
Discrete Optimization 9 (2012) 216–235

Contents lists available at SciVerse ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

Mixed n-step MIR inequalities: Facets for the n-mixing set
Sujeevraja Sanjeevi ∗, Kiavash Kianfar 1
Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843-3131, USA

a r t i c l e i n f o

Article history:
Received 19 September 2011
Received in revised form 10 June 2012
Accepted 3 July 2012
Available online 31 July 2012

Keywords:
Mixed n-step MIR
Mixing
Mixed integer programming
Cutting planes
Multi-module capacitated lot-sizing
Multi-module capacitated facility location

a b s t r a c t

Günlük and Pochet [O. Günlük, Y. Pochet, Mixing mixed integer inequalities. Mathematical
Programming 90 (2001) 429–457] proposed a procedure to mix mixed integer rounding
(MIR) inequalities. The mixed MIR inequalities define the convex hull of the mixing set
{(y1, . . . , ym, v) ∈ Zm

×R+ : α1yi+v ≥ βi, i = 1, . . . ,m} and can also be used to generate
valid inequalities for general as well as several special mixed integer programs (MIPs).
In another direction, Kianfar and Fathi [K. Kianfar, Y. Fathi, Generalized mixed integer
rounding inequalities: facets for infinite group polyhedra. Mathematical Programming 120
(2009) 313–346] introduced the n-stepMIR inequalities for themixed integer knapsack set
through a generalization of MIR. In this paper, we generalize the mixing procedure to the
n-step MIR inequalities and introduce the mixed n-step MIR inequalities. We prove that
these inequalities define facets for a generalization of the mixing set with n integer
variables in each row (which we refer to as the n-mixing set), i.e. {(y1, . . . , ym, v) ∈

(Z × Zn−1
+ )m × R+ :

n
j=1 αjyij + v ≥ βi, i = 1, . . . ,m}. The mixed MIR inequalities

are simply the special case of n = 1. We also show that mixed n-step MIR can generate
valid inequalities based on multiple constraints for general MIPs. Moreover, we introduce
generalizations of the capacitated lot-sizing and facility location problems, which we refer
to as themulti-module problems, and show that mixed n-stepMIR can be used to generate
valid inequalities for these generalizations. Our computational results on small MIPLIB
instances as well as a set of multi-module lot-sizing instances justify the effectiveness of
the mixed n-step MIR inequalities.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the polyhedral structures of simple mixed integer sets and using them in developing valid inequalities
for general mixed integer programs (MIPs) have been a successful approach. In this paper, we consider a generalization of
the well-known mixing set [1], which we refer to as the n-mixing set. This set is defined as follows:

Qm,n
=


(y1, . . . , ym, v) ∈ (Z × Zn−1

+
)m × R+ :

n
j=1

αjyij + v ≥ βi, i = 1, . . . ,m


,

where αj ∈ R, αj > 0, j = 1, . . . , n and βi ∈ R, i = 1, . . . ,m. The mixing set studied by Günlük and Pochet [1] is the special
case of Qm,1. They showed that the mixed integer rounding (MIR) inequalities [2,3] (called 1-step MIR inequalities in this
paper) based on individual constraints of Qm,1 can bemixed in a particular way to generate valid inequalities for Qm,1, which
also define the convex hull of this set. The mixed 1-step MIR inequalities can also be used to generate valid inequalities for
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general mixed integer sets. Moreover, they generate valid inequalities for special structure MIPs such as constant-capacity
lot-sizing, facility location, and network design problems [1]. Variations of the mixing set Qm,1 have also been studied: an
important variation is the mixing set with different capacities, i.e. the setQm

=

(y1, . . . , ym, v) ∈ Zm

× R+:αi
1y

i
+ v ≥ βi, i = 1, . . . ,m


,

where αi
1, βi ∈ R and αi

1 > 0, i = 1, . . . ,m. The set Q 2 with divisible capacities, i.e. when α2
1 |α

1
1 , was studied in [4], and

the set Q 2 where capacities are not necessarily divisible was studied in [5]. The set Qm with divisible capacities, i.e. when
αm
1 |αm−1

1 | · · · |α1
1 , was studied in [6,7]. A simple algorithm for linear optimization over Qm with divisible capacities along

with a compact extended formulation for this set was devised in [8]. Other variants of the mixing set Qm,1 include the
continuous mixing set [9,10], the mixing set with flows [11] and the mixing set linked by bidirected paths [12]. The mixing
inequalities of [1] for general mixed integer sets were studied from a group-theoretic perspective in [13] and bounds on
their MIR rank were proposed in [14,15].

