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Abstract

Submanifolds of Frobenius manifolds are studied. In particular, so-called natural submanifolds are defined
and, for semi-simple Frobenius manifolds, classified. These carry the structure of a Frobenius algebra on eacl
tangent space, but will, in general, be curved. The induced curvature is studied, a main result being that these
natural submanifolds carry a induced pencil of compatible metrics. It is then shown how one may constrain the bi-
Hamiltonian hierarchies associated to a Frobenius manifold to live on these natural submanifolds whilst retaining
their, now non-local, bi-Hamiltonian structure.
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1. Introduction

The study of the structures induced on a submanifold and their relationship to the ambient manifold
is one of the oldest problems in differential geometry. The aim of this paper is to study the properties of
submanifolds of Frobenius manifolds. Frobenius manifolds have a particularly rich structure, and have
their origin, as well as applications, in a wide range of seemingly disparate areas of mathematics such as

topological quantum field theory;

algebraic/enumerative geometry and quantum cohomology;
singularity theory;

integrable systems.
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The emphasis in this paper will be on the purely geometric properties of submanifolds and their
application within the theory of integrable systems. This will draw on ideas from singularity theory,
in particular properties of discriminants and caustics. Whether or not the ideas are of relevance to the
other areas is an open question.

The key property of a Frobenius manifold is the existence of a Frobenius algebra on each tangent
space to the manifold:

Definition 1.1. An algebra(A, o, {, }) overC is a Frobenius algebra if:

e the algebrd A, o} is commutative, associative with unigy
e the multiplication is compatible with @-valued bilinear, symmetric, nondegenerate inner product

() Ax A—C
in the sense that
(aob,c)={a,boc)

forall a, b, c € A.
With this structure one may defined a Frobenius manifold [4]:

Definition 1.2. (M, o, ¢, {, ), E) is a Frobenius manifold if each tangent spd@g#/ is a Frobenius algebra
varying smoothly oveM with the additional properties:

e the inner product is a flat metric aif (the term ‘metric’ will denote a complex-valued quadratic
form on M);

e Ve =0, whereV is the Levi-Civita connection of the metric;

e the tensor(Vyc)(X, Y, Z) is totally symmetric for all vector®/, X, Y, Z € T M,

e a vector fieldE must be determined such that

V(VE)=0

and that the corresponding one-parameter group of diffeomorphisms acts by conformal transforma-
tions of the metric and by rescalings on the Frobenius algekyss

It is immediately apparent that an arbitrary submanifd= M of a Frobenius manifold will not
be a Frobenius manifold, as the induced metric will in general be curved. Moreover, the induced
multiplication on the subtangent spagN C 7,M, p € N will not be, in general, associative. Rather
than develop a full structural theory for submanifolds—which could easily be done—only so-called
natural submanifolds will be studied. On such submanifolds the induced multiplication is associative and
compatible with the induced metric. For semi-simple Frobenius manifolds such natural submanifolds
may be classified. The simplest example comes from the Frobenius manifold constructed from the
Coxeter groupAs. Here the natural submanifolds are the swallow-tail discriminant, the cylinder over
the semi-cubical caustic and the planar Maxwell set.

The motivation for studying submanifolds came from two main examples, more detail of which are
given below. One of the best understood classes of Frobenius manifolds come from the unfolding of the
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A, singularity [4], z"*! — 2"t + 412" + ... + a, = p(z). This derivation assumes that the roots of
p'(z) = 0 are distinct. However without this assumption, i.e., with multiple roots, much of the structure
of a Frobenius manifold remains—one has a semi-simple Frobenius algebra on each tangent spac
compatible with an Euler vector field, and having a covariantly constant identity vector field. However
the metric is no longer, in general, flat (a similar question was raised in [13, 1l.7.1]). This manifold of
multiple roots should be thought of a submanifold (in fact a caustic) of the original Frobenius manifold.
The details of this constitute Main Example A below. The second motivation came from studying systems
of hydrodynamic type associated with Toda/Benney hierarchies [9,16], the simplest being

Ur = uvy,
Ur =VUyx

which is just the familiar dispersionless Toda equation (and hence related to the quantum cohomology
of CP'). An obvious reduction of this system is to constrain the system to the submamifold= 0,
reducing the system to the Riemann equatign= uuy. Such submanifolds are clearly very special and
should be thought off a submanifold (in fact a discriminant) of the original Frobenius manifold. The
details of this constitute Main Example B below.

Main Example A [4]. Consider the spac® of complex polynomials

p) ="+ a" - +ay.

Such a space carries the structure of a Frobenius manifold, associated with the Coxetdr,gffamgent
vector toM take the form

pR)=arz" 4+ G,
and the algebra on the tangent space is

A, =Clzl/p'(2)
and the inner product is
f(2)g(2) }
P

In terms of canonical coordinates = p(«;) where thex; are (distinct) roots ofp’(z) = 0 the metric
becomes diagonal and Egoroff:

1 N2
8= Z p//(ai) (du ) ’ (12)

1 _ 1 8a1
pl(a;) mA41oul’

(f.8)p= reS{ (1.1)

7=00

(1.3)

Note that this all assumes that the rootpak) = 0 are distinct. In what follows no such assumption will

be assumed. The generic features will remain—the metric will remain diagonal and Egoroff. The result
will be incorporated in a more general scheme which will be developed over the subsequent sections
One may regard the manifold with repeated roots as a submanifold (in fact a caustidyin
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Suppose that

P'@=m+D][[G—a)
i=1
wherek; > 1, Y" ki =m, Y . ka; = 0. Coordinates orV are defined byr’ = p(«;). It follows
immediately that

d
§ij = % )
7=a;

. d* ap
dzkati |,

, 1<k<k—1

A S|mple parameter counts yieldsequations for the: unknowns in% ” . This gives two different forms

for 22 o

ap ; .
P PV @) ,I;JI(Z — )l (1.4)

1 d*
=1+ Z k! dzk (811)

wherep; is a polynomial of degree; — 1 with p;(«;) # 0. The metric onV is given by

ap ap
8ij = res{_ar or dz}
7=00 P
and using (1.4) gives immediately that the metric is diagonal and, on using (1.5), that

= resf
A VI

In the case of simple poles this reduces to (1.2). An immediate corollary of this is that

" 1 dz

= =0, 1.6
E g 2m'7§ - (1.6)
i=1 C

(z— ok, (1.5)

7=

p'(2)

where( is a large contour containing all of the. To show that this metric is Egoroff is considerable
more involved, even though the final result is simple. A more geometric proof will be given below, here
it will be derived by direct calculation.

Let
m—k; (Z o )s
(i)_l | _ kr __ E (ORI
" r#i o= s=0 hs s!

and define the coefficienhii*‘” by the inverse series

h®)” Zh(z ~ple =) (Z
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Sincehg) = ]_[r# (a; —a,)* # 0 these coefficients are uniquely defined. To proceed further one requires
the following:

Lemma 1.3. Consider the expansion ¢f” (z) aroundz = «;, and let
r @)
w_dp
dz’ 7=q;
thenp®) =h0=Yforr =0,...,k — L.
This is proved by showing that the linear equations forifie® and thep” are identical. In the case

of simple zeros this result is immediate. Note that the explicit form of these coefficients is not required,
just their equality. Then

gii = res—
z=a; p'(z)
1 1

res X
m+ 1z=ai (z — o)k

(R~

1 1 > — )’
— res Zhﬁ”‘l)—(z @)
m+1z=a; (z— o)k = st
1 b
m+1 (ki —1)!
1 Pgll
m+1 (k; —1)!

