurov and Lahti showed [46], A495 (TmPPase numbering) is
replaced by K495 in the K*-independent enzymes, and the single
A—K point mutation is sufficient to convert a K*-dependent en-
zyme into a K'-independent one. In both the TmPPase and VrPPase
structures, the K* ion binds the electrophilic phosphate group in
the active site. Modelling the A495K mutation in TmPPase sug-
gested that the Lys residue could coordinate the phosphate and in-
crease its electrophilicity, as the K* apparently does. There seems
to be interplay between the potassium and sodium binding in
Na® M-PPases and in H*/Na* M-PPases: potassium binding lowers
the K, of sodium activation [35,47,53,54], but the mechanism is
not clear.

Intriguingly, there is internal threefold symmetry in the M-
PPase structure: we were able to superimpose the splayed 4-helix
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bundles 3-6, 9-12 and 13-16 on each other with an r.m.s.d per Ca
of 2.1-2.9 A [19]. The superposition also aligns key conserved ac-
tive site residues including twelve active site aspartates: D202°-
D465'1-D660'5, D228%-D488'2-D688'6, D2326-N442'2-D6921,
D236°-A496'2-D696'® and D2435-1503'2-D703'6 (superscripts re-
fer to which helix the residue is on) [19]. This proves that M-PPases
have evolved through gene triplication, as previously hypothesised
[59]. Internal trimeric symmetry perpendicular to the membrane
plane is unusual in membrane proteins, where gene duplication
usually gives rise to dyad symmetry perpendicular to the mem-
brane plane.

3.3. Membrane PPase pump mechanism, specificity and catalysis

The now available structures of M-PPases capture the three ma-
jor states of the catalytic cycle: the resting state (TmPPase) [19],
the inhibitor complex (VrPPase) [12] and the product complex
(TmPPase) [19]. Comparing these individual states and so follow-
ing the motions during the catalytic cycle reveals that, in the inhib-
itor/product-bound states, the hydrolytic centre is closed by
ordering of the TM5-6 loop, by contraction of the “coupling fun-
nel”, due to the movement of TM11-12 and 15-16 towards the
centre of the funnel, and by a piston-like “downward” movement
of TM12 of at least 2 A, concomitant with bending of TM11 at a
hinge. Is it possible that a larger transient downward motion of
TM11-12 upon substrate binding would open the gate to release
the ion to the exit channel [19]?

The two most poorly-understood aspects of the mechanism are
coupling of ion pumping to hydrolysis and ion selectivity. Clearly,
the Na* in the Na*-pumps needs to bind near the gate, where there
are several carboxylate groups available for coordination of the ion.
It seems reasonable to suppose that the extra formal negative
charge in the E246-K707-D243 ion triple is necessary for this, espe-
cially as in certain clades of H'-PPases, there is no E246, but in-
stead, one turn lower down, E184 or E250 on TM5 or TM6 E250
(see above). This suggests, at least to us, that these are protonated
in the resting state and so a Grotthus or even tunnelling mecha-
nism may allow pumping. Certain clades of H* M-PPases retain
the E246 in the ion triple but are proton pumps [54]. In this case,
the E246 might not actually take part in the ion-triple, so that a
similar mechanism to the one proposed above for E284/E250 H*-
pumps might occur. As H/Na* M-PPases can transport both Na*
and protons without mutual inhibition [35], there may be two
gates or at least two binding sites from which the Na* and H* are
released, though the exit channel may be similar. This may be re-
lated to the sequence motif on TM-3 and 4 (see above), especially
the D140, which is in the membrane and likely to be protonated in
the resting state. As Baykov and co-workers suggest [20], allosteric
pumping, by which one monomer pumps protons and the other so-
dium ions, seems highly unlikely as there is no structural evidence
so far for an asymmetric complex.

There are currently three proposals for how ion pumping is cou-
pled to hydrolysis/synthesis of the phosphoanhydride bond. We
proposed that these motions occur upon binding of substrate and
before hydrolysis (see above) [19]: this corresponds to a “binding
change” type mechanism. Lin and co-workers [12] suggested that
the proton release from the water nucleophile upon PP; hydrolysis
would drive release at the gate via a Grotthus type mechanism:
this is similar to bacteriorhodopsin, while Baykov and co-workers
[20] very recently suggested that a third model. They agree with
us that conformational change must be important but, instead of
the binding change model we proposed, they suggest Mitchell’s
“direct-coupling” [60] where the proton generated during hydroly-
sis is directly transported [20] or directly leads to displacement of
the sodium ion. However, as they state, this requires that the
catalytic centre and the gate are in close proximity, while there