In another direction, Kianfar and Fathi [16] presented the n-stepMIR inequalities for the general mixed integer knapsack
set through a generalization of MIR. These inequalities are facet-defining for the mixed integer knapsack set under certain
conditions [17]. Although their theoretical derivation is rather involved, the n-step MIR inequalities are easily generated
by applying the so-called n-step MIR functions on a general mixed integer constraint. The n-step MIR functions also define
extreme inequalities for the infinite group polyhedra and can be used to generate facets for finite cyclic group polyhedra [18].
A variant of the n-step MIR inequalities are the n-step mingling inequalities, which utilize the bounds on integer variables
to generate stronger inequalities for general MIPs, which are facet-defining in many cases [17].

In this paper, we show that the idea of mixing can be generalized to n-stepMIR inequalities. Through this generalization,
we develop the type I and type II mixed n-step MIR inequalities for the n-mixing set Qm,n under the condition that for each
constraint i of Qm,n used in the mixing, αj’s and βi satisfy the same conditions required for validity of the n-step MIR

inequality, i.e. αj


β

(j−1)
i /αj


≤ αj−1, j = 2, . . . , n (Section 3). The mixed MIR inequalities of [1] simply correspond to

the special case of n = 1. We then demonstrate the strength of the mixed n-stepMIR inequalities by showing that the type I
mixed n-stepMIR inequalities define facets for the convex hull ofQm,n, denoted by conv(Qm,n), and type II mixed n-stepMIR
inequalities define faces of dimension at least n(m − 1) for conv(Qm,n) and are facet-defining for this set if some additional
conditions are satisfied (Section 4).

We then show how the mixed n-step MIR inequalities for Qm,n can be used to generate mixed n-step MIR inequalities
for the general multi-constraint mixed integer set

Ym =


(x1, . . . , xN , s) ∈ ZN

+
× Rm

+
:

t∈T

aitxt + si ≥ bi, i = 1, . . . ,m


,

where T = {1, . . . ,N} and ait , bi ∈ R for all i and t (Section 5). Note that any set defined by m mixed integer constraints
can be relaxed to a set of the form Ym (see Section 5). As a result, for a general MIP, the mixed n-step MIR generates valid
inequalities that are based on multiple constraints. A mixed n-step MIR inequality for Ym has n positive parameters, namely
α1, . . . , αn, which must satisfy the n-step MIR conditions, i.e. αj


b(j−1)
i /αj


≤ αj−1, j = 2, . . . , n, for any constraint i of Ym

that is used in generating the inequality. Any set of values for the parameters α1, . . . , αn that satisfy these conditions give
a corresponding mixed n-step MIR inequality for Ym. Notice that for the validity of the mixed n-step MIR inequality for Ym,
no conditions on the coefficients ait in Ym are required. In other words, the restriction of n-step MIR conditions is only on
the parameters of the cut, i.e. α1, . . . , αn, and as we will see in Section 5, there are always infinitely many choices for these
parameters that satisfy the n-step MIR conditions.

Next, we introduce a generalization of the capacitated lot-sizing problem, which we refer to as the multi-module lot-
sizing problem (MML), and show that the mixed n-step MIR inequalities can be used to generate valid inequalities for this
problem. In MML, the total capacity in each period is the summation of integer multiples of several modules of different
capacities. The mixed n-step MIR inequalities for MML generalize the (k, l, S, I) inequalities for the constant-capacity lot-
sizing problem (CCL) [1,19]. Similarly, we also introduce a generalization of the capacitated facility location problem, which
we refer to as the multi-module facility location problem (MMF), and show that the mixed n-step MIR inequalities can be
used to generate valid inequalities for this problem. The mixed n-step MIR inequalities for MMF generalize the mixed MIR
inequalities for the constant-capacity facility location problem (CCF) [1,20,21] (Section 6).

Finally, we provide our preliminary computational results on using the mixed n-step MIR inequalities in solving small
MIPLIB instances [22] as well as a set ofMML instances (Section 7). These results justify the effectiveness of themixed n-step
MIR inequalities.