1 - : . 0
= ——— coefficient ofz” ! in expansion of—p.
m—+1 at!

N 1 301

T m+lac
Hence the metric is Egoroff. Other properties may be similarly deridédarries an Euler vector field
and a covariantly constant unity vector fieldthis following from (1.6)).

Main Example B. The multicomponent Toda hierarchy is defined in terms of a Lax function

M-2
L=+ IS X T), T={I1T...}
i=—1

by the Lax equation
oL

8Z1__{(

Here the bracket is defined by the formula

(o 8 0 i
BT 09x T “9x oz

Mn—l)+’L}‘ (1.7)
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and (O), denotes the projection of the functi@® onto non-negative powers @f. For example, one
obtains from the Lax equation (1.7) witd = 2, n = 1 the system (wher€ =z + S + Pz %)

St = Py,

Py = PSx (1.8)
and, withM = 3, n = 1 the system (wheré = z2+ Sz + P + 0z 1)

S 1
T=Px — ESSX,
Pr = Qx,
1
QTZEQSX- (1.9)

A change of dependent variables from {i$#&(X, T)} to so-called modified variablgs’ (X, T)} defined
by a factorization of the Lax equation

N

1
L=—]]le+uwx. D]

i=1

provides an extremely useful computational tool in the study of the Toda hierarchy [9,16]. Quantities
such as

om— 1 yg 4z

2mi Z

which are conserved with respect to the evolutions defined by the Lax equation (1.7) may be evaluatec
for all values ofM andn in terms of a simple combinatorial formula

M n
Q(n): Z {H(/l/lrl—l)l)lrt},
tris XMy ri=n} V=1

and similar formulae exist for the evolution equations themselves. Thus the modified variables enables
one to perform the general calculations with an arbitrary numbers of fields with little increase in
complexity. The geometrical significance of these variables is that they are basically the flat coordinates
for the intersection form of the underlying Frobenius manifold, or equivalently, flat coordinates for the
second Hamiltonian structure. This Hamiltonian structure is defined by the manifestly flat metric

(so the actual flat coordinates are= logv;).
Consider (1.8) written in terms of these modified variables

Ur =uvy,

Ur = VUy
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whereS = u + v and P = uv. Similarly the 3-component system (1.9) transforms to

ur =u(—uyx +vy +wy),
vr =v(d+uy — vy + wy),

wr =w(d+uy + vy —wy),

whereS =u + v+ w, P =uv +vw + wu and Q = uvw. It is clear from the symmetric form of these
eqguations that one possible reduction is to constrain the systems onto the surface given by the constrai
u — v = 0. In terms of the original variables this corresponds to the constfdint4P = 0 and in the
second this corresponds to the constraint

4P3 +270% —18PQS — P?S>+4058° =0,

these being the condition for the corresponding polynomial equatiein = 0 to have a double root.
Clearly these ideas generalize to an arbitrary number of fields and arbitrary multiple roots. Geometrically
one is constraining aM/ dimensional system onto & dimensional submanifold. Note that these
reductions are far easier to study using these modified variables. All these results generalize to rationa
Lax equations in an entirely analogous fashion.

These two examples provided the motivation for the study of submanifolds. The key property pos-
sessed by the submanifolds in both these examples is the commutative, associative and quasihomog
neous multiplication on the subspace’s tangent bundle. Submanifolds with such induced structures will
be referred to as ‘natural’ submanifolds. These examples also have an induced identity vector field on
the submanifolds, and hence one has a Frobenius algebra on each tangent space of the submanifold. Ti
paper is a much extended version of the paper [18].

2. F-manifolds and their natural submanifolds

The definition of a Frobenius manifold consists of a large number of intermeshing parts, and it is
perhaps difficult to see which components are the most important. One point of view, coming via
singularity theory, is that it is the multiplication and the Euler vector field which are the central
elements; the existence of a compatible flat metric being, for example, derived results. This point of
view is encapsulated in the weaker notion of Ammanifold [10,11,13]. Here one has a commutative,
associative multiplication with a single additional property, automatically satisfied in the case of
Frobenius manifolds. Starting with aFi-manifold one may gradually add additional structures and
compatibility conditions until one obtains a Frobenius manifold. This has the advantage that one may
see on what structures the various compatibility conditions depend.

A similar approach will be taken here for submanifolds. One may defined a natural submanibdld
an F-manifold M by requiring thatr N o TN C T N. As one adds various structures and compatibility
conditions ontoM one can also study the induced structureshoand the failure, of otherwise, of the
associated compatibility conditions. The various results in this section are formulated with this approach
in mind, even though the main aim is to study natural submanifolds of Frobenius manifolds. The results
in this section are mainly algebraic; curvature properties being studied in Section 3.
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Definition 2.1 [11,13] An F-manifold is a painM, o) whereM is a manifold and is a commutative,
associative multiplicatior : TM x TM — T M satisfying the following condition:

Liexoy(o) =Xo Liey(O) +Yo Liex(O), VX, YeTM. (21)

Expanding the definition yields the equivalent condition

[XoY,ZoW]—[XoY,ZloW—-[Xo0Y,W]oZ
—Xol[Y,ZoW]+Xo[Y,Z]oW+Xo[Y,W]oZ
—Yo[X,ZoW]+Yo[X,Z]oW+Yo[X,W]oZ=0
forall W, X,Y,Z € TM. To such a manifold one may add various structures, demanding that they are
compatible with the multiplication.
Definition 2.2. (a) An Fr manifold is anF-manifold with an Euler field of weigh#. This is a global
vector field satisfying the condition
Lieg(o) =d - o. (2.2)
(b) An F, manifold is anF-manifold with a metric(, ) compatible with the multiplication:
(XoY,Z)=(X,YoZ), X,Y,ZeTM. (2.3)

(c) An F manifold is both anF; and anF, manifold, with theE andg related by the relation

Lieg(,) = D{,) (2.4)

for some constanb.

Expanding definition (2.2) yields the equivalent condition
[E,XoY]—[E,X]oY —Xo[E,Y]—d-XoY =0
forall X,Y € TM, and (2.4) yields the equivalent condition
E(X,Y)—([E,X].Y)—(X,[E,Y])=D(X,Y)
forall X,Y e TM.

The following definition of a natural submanifold will play a central role in this paper.

Definition 2.3. A natural submanifoldV of an Fr manifold (M, o, E) is a submanifoldv C M such
that:

(@ TNoTNCTN,
(b) E,eTN forallx e N.

One could clearly define the notion of a natural submanifold of ananifold by ignoring the second
condition. An immediate consequence of this definition is the following basic result, the proof of which
follows from the fact that ifX, Y € TN then[X, Y] € T N:
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Lemma 2.4. All natural submanifolds of atFz manifold are Fr manifolds with respect to the natural
induced structures.

Example 2.5 (Massive F-manifoldd. Given a semi-simpleéF; manifold (M, o, E) the tangent space
T, M at a generic point decomposes into one-dimensional algebras with

51' O(Sj = (S,’j(S,’

(sod; are the idempotents of the algebra BnV). The F manifold condition ensures that these vector
fields commutds;, §,]1 = 0 and hence provide a canonical coordinate sygtgnwith

0
0; = -,
ou'
In this basis one has then:
0 0 0 .
—.O—.:(Slj—., i,jzl,...,m:dlmM,
u' du/ Ju'

dimm

.0
E= ;u’aui.