actually is a 20 A coupling funnel between the sites. Conversely,
we also do not support a bacteriorhodopsin-type model [12,61].
Bacteriorhodopsin is an irreversible proton pump, whereas
M-PPases are reversible proton pumps. Finally, neither of the
competing models suggests a major role for the observed confor-
mational changes, and neither of them convincingly provides a
unifying mechanism explaining how small changes convert a
Na*-pump into an H*-pump. In the Na*-pumps, the proton released
during hydrolysis is released to the cytoplasm, so any mechanism
where the proton from hydrolysis directly drives pumping requires
a large change in mechanism to generate an H*-pump from a
Na*-pump. In the next section, we compare and contrast the three
hydrolytic mechanisms of Family I-, Family II- and M-PPases for
further insight into this conundrum.

4. Hydrolysis in PPases and the implications for pumping

At first glance, Family I and Family II soluble PPases seem to
have quite similar solutions to catalysis of the hydrolysis step.
Three metal ions, the nucleophilic water/hydroxide ion and the po-
sition of the phosphate groups all superimpose in the active sites
[11]. The reality is quite different; they use different activating me-
tal ions and they appear to activate the water molecule nucleophile
and leaving group differently (see above). Of special interest is the
coordination at the nucleophile: in Family I PPases, just two metal
ions coordinate the water molecule, while in Family Il PPases three
metal ions coordinate the nucleophile, which is located away from
the electrophilic phosphoryl group (Fig. 2). Also, the substrate is
distorted, possibly even forming a metaphosphate (Fabrichniy &
Goldman, unpublished), which would increase the electrophilicity
of the phosphorous [4]. These changes are consistent with the fact
that Family II PPases have higher kc,¢ and bind fluoride ion about
twofold tighter than Family I PPases (Table 1); there is more posi-
tive charge in the active site. What does this tell us about the M-
PPases?

In contrast to the soluble PPases, M-PPases are very poor cata-
lysts, with turnover numbers about two orders of magnitude
slower under optimal conditions (Table 1). M-PPases seem to
achieve relatively poor activation of the leaving group in compar-
ison with Family I and Family II PPases. Family II-PPases have
H98 as a proton donor at the bridging oxygen, where charge accu-
mulates in the transition state [4], while Family I PPases coordinate
every lone pair on the leaving group, mostly through protein side-
chains [9] (Fig. 2). M-PPases, in contrast, seem to capture the PP; in
a metal cage. In addition, M-PPases bind F~ almost three orders of
magnitude more weakly than Family II PPases. This is consistent
with the mechanism proposed by Lin and co-workers [12], where
the D287/D731 (TmPPase D236/D696) aspartate pair act as general
bases to activate a water molecule for nucleophilic attack. The
inability to bind F~ can be expressed another way: the water mol-
ecule in M-PPases has significantly less anionic character than in
Family I and Family II PPases; the two carboxylate groups are inca-
pable of binding an anion.

We therefore suggest that the M-PPase active site is not, in the
structures currently available, set up to perform hydrolysis. If a cat-
ion is pumped out upon substrate binding, the overall negative
charge at the gate would increase, which could lead to downwards
motion of TM 11-12 including K499, which is ion-paired to TmP-
Pase D236, and to downwards motion of R191, also ion-paired to
D236, as is observed in the various structures (Fig. 3, [19]). Such
motion would increase the basicity of the aspartate pair, activate
the water nucleophile and lead to hydrolysis. Our proposal is thus
that pumping drives hydrolysis, not hydrolysis, pumping. This is a
binding-change mechanism. The mechanism also provides a unify-
ing view of both sodium and proton pumping in M-PPases; there
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Fig. 3. Our current proposal for the catalytic cycle of M-PPases, modified from [19] with permission from the AAAS. Substrate binding leads to the TM 5-6 loop to close over
the active site and the formation of a transient state. In this state, TM 11 and 12 move down, so that the gate and exit channel open and the Na* escapes to the extracellular
medium. The active site stays closed until after the PP; hydrolysis, by which time the gate and exit channel have reclosed.

would be no change in mechanism during the evolution of proton
pumps from sodium pumps: a proton at the gate would be pumped
during binding, with the proton from hydrolysis being released to
solvent.

Whatever the atomic mechanisms of pumping and ion selectiv-
ity are, understanding them has become the final frontier in Pyro-
phosphatase research - and we and other laboratories are busily
exploring that final frontier.
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