We also note that in the special case where the parameters αj, j = 1, . . . , n, in Qm,n are divisible, i.e. αn|αn−1| · · · |α1, the
n-stepMIR validity conditions are always satisfied. Consequently, all results in this paper are always true for the special case
of divisible parameters (as we will see in Section 6, in the case of MML and MMF, the parameters αj, j = 1, . . . , n, are the
capacities of modules).

First, we briefly review the necessary concepts related to the mixed MIR and the n-step MIR inequalities in Section 2.



218 S. Sanjeevi, K. Kianfar / Discrete Optimization 9 (2012) 216–235

2. Necessary background

In this section,webriefly review then-stepMIR inequalities [16] and themixedMIR inequalities [1]. Kianfar and Fathi [16]
studied the single-constraint set

Q 1,n
=


(y1, . . . , yn, v) ∈ Z × Zn−1

+
× R+:

n
j=1

αjyj + v ≥ β


(recall that αj ∈ R, αj > 0, j = 1, . . . , n, and β ∈ R). They developed the n-step MIR inequality for this set. To present
this inequality we define the following notation: for β ∈ R define the recursive remainders β(j)

:= β(j−1)
− αj


β(j−1)/αj


,

where β(0)
:= β . Note that 0 ≤ β(j) < αj for j = 1, . . . , n. We also assume that

b
a(·) = 0 and

b
a(·) = 1 whenever a > b.

Kianfar and Fathi [16] showed that if the n-step MIR conditions are satisfied, i.e.

αj

β(j−1)/αj


≤ αj−1, j = 2, . . . , n, (1)

then the n-step MIR inequality

β(n)
n

j=1

n
l=j+1


β(l−1)

αl


yj + v ≥ β(n)

n
l=1


β(l−1)

αl


(2)

is valid for Q 1,n and defines a facet for conv(Q 1,n). Note that for (2) to be non-trivial, it is also assumed β(j−1)/αj ∉ Z,
j = 1, . . . , n. An intermediate result from [16], which will be useful in this paper, is that the inequalities

αj


j

i=1

j
l=i+1


β(l−1)

αl


yi −

j
l=1


β(l−1)

αl


+


β(j−1)

αj


+

n
i=j+1

αiyi + v ≥ β(j−1)
; j = 1, . . . , n (3)

are also valid for Q 1,n if conditions (1) are satisfied.
Moreover, through a procedure that uses the facet-defining property of inequality (2) for Q 1,n, Kianfar and Fathi [16] also

developed the n-stepMIR inequality for the general mixed integer knapsack set Y1 = {(x1, . . . , xN , s) ∈ ZN
+

×R+:


j∈T atxt
+ s ≥ b}, where the coefficients at , t ∈ T , and the right-hand side b are real numbers that do not need to satisfy any
conditions. To generate an n-step MIR inequality for Y1, a parameter vector α = (α1, . . . , αn) > 0 is chosen. These
parameters must satisfy the n-step MIR conditions, i.e. αj


b(j−1)/αj


≤ αj−1, j = 2, . . . , n. The n-step MIR inequality for Y1

is then
t∈T

µn
α,b(at)xt + s ≥ µn

α,b(b), (4)

where µn
α,b is the so-called n-step MIR function. Each instance of the function µn

α,b is completely defined by the parameter
vector α and the right-hand side b. The formulation and properties of this function are presented in [16,17]. According to
(4), the n-step MIR inequality is obtained by applying the n-step MIR function on at ’s and b. It is also interesting to note that
Q 1,n is a special case of Y1. So we can use (4) to generate a valid inequality for Q 1,n. If we do so, we get exactly (2).

In another direction, Günlük and Pochet [1] presented the mixed MIR inequalities for the 1-mixing set Qm,1. These
inequalities are generated by ‘‘mixing’’ the 1-step MIR inequalities written for the individual constraints of Qm,1 as follows.
LetM = {1, . . . ,m}. The 1-step MIR inequality [1,3,23] for the inequality i in Qm,1 can be written as

v ≥ β
(1)
i


⌈βi/α1⌉ − yi


(5)

(inequality (5) can be obtained from inequality (2) by setting n = 1 and β = βi). Consider a non-empty K ⊆ M . To simplify
the notation and without loss of generality we assume K = {1, . . . , k} and β

(1)
i−1 ≤