Then the submanifolds defined by the level sets

{ui=0, ieD} N {ui—ujzo, (i,j)eC}

discriminant hypersurfaces caustic hypersurfaces

are naturalFr manifolds. HereD andC are arbitrary subsets dfandl x I wherel ={1,...,dimM}.
This example will turn out to be canonical for natural submanifolds of semi-simple Frobenius manifolds.
Relabeling the coordinates gives the following parametrization of a natural submanifold:

(ul,...,u"’)=(rl,...,rl;...;t",...,r”; o,...,0 )

k1 kn m—(ky+---+kp)

In what follows the notatiort,, . .., k,, O) will be used to denote a particular submanifold, so the original
manifold would just bgl, 1, ..., 1). An alternative notation is to use a Young tableau, so, for example,
the (4, 2) caustic would be denotegH-. The terms pure discriminant will refer to a submanifold
wherek; = 1 and a pure caustic will refer to a submanifold wh@reé; = m. For dimM = 2 the only
possibilities are (the notatioW — N means thaitV is a natural codimension one submanifoldisj:

{1.1}

{1,0} {2}

For dimM = 3 one obtains the following strata of nested submanifolds:
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{1,1,1}
{1,1,0} 2,1}
{1,0,0} {2,0} {3}

For dimM > 3 such diagrams become considerably more complicated, the number of such submanifolds
being} """, u(n), wherew(n) is the number of partitions of.

Suppose now one has df-manifold. Then on any (non-null) submanifold one may define an
induced metriggy and also an induced produetT N x TN — T N wherex is defined by
X«Y=pr(XoY) VX,YeT,NCTM,
wherepr denotes the projection (using the original megion M) of u ov € T,M onto T, N (Fig. 1).
This induced multiplication may have very different algebraic properties than those of its progenitor.
However the induced metric and multiplication remain compatible.
Lemma 2.6. The induced structures satisfy the condition
(X*Y,Z)=(X,Y*Z) VX,Y,Z,eT.N.

The proof following immediately from the definitions. Putting these results together gives the
following:

Proposition 2.7. Any natural submanifold of atF-manifold is anZ-manifold with respect to the
naturally induced structures.

XoY
T.M
project
Y
X
pr(X oY) T,N

Fig. 1. The definition of the induced multiplication.



I.A.B. Strachan / Differential Geometry and its Applications 20 (2004) 67-99 77

One note of caution though: this is a formal result—it may be the case that the induced metric is not
defined or is degenerate on a specific natural submanifold.

The definition of a natural submanifold just uses the multiplication and the Euler vector field. If one
has, in addition, an identity vector field then a natural submanifold will inherit an induced identity field:

Lemma 2.8. Let (M, o, g) be an F, manifold with a unity vector field and let N be a natural
submanifold of\f. ThenN possesses an induced identity vector field.

Proof. (Note, this lemma only uses part (a) of the definition of a natural submanifold.) Using the metric,
one has an orthogonal decomposition (assuming the induced mefviecsamot degenerate) of the tangent
spaceTl, M (at pointsx € N ):

T.M = (T.N)® (T,N)*, xeN, (2.5)
soe decomposes as=e¢' + et. Hence

Xoet=X—Xoe' €T,N.
Clearly (X oet,n) =0 foralln e (T, N)* and

(Xoe", Y)=(XoY,e")=0

for all Y € TN, using the invariance property of the multiplication. Thso e = 0 and hence
Xoe' =X forall XeT,N. O

An immediate corollary of this is:

Coroallary 2.9. Let M be a Frobenius manifold and Iéf ¢ M be a natural submanifold. Then each
tangent spacd N carries the structure of a Frobenius algebra with respect to the induced structures.

For a semi-simpleF-manifold one may classify all natural submanifolds, at least formally. The idea is
to describe an arbitrary submanifold as the intersection of level sets,({¢% = 0}, the geometric
conditions onN to be a natural submanifold then reduce to a simple set of overdetermined partial
differential equations for the functions’ which may be solved.

Theorem 2.10. Let{M, o, E, g} be a semi-simplg= manifold. Then

(a) the only natural submanifolds are those given in the above example
(b) the identity field is tangential to a natural submanifold if and only if it is a pure caustic.

Proof. (a) Let:: N — M be the inclusion of a submanifold in the manifoldM. Vector fields onV
may be pushed-forward to vector fields #h Adopting a parametrization of the submanifald so
u' =u' (%), wherei =1,...,m, «a =1, ...,n, one obtains

..TN - TM,

0 du' 9
Ly = -_—.
0T® 0T% du!
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Similarly [17], using the orthogonal decomposition (2.5) (assuming the induced meti¢ iBnnot
degenerate):
0 0 0
- =AY — 2.6
ou! "9t T av“ (2.6)
where spa@,) = (T, N)*.
Consider now

9 9 ou' du’ m8u8u< 9 a)

C(
lat"‘+ Lo

9te " 9tF  9te ach oul  oul dt* dth
on using the canonical multiplication. To ensure that o TN C T N one must have
"‘O‘j‘ﬂ =0 (2.7)
where
i ou' du' e
Tap IZ: 9t 9tk i

To proceed further one adopts a Monge parametrizatiovi s

=1, i=1....n
u"te =h5‘(t”‘), a=1...,m—n.
With this N may be described as the intersection of level sets

m—n

N=({o*=0)
a=1

whereg® = h* —u"**. This may be used to find the normal vectofswith which the condition=2, =0
become

oh®  3hY dh
“Bore ~ 9re grh’
If « = g thenr =0 or 1. But ifa # B thenhZh§ = O which implies thaté = 0 except, possibly, for
one values ofr € {1, ..., n}. Such a value will be denoted(x). Hence there are two possibilities:
h*=a®, h*=u"® 4"
for arbitrary constants:*, b%. Note, if one was to consider semi-simplg, manifolds, then the

classification of natural submanifolds would stop here.
For N to be a natural submanifold requires the further conditigre 7, N,

- ;0 - if qa O a0
Eo=) u'sa :i;” (A" gre T au&)'

i=1

a,B=1...,n,a=1,...,m—n.

Thus(E,)* = 0 implies, using this parametrization, that

m

R -
Zu’wh“:h“,

i=1
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so ther® must be homogeneous functions of degree 1. Hefice »* = 0. Thus
h* =0, h%=u"®, (2.8)

On renaming the coordinates one arrives at the examples described above.
(b) Note that, as a consequence of semi-simplicity, there exists a unity vector field

with the property that o X = X for all X € T M. Similarly
SR?
= ate
will be a unity vector field orl’ N. Consider now the restriction efto a natural submanifold. Using the
above formulae, and in particular (2.8), it is straightforward to show that

- = — 1- : —

> Y- i
i=1 a=1 a=1 j=1

Hencee* = 0 if and only if

Y
Z_lzl V&:l,...,m—”l,
jzlar

ey =

that is, using (2.8), if and only iV is a pure caustic. O

In the next section curvature properties of natural submanifolds will be examined.

3. Frobenius manifolds and the curvature properties of natural submanifolds

Given anF-manifold one may define the following tensoegX, Y, Z) = g(X o Y, Z), which, from
(2.3), is a totally symmetri€3, 0) tensor,Vo andVec. The following theorem is due to Hertling [10]:

Theorem 3.1. Let (M, o, V) be a manifoldM with a commutative associative multiplicatieron T M

and with a torsion free connectiowi. By definition,V o (X, Y, Z) is symmetric in¥ and Z. If the (3, 1)-
tensorVo is symmetric in all three arguments, then the multiplication satisfies for any local vector fields
X andY

Liexoy(o) =Xo Liey(O) + Yo Liex(O).

The converse, however, is false; one requires the properties of a unity vector field. So far little
mention has been made of the possibility of having a unity vector éi@ld M, i.e.,e € T M such that
eo X =X,VX € TM. Such fields play an important role in Frobenius ghdnanifolds, as it connects
the metric and the multiplication sing&, Y) = ¢(X, Y, ¢). With this field one may prove the following,
again due to Hertling [10]:
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Theorem 3.2. Let (M, o, ¢, g) be a manifold with a commutative and associative multiplicatioon
T M, a unit fielde, and a metric(, ) on T M which is multiplication invarian{2.3). V denotes the Levi-
Civita connection to the metric. The coidentitys the 1-form defined by (X) = (X, ¢). The following
conditions are equivalent

(i) (M, o,e)isanF manifold ande is closed
(i) the (4, 0) tensorVc is totally symmetric
(ii) the(3,1) tensorVo is totally symmetric.

The property thaVc is a totally symmetrig4, 0) tensor is sometimes referred to as quasi-potentially
conditions since, if the metric is flat, one may integrate the equations t@ giveerms of derivatives of
a prepotentiaF, i.e.,

c(X,Y,Z)=XYZ(F).

Definition 3.3. A Frobenius manifold is atF manifold (M, o, E, g) endowed with a unity vector field
and satisfying the following conditions:

(@) gisflat;

(b) de =0 wheres(:) = (e, -);
(C) Liee(a > = 0;

(d) A(U,V)=0,

whereA(U, V) =VyVyE — Vy, v E, andV is the Levi-Civita connection.

This definition differs somewhat from the conventional one given above. Conditions (b) and (c)
together imply thaVe = 0 By the above theorem, condition (b) implies tRatis totally symmetric, and
condition (a) then implies that there exists a prepotential. Condition (d) perhaps needs a little explanation.
If U andV are flat vector fields the&\ (U, V) = Vy Vy E. Alternatively, Af?j = V,»VjEk in terms of the
flat coordinate system.

To proceed further in the study of these natural submanifolds one must study the curvature of the
induced metric and its relation with the various other structures. N

A powerful in the study of Frobenius manifolds is the extended conne8tion M x P! defined by

Vu = Vy + zUo,

%Zd% :Zdiz +zE o0 —v,
wherev(U) = %U — VyE (so (X,v(Y)) + (v(X),Y) = 0). The vanishing of the curvature of this
extended connection is then equivalent to the above definition of a Frobenius manifold.

Since the pull-back of any totally symmetiic 0) tensor fromM to a submanifoldV remains totally
symmetric, any natural submanifold of a Frobenius manifold retains the quasi-potentiality condition, even
if it is not flat (note, however, that there is no reason for an arbitfampanifold to be quasi-potential).
Similarly, one may restrict the extended connectiombrx P! to N x PL. This new connection will not
be flat, but it still has special curvature properties.
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Proposition 3.4. The curvature of the restriction of the extended connection of a Frobenius manifold to
a natural submanifold is independent f

Proof. Consider
RWU, VIW = (VuVy — Yy Vy = Vigv) W
={RU,V)W}
+z2{UoVyW =V oVyW —[U,V]o W+ Vy(Vo W) — Vy(U o W)}
+22{Uo(VoW)—Vo(UoW)).

The last term vanishes by the commutativity and associativity of reduct. The middle term vanishes
by a result of Hertling (using the definition (2.1) of @nmanifold). The first term is just the curvature of
the manifoldN. The only other curvature to calculate is

ﬁ(zdiz, U)V (%5 - TV
=Vyu(V) —u(VyV)
= —VyVyE + Vy,vE
=—AU, V),

the other terms vanishing for similar reasons as above. Thus the only non-zero terms in the curvature o
the extended connection is the curvat®@’/, V)W of the manifoldV andA (U, V). However since

AU, V)= AWV, U)=VyVyE - VyVyE —Vy,yv_v,uvE
=VyVvE — VyVyE — Vig.v
=R(U,V)E
the independent non-zero terms are curvature and the symmetric‘gért V) of A(U, V). O

The following result relatea to the curvatureA(U, V) = R(U, E)V. This properties may be proved
using submanifold theory. The following theorem is standard, and is included here only to fix notation.

Theorem 3.5. Let M be a manifold with Levi-Civita connection and letN be an arbitrary submanifold.
Then for allW, X, Y, Z € TN and normal vector§,n € TN*:

e Gauss formula
VY =VyY+a(X,Y);
—— e e’
TN TNL

e Weingarten formula

Vxé = —Ag X + Vyé&;
N — N——
TN TNt

e Gauss equatian
(RX.VZ,W)=(RX,Y)Z,W)—(a(Y, Z),a(X, W)+ (a(X, Z), (Y, W));
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e Codazzi equatian

(R(X,Y), z)L = (Vyxa) (¥, Z) — (Vya)(X, Z);
e Ricci equation

(R(X, V)€, n)=(R"(X, V)&, n)— ([Ae, A,]X, Y).

Herex is the second fundamental form ands the shape operator, which are related by

(@(X,Y),E)=(A¢X,Y) VX, YeTN, EcTM"
Proposition 3.6. Let N be a natural submanifold of a Frobenius manifalti ThenN (with the naturally
induced structurgsis an F manifold with, for allU, V € T N:

LieEOl = 0,

(Vue', V)=(a(U, V), e").
Proof. The proof is a simple exercise in submanifold theory. Recall that for a natural submanifold
E+ =0 S0E eTN and thatw(U,V)e TN+t forallU,V eTN.

AU, V)=VyVyE—-Vg E

== A(U, V) - A(x(V,E)U + Aa(U,V)E
+a(U,VvE) —a(VyV,E) —[a(U, V), E] + Via(V,E) — Vga(U, V), (3.1)

where the torsion free condition has been used to calculate theMermy) E. Taking the tangential
component of (3.1) yields (sinc& = 0)

AWU,V)=Aqwv.pe)U — AgyuvE + [OI(U, V)., E]T
and taking the inner product of this willi € TN gives

(AU VIW) ={a(V, E), a(U, W) — (U, V), a(E, W) + ([«(U, V), E]", W).
Using (2.4) gives[a(U, V), E], W) =0 so

[E,aU, V)] =0. (3.2)
Hence, by the Gauss equation

(AW, V),W)=(RWU,E)V,W)=RU,E,V,W)
orA(U,V)=R(U, E)V.

Taking the perpendicular component of (3.1) yields

0=Via(V, E) = ViaU, V) +aU, VE) —a(VyV, E) — [a(U, V), E]".
Using the Codazzi equation and the torsion free property of the induced connection gives

(Lieza)(U, V) = [Lieza(U, V)] =0
by (3.2), soLiepa =0.
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To obtain the last part of the proposition, recall that the identity fietdtisfies the relatioVe = 0
and decomposes as=e' +et onTN. Thus

0=Vye
= §U6T + §Uel
= (VUeT — AL U) + (V,ﬁel +a(U, eT)).
Decomposing this into tangential and perpendicular components gives
(Vye', V)= (AU, V)=(a(U,V),e"),
VéeL =—a((U, eT).
[Note that (Vye', V) — (Vye',U) = 0 so the 1-formey(-) = (e', ) is closed, as it must, since
di*e)=0] O

An immediate corollary of this proposition is the following:

Corallary 3.7. Any flat caustic of a semi-simple Frobenius manifold is itself a Frobenius manifolds, i.e.,
it is a Frobenius submanifold. All two dimensional caustics are Frobenius submanifolds.

Proof. The only thing to note is that for natural submanifold of a semi-simple Frobenius manifold

(et =0} <« {Nisacausti
Hence by the above propositidn, e = 0. If the caustic is flat then all obstruction vanish. Note that on a
general (non-flat) caustig(e, U) = 0 so from the Gauss equation

R(W,X,Y,Z)=0 ifany of the vector field$V, X, Y, Z =e. (3.3)

Hence all two-dimensional caustics are Frobenius submanifolds.
3.1. Semi-simplé--manifolds

In this subsection the curvature properties of semi-sin#plenanifolds will be studied. Again the
approach will stress those properties intrinsic toJammanifold as defined above, and those which a
natural submanifold of a Frobenius manifold possesses. From the semi-simplicity and the compatibility
of the multiplication with the metric:

nij = (9, 9;)
= (e, 0; 09;)
=&;;(e, 0;)

and hence the metric is diagonal. Curvature calculations for diagonal metrics are standard. For
completeness and to fix notation:
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-, & H;
Proposition 3.8. Letn;; = H?, fi; = =+ Then
Fj?k =0, wherei, j, k are distinct

Ll
I = Eﬁki;

i H .
rj;,= _E'BU’ wherei # j.

Similar formulae hold forr}’, where I}’ = —g’*I"},. Moreover Ry, = 0 if i, j,k,I are distinct,
Rl = R =0, Ri = —RU = R = —R/, and, fori # j. i #1,
ij 1
Ri =44 {0iBji — BjiBui}s
il
ij 1
R;; = TH 9 Bij + 9;Bji + Z BpiBpi (-
[y

PF#L,J

Here R,’(]l = i‘?R‘{kl and R(9;, 9;) 9 = Ry;;0r.

In addition to the metric and multiplication gf one has unity and Euler vector fields:

e:ia,», E:Xn:uiai
i=1 i=1

and the homogeneity condition (2.4) becont&s);;) = (D — 2)n;;, or E(B;;) = —p;;. No more can be
said about the curvature properties of a genérahanifold.
Consider now a semi-simple Frobenius manifold. Condition (b) in its definition implies:

() = {metricis Egoroff, i.e. B;; = B;i};

and hence the induced metric on the natural submanifold is Egoroff, as condition (b) hold for any
submanifold (and it is clear that the induced metric on a natural submanifold remains diagonal). Thus
natural submanifolds of semi-simple Frobenius manifolds are Egoroff (one may also prove this directly
from the definition of a natural submanifold).

The following proposition may be derived by direct computation in diagonal coordinates, so no proof
will be given.

Proposition 3.9. Consider a semi-simple Egoragff manifold in canonical coordinates. Then
ViV,EX=0 & 8B — BBy =0, i, j, kdistinct
ViVjEi=0 & e(Bi)=0, i#].

Hence
A=0 & R=0

and so there is only one obstruction to the extended connectiov »iP* being zero, namela (U, V).
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For an Egoroff metric, the curvature components may be combined to give

ij ij 1 .
R,j+ Z le)=ﬁe(ﬂu)v l;é‘]
p#ij e
This formula enables one to consider the curvature of pure caustics and pure discriminants. On a pur
caustice(H;) = 0= ¢(f;;) = 0 and this right hand side vanishes (in accordance with (3.3)). On a pure
discriminanto,g;; — BixPrj =0, i, j, k distinct (this will be shown in the next section), so the only non-

zero curvatures arﬁ’j =g H ——e(p;;). Pure discriminants also have the property of having flat normal
bundles,R+ =0, the COI’ldItlonS{u =0, i € D} being a holonomic nets of lines of curvature [7].

3.2. The induced intersection form and pencils of compatible metrics

An important feature of a Frobenius manifol is the existence of a second flat metric, the
intersection form, defined by

@ gl = E(dt' odt’)

(in what follows the original metrig will be denoted?g). Here{+'} are the flat coordinates o¥. One
important feature of this metric is that

Lie, @ gii = M gii

and it follows from this that the pencil of metric defined ¥yg/ = @ g/ 4 A Dgi/ s flat for all values
of A.

A second metric, and hence a pencil of (inverse)-metrics, may also be defined on a natural submanifolc
N C M since, by definitionTN o TN C TN andE, € TN Vx € TN. This is not immediately obvious
for a discriminant submanifold since an equivalent definition of canonical coordinates for a Frobenius
manifold is as solutions of the polynomial equation

det[(z)gif —u (1>gij] =0, (3.4)

and hence on a submanifold with = 0, def®g/] = 0 so the metric is non-invertible. However the
problem lies in the orthogonal component %o One may use the orthogonal decompositioi =
TN @ TN+, and consider

2 ®
85 ® o
The cross term vanishes and hence on obtains a symmetric bilinear fradnwah, 7 N. In canonical
coordinates (and hence for a semi-simple Frobenius manifold)

(Z)gij = Z %(dui)z,

i=1

e TMQ,TM=(TN®, TN)® (TN®, TN") & (TN"®, TN™).

and similar looking formulae hold for the induced metrics on a natural submanifold. Although both
induced metric will no longer, in general, be flat, certain special curvature properties remain.
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Lemma 3.10. Consider two diagonal metricg = 1, 2)
n
(t)g — Z (1)grr (dur)
r=1

with rotation coefficient$”’;; and " H, = /(¥g,,. Let
@

8rr
(Z)grr - -
u
and
(A)grr = (Z)grr +A (l)grr- (3.5)
Then

G i i
(A)Fkl —( )Fklf +A( )Fklj,
(WD Ril — @Rl 4 ADRi
where 17/ and (W R} are the appropriate Christoffel and curvatures of the pencil of m¢8&ib).
Thus any semi-simples manifold carries such a pencil, and in particular, so does any natural
submanifold of a Frobenius manifold. In the terminology of [14], on such (sub)-manifolds one has a
pencil of compatible metrics. It is this result that will be behind the study of induced bi-Hamiltonian

structures on natural submanifolds that will be given in the next section. Pure discriminant submanifold
have further special properties:

Theorem 3.11 [4]. Let M be a Frobenius manifold and I& be a pure discriminant submanifold. Then
the metric onV induced froni?g is flat.

Thus on a pure discriminant one has a distinguished coordinate system being the flat coordinates fo
the second induced metric. Examples will be given in the next section (see also Main Example B). Since

@p;j = \/:Z (“8)
J

(and note that the second metric will not be Egoroff) it follows from
% PBij — @B PPy = \/?(ak DB — Vi Vi)
J
that W R!/ =0, as stated at the end of the last section.
3.3. Tangent vectors to a natural submanifold
The intersection form of a Frobenius manifdifienables one to construct natural vector fields tangent

to a natural submanifold. In a flat coordinate systef wheree = 3,, @g™ = E’, so the components
of the last row/column of the intersection form are the components of the Euler vector field which, by
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definition, is tangent to a natural submanifold. Consider the vector fields defin¥dogn
d

ar' ,
ye _ (I @, @ik
(ara 88 )| ok

which a priori lie inT M. Using (2.6) and the fact that

k o atk
E ‘N = EN ot«

it follows that the component df @ in TN+ is

- ad
ga pBy_ 7
(ESEN) >

and hence is zero.
Using techniques identical to the above, one may show that if

XoYeTN VXeTN,YeTM (3.6)

then them vector fields

W @i O
vi="e ati
are all tangential to the submanifold. In the semi-simple case one may show, using their explicit
parametrization, that the only natural submanifolds which satisfy the above condition are pure
discriminants. For Frobenius manifolds based on Coxeter groups this result is already known [1,15]
and more generally [4,10]. For codimension one discriminants a simple proof that (3.6) holds may be
given using the decomposition of the unity vector field e + e*. Since, if ¥ is a natural submanifold,

X oet =0,VX e TN then because any vector W+ must be a multiple o+ the result follows.
3.4. Examples of Frobenius submanifolds

Frobenius submanifolds certainly exist—any flat caustic, if they exist, of a semi-simple Frobenius
manifold will inherit the structure of a Frobenius manifold. In theory this gives a way to find such
submanifolds, though in practice it would be computationally difficult. A more practical way is to
look for submanifolds which are hyperplanes (in the flat coordingtésand coordinate hyperplanes
in particular).

Example3.12. LetI C {1, 2,...,m} and suppose that is given by the conditiong = 0 fori ¢ I. Then
the obstruction reduces to the algebraic condition

ck|y=0. ijel kel

This condition was derived in [19] in the context of Frobenius manifolds constructed from Coxeter
groups. Here it is a specialization of the more general condition (2.7).

Example 3.13. [13, Section 111.8.7.1].
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Table 1
Frobenius submanifolds associated with Coxeter groups
Coxeter group Coxeter subgroup
A2n41 By
Dn+1 By
Ds Hj
Eg Fy
Eg Hy
W (arbitrary) I, (Coxeter number o)

Table 2
Extended affine Frobenius submanifolds

Extended affine Coxeter group  Extended affine Coxeter subgroup

k=
Alzéln—l Cn
Dy11 By
Eg Fy
W (arbitrary) A=l

It is not clear, but follows from the results above, that these submanifolds are caustics.

Large numbers of examples may be found using these results. For example, for Frobenius manifolds
constructed from Coxeter groups one finds that the submanifold associated with another Coxeter grouj
obtained by ‘folding’ the original Coxter diagram. For example BagFrobenius contains the Frobenius
manifold I,(10) as a submanifold, which corresponds to the folding

5 10

fold

The possible foldings, and hence submanifolds, of Coxter groups, are given in Table 1.

These results may also be generalized to Frobenius manifolds constructed from extended affine
Coxeter groups [5] (and probably more generally too, since notions of foldings exist more generally
in singularity theory). The analogous results are given in Table 2.

However, such submanifolds are just hyperplanes. More interesting examples may be constructed.

Example 3.14. Frobenius submanifolds of; (this is a special case of Main Example A). For the
singularity one takes the polynomial

p(z) = A4 a4 arz+as

and constructs the metric via the formula (1.1). This metric is flat, though not in flat coordinates, which
are given by

ay =13,
az =1y,

1,
az =1t + <t3.

8
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In these coordinates the metric takes the standard antidiagonal form. Having fixed the flat coordinates, s

1
p@) =x*+ 11+ 212 + tox + t3x? (3.7)

8
the algebra is defined by

res 0 f 0, f Oy f dz
X¥=00 0. f
From this the prepotential may be constructed. The canonical coordinates are now defined as roots of th
cubic (3.4). The discriminant and caustics may easily be calculated from this cubic.

Discriminant (the induced structure on the discriminant does not define a Frobenius manifold. The
results are given here for use in the next section)! ¥ 0 then from (3.4) d&t?g/) =0, or

Cijk = —

27 9 1 7 1 1
3 4 2 2.2 2.3 4 6
1]+ —1t; — —=htytz3+ =t{t5 — —t5t5 + —t1t; — ——1t3 =0. 3.8

11 2562 T 1123 T g1fs T 18721 T s T E15" (3:8)
This is precisely the condition for the polynomial (3.7) to have a repeated root, i.e., it defines
a discriminant hypersurface. Using the fact that such surfaces are ruled one may easily obtain &

parametrization of the surface
Hh= —{—2_9(144 — 6u?v? — v4),
tr = +2"%uv?,
13 = —27%(u2 + 1?),

whereu andv are the flat coordinates for the induced intersection form. Such an explicit parametrization
will be used in the next section to construct induced bi-Hamiltonian structures on this discriminant.

Caustics If u’ = u’/ for somei # j then the polynomial (3.4) must have a double root, and the
condition for this is either (a} = 0 or (b) 27 + 83 = 0. These surfaces correspond to the cylinders
over the Maxwell strata and caustic of the polynomial (3.7). The induced structures on these surfaces
define Frobenius manifolds (corresponding to the Coxeter giep): the structure on the (a) being
studied by Zuber [19] and on (b) by the author [17]. Note how the two parts in the definition of a natural
submanifold are used; the induced multiplication on the flat surfaeeks3 = 0 is associative for all
values ofk, but the Euler field is tangential only for the two special valuek given above.

Further examples may be obtained by tensoring Frobenius manifolds together and restricting structure:
to various hyperplanes [13,17].

4, Induced bi-Hamiltonian structure

An equation of hydrodynamic type is, by definition, of the form
Uy = Vi(U*UY. (4.1)

It was observed by Riemann that such system transform covariantly with respect to arbitrary changes o
dependent variables’ = Ui (U). It is not surprising therefore that geometrical ideas should be used in
the study of such equations. Associated with any semi-simple Frobenius manifold is a bi-Hamiltonian
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hierarchy of such hydrodynamic equations. The aim of this section is to show how one may constrain
such systems onto a natural submanifold while retaining its bi-Hamiltonian structure. In this case the
system (4.1) may be diagonalised

u’T :Ai(u)u’g, i=1...,m.
(Note that a diagonalised system is defined in terms of Riemann invariants
R, =1 (R)RY

and these are only defined up & — Ri(R') transformation. The canonical coordinates are specific
examples of Riemann invariants, and do no have such a freedomay e known as the characteristic
speeds of the system. It is immediate from this diagonal form that if the mild finiteness condition

A/ |/\i:0 < 00 (4.2)
holds then one may restrict the system to the discrimimé@nrt 0. To reduce the system to a caustic
u' —u’/ = 0 requires the much stronger condition

(}j _ kj)‘ =0 (4.3)
together with a mild finiteness condition for the remainitigSuch constraints do hold for the systems
associated with semi-simple Frobenius manifolds and this will be proved below.

Before this a more general discussion will be given which will assockataanifolds with certain
diagonal sets of equations.

ul—ul =0

4.1. Semi-Hamiltonian systems and curvédnanifolds

Definition 4.1. A diagonal system of hydrodynamic type
u’T :Ai(u)u’k, i=1....,m,

is semi-Hamiltonian if there exists a diagonal metric

g= g (du')’
i=1

satisfying the equations

d;lo = 0,1
;100 {/&ii = o —
fori #j.
On cross differentiating on obtains the identities
5 X !

VST PV T
for distincti, j, k. All semi-Hamiltonian systems are integrable, via the generalized hodograph transform.
Such systems possess an infinite number of commuting flows

uhp = w' (uuy
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where thew' are solutions of the linear system
Bwi 8j)xi . 75 .
- T = n Ty l )
w/ —w' A=A J
which exists since its integrability follows from the definition of semi-Hamiltonian. If the metric is
homogeneous with respect to the vector figldso

Enii = (D —2)n;;

them one obtains a semi-simgtemanifold. It also follows from the definition of semi-Hamiltonian that
the only non-zero curvature components Eﬁa fori #j.

Example. Consider the system

u’%:(Zu’—l—Zu")ug@ i=1,...,m, (4.4)

r=1

which corresponds to the dispersionless limit of the coupled KdV hierarchy [2,8]. Such a system is semi-
Hamiltonian with metric

- ,2;{ r;é(,llf(tu ; R }(d”l)zv ¢: arbitrary.

The metricVg is defined as the above metric with= 1, and is homogeneous with respect to the Euler
vector field, and so one obtained semi-sim@lenanifold. This metric is not Egoroff, so one does not
obtain a Frobenius manifold, nor can it be a natural submanifold of a semi-simple Frobenius manifold.
This metric is, however flat; in flat coordinates

0 0 1 3 0 -1 #n/2
D gii — (0 1 O) @l = ( -1 0 t2/2>
1 00 n/2 /1l 13
(both flat) and the Euler and identity fields are
E = 1101 + 21,0, + 31303,
=301 + lt 0 lt 0
€= 1 2 102 2 203.

The associative multiplication is somewhat complicated when written in the flat coordinate system. Note
also that

def Vg] = (' —u')?,
i#]
so the metric is degenerate on bifurcation diagrams.
This example may also be used to illustrate how one may reduce hydrodynamic systems to bifurcation

diagrams and discriminants, and also some of the problems that may arise. Restricting the system (4.4) t
a discriminant is trivial—the form of the equations is unchanged. On a bifurcation diggfam., &, }
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one obtains

u’T = (Zk,ur +2ui>u§(, i=1 ..., n,

r=1
which remains semi-Hamiltonian (in fact for all values for #agwith metric

(1)gc = i H(ur — ui)ki (dui)z.

i=1 r##i

Thus one obtains a ‘stratified’ space whévg is defined everywhere except on bifurcation diagrams,
but with another metri¢Yg. on the bifurcation diagram (which in term is defined everywhere on the
bifurcation diagram except at sub-bifurcation diagrams etc.).

4.2. Bi-Hamiltonian hierarchies associated to Frobenius manifolds

Given a Frobenius manifold there exits an associated hierarchy of hydrodynamics type, which, in
terms of flat coordinateg®} are given by

]2 a=1 m
— y B y ey )
TR Clapyp’ Ixt”, {sz,...,oo.

The primary part of the hierarchy is defined by

atr
—c 2V 9vthP
3T @O = Cyp dxt’.
From the flatness of the extended connection it follows that there exists funatiopsvhich satisfy the

relation

(4.5)

?hp _ oy h@p-y
dreth 22
with the initial condition/ 0y = #, = nast?. These define Hamiltonians

H(a,p):/h(a,pﬂ)dx

which are conserved with respect to all flows. Here the Hamiltonian structure is defined, by
the fundamental theorem of Dubrovin and Novikov, by any flat megricFor functionals F =
[ fttx,..)dX,G = [g(t,tx,...)dX the Hamiltonian is defined by

SF ..6G
{F,G}= / —AY—dX
ot! ot/

where
ij ij d is J k
AV =g (t)dX — &8 ng(t)tx-

Hereg' is the (inverse) flat metric andl.jk the corresponding Christoffel symbols. The zero-curvature
condition ensures that the bracket satisfies the Jacobi identity.
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On a given Frobenius manifoltf one has a pencil of flat metrié§’ g’/ =@ g/ + AMWgi/ and this
then gives rise to a bi-Hamiltonian structure

{F,Gla={F,Gl2+ A{F, Gh.

It then follows that the hierarchy (4.5) is Hamiltonian with respect to the Poisson bracket defined by
{., .} in addition to being Hamiltonian with respect to the Poisson bracket defingd.by In particular,
one has the following equation

1 q
{7 Hepqv},= (‘1 +np + 5) {t", Hpp}, + Z(Rk)g{fy, Hig ), (4.6)

where the matrice®, are defined in terms of the monodromyzat O of the systerrﬁzdig =0 (for a

precise formulation see [6]). The constapts are defined by the formula for the Euler vector field (in
flat-coordinates)

-l g ool

(andd is defined byE (F) = (3 — d) F + quadratic terms wher€ is the prepotential of the Frobenius
manifold).

The following theorems on the restriction of hierarchies to natural submanifolds are formal—they
implicitly assume that various functions are finite on the submanifold. For specific classed of Frobenius
manifolds one may show that the quantities are finite (see, for example, Example 5.1), but it would seem
to be very difficult to say anything about the values of these functions on natural submanifolds of a
generalFrobenius manifold.

Theorem 4.2. Let M be a semi-simple Frobenius manifold. Then the restriction of the bi-Hamiltonian
hierarchy(4.5)to a natural submanifold remains bi-Hamiltonian.

Proof. Given an arbitrary submanifol& of a flat manifold M one may constrain, using the Dirac
procedure the corresponding Hamiltonian structuredpiio the submanifoldV [7]. This results in a
Hamiltonian structure of the form

OF 6G
{F, G}=/ A — dXx
St Sth
where
d
A% = g"‘ﬁ(t)d—x — g"‘“Fﬁ (D)Ty + warx“(VL) wy, ;

Here g is the (inverse) induced metric ow, Iy, the corresponding Christoffel symbols, amf, the
Weingarten operators of the submanifold. The oper&toiis defined by

d
Vld’a = d_Xd)oz + a)aﬂd)ﬂ

wherew,” are the normal connection one-forms.
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Recall, from Lemma 3.10, that on a natural submanifold
il ) i D i
( )ij=()F]jJ+A()Fklj,
MR DR 4 DRI
This then implies that if one restricts the flat bi-Hamiltonian structure on the Frobenius manifold to
any natural submanifold one obtains a new bi-Hamiltonian structure with non-local tails, as above. Care

has to be taken with the structure of the non-local tail for the curved pencil; it is twice as long as the
codimension, each half containing the non-local tail of one of the individual metrios.

It is not obvious from this result that the resulting system is still local. This may be shown to be case
by directly studying the restriction of the hierarchy (4.5) onto a natural submanifold. In order to show this
the system will first be rewritten in canonical coordinatéxtensive use will be made of the following
formulae, all of which are derived in [4]:

m
wi(xWiﬁwiy
Capy =D
i=1 le

ar“ ou' Y
_-:‘//ilwia’ _:_Ol’
ou' arr Y
wherew,?1 = n11. Indices ony are raised and lowered usingg, SOv;* = ¥,;5n** and
Z ViaVig = Nap, Z lﬁialﬁiﬂ = 770”3
i=1 i=1
and crucially the following:

(u! —u')Bij = Z(Cla - %)‘/’ia%‘a- “.7)

o

In canonical coordinates these become

ah(a p=1
ViVih =6 ————
(e, p) I oui
and
Mapy = 1" ViVilia,p) (4.8)
_ 1 apy 4.9)
mi  ou' '

whereV is the Levi-Civita connection of the first metric.
In canonical coordinates the characteristic speeds of the primary part of the hierarchy are given by
; ou’
@0 = jra

1 N.B. The notation used in the rest of this section differs from that used above. Greek letters denote components of objects
in flat coordinates, and Latin letters denote components of objects in canonical coordinateswillsefer to the metridDg.
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Thus conditions (4.2) and (4.3) become, respectively, the conditions

a i
ou <00, (4.10)
al“ MJZO
and
i
oG’ —ul) _o (4.11)
are ul —ul =0

If these conditions hold for the primary part of the hierarchy, then they hold for the entire hierarchy.

Theorem 4.3. Suppose that conditiof#.11) holds, and that the séjz} does not contain negative half-
integers. Then

(Mp.g+ = Mg+ |0 =0

and hence the entire hierarchy may be restricted onto the bifurcation diagfam’ = 0.

Proof. Eg. (4.6) implies the following relation

. 1\ . 1 .
{u' . Hp g}, = (‘1 Tt §>)‘I<ﬁ,q+2> + D (ROG Mo g iy
k_
The left-hand-side may be expanded
i @Qr
W' Hpqn},= [aul Z ii 8ur:|h(ﬁ )
and since, by definition,
, 1792 &9
)‘(ﬁq+1)_7|:aw2 _ana :|h(ﬂ11)’

one may eliminate the second derivatives to obtain

i iy u' , dh,
{u's Hipa-n by =u'hip g0+ E[Z((DF - 2r;) 8(;”].

r

Expanding the Christoffel symbols (see Proposition 3.8) and using Egs. (4.7)—(4.9) gives

ui Q) pr 2 8/1(/5 q) d r r i 1
_[Z( rj;=2ry) = ) ™ — 5 Aot [feo T 2%5 g+1)

Mii r oY, rF#i
since

;o Y
GO 918 Y
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Putting these formulae back together yields the following recursion relation between the characteristic
speeds:

1 i 1 i i : o
a1+ 35 ) gt =\ 54 g~ 2 (RGrig-is)
k=1

d .
+ > ™ [(‘Ia - §)kfy,0>kfﬂ,p+1>}‘l(a,o>-

oy, r#i

This shows two things; firstly that if one can restrict the primary part of the hierarchy onto a discriminant,
then one may restrict the entire hierarchy, and also that

i J —
(6.5 = *p.p0) s =0
if the results holds forr = 0. Hence the result. Note that if technical requirement on th¢.sgtis to

ensure the coefficient df( is always non-zero. O

B.q+2)

As already pointed out, these results are formal, depending on the nondegeneracies of various
quantities when restricted to the submanifold. An example of what can happen when degeneracies appe:
will be given in the next section, where the results are illustrated by means of various examples.

5. Examples

The Main Examples A and B in the introduction are concrete examples of the general theory developed
in this paper. The following examples are self-explanatory. Further examples may be found in [17].

Example5.1 (TheA, caustic3. The construction of the Frobenius manifold based on the Coxeter group
A, was given in Main Example A. It follows that

ou' __dp
are e

7=al
On a caustie:’ = u/ implies thate’ = o/ (which is not true on a Maxwell strata), so

ou'

. u’
are

_9p
T o

PP
u'—ul=0 ot

z=al, al=al ul —uj=0

Hence one may restrict th&, hierarchy onto any caustic. The same should be true for restriction onto
Maxwell strata.

Example 5.2 (The Az discriminan). This example is a continuation of Example 3.14. Using the
parametrization of the swallowtail discriminant given there, the induced metrics become

N = (_“4 + 3uv® + v4) du® + 2uv(u2 + 4v2) dudv + 02(7u2 + v2) dv2,
gy = —du® — dv?.
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Note that detjy = v2(v? — 24?)3. The submanifolds given by det = 0 correspond to the components
of the subdiscriminantl, 0, 0). In terms of the polynomial (3.4) these correspond to further degeneracies
amongst the its zeroes.

The induced algebra, Euler vector field and unity vector field are given by:

Oy * 0y = [u(u2 — 2v2)/64] 0y — [v(u2 + vz)/64] 0y,
3y * 0y = —[v(u® + v?)/64] 3, — [3uv?/64] 3,

3y * 0, = —[3uv?/64] 3, — [v(4u® + v?)/64] 3,
Ey=ud,+vo,,

en =[192uv/ A1, — [64(u® + v?)/A]d,,

whereA = v(2u® — v?)2.
The T = T®3V-flow for the A3 Frobenius manifold may be calculated and then restricted onto the
discriminant to yield the hydrodynamic system

Uur = (3u2 — 3v2)ux — 6uvv,,
vr = —6uvu, — (3u2 + 3v2)vx

This may easily be put into Hamiltonian form using the induced intersection form (up to some overall
constants)

(+),=(5 9)ax (1)

whereh = u* — 6uv? — v*. Thish belongs to a family given by hypergeometric functions

r 1—-r 3—r 1
h(lr)(u U)—I/l 2Fl _E TaT?E u )

the second familyh,, coming the second linearly independent solution of the corresponding
hypergeometric equation.

Example5.3. Consider the Frobenius manifold defined by the prepotential and Euler vector field [12,16]
F =122 — 17202(3) 7 + 1720 (1 — 13) — 36”4 " (1+ 2e™) + 1/2(%)* (log® — 3/2),
E =191 + 8 + 1303 + 20,.

The submanifold corresponding to the limft— —oo is a caustics, since the polynomial (3.4) has a
repeated root. However the inverse metric on this caustic is degenerate:

010
<1>lf—(1 0 1)
010

Thus the ideas in this paper cannot be directly applied. However, the algebra on this submanifold is still
associative, with product

3
d d
ot ;Cu RN
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SO
9 031 = d;,
903 = —e' 8y — 13" (81 + B3),
82003 = —¢" (3 + D),
d3003=—0d3+ 1/10-.

One may also reduce the corresponding hydrodynamics systems onto this submanifold, but the system:
while bi-Hamiltonian, have non-trivial Casimirs. Further investigation of such degenerate caustics,
similar to the classical limit of quantum cohomology, requires further study.

6. Comments

There are clearly many questions that may be addressed on the structure of submanifolds in gener:
and of submanifolds in particular. Some of the most interesting concern the connectianfuiitttions
are isomonodromy. For an arbitrary integrable system with conserved dengitiee may defined the
1-form

w=) hidTi

which is closed. This then implies the existence of a so-call&dction

_ dlogt
90X 0Tig1

This type of definition predates more sophisticated definitions based on Grassmannians and loop group:
On a submanifoldv ¢ M one may pull back the form, which remains closed, and hence one may define
a t-functions for the submanifold. For the dispersionless integrable systems associated with Frobenius
manifolds the central object is the isomonodromidunction, denoted;. It would be of interest to
see how such an object, and the whole theory of isomonodromy, behaves on a natural submanifold
One problem is that most of the objects are defined’icaustics, so various limiting arguments will
have to be used to understand the behaviour of the objects on the caustics themselves. The fact th;
Frobenius submanifolds lie in such caustics suggests that this may be possible, at least in some case
The singular nature of the; function on natural submanifolds is also reminiscent of the work of [3],
where singularities in functions are labeled by Young tableaux. This suggest that a general study of
the zero/singular set af-functions would be of interest. Intimately connected with théunction is the
whole question of how one may deform these dispersionless hierarchies [6].

Other interesting questions include:

hy

e To what extent, if at all, does a natural submanifold of a Frobenius manifold define a (topologi-
cal/cohomological) quantum field theory?

The fact that one has a Frobenius algebra on each tangent space indicates that such an interpretation m
be possible. Also much of the discussion on cohomological field theories in [13] may be reproduced
without the flatness and condition and the existence of a prepotential. A simpler question would be to
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understand how the field theory corresponding to a Frobenius submanifold is embedded within the large!
field theory.

e Do natural submanifolds carry information relevant to enumerative geometry and quantum cohomol-
ogy?

In the case of Frobenius submanifolds the information they can contain includes certain contracted
Gromov-Witten invariants of the ambient manifold [13,17].
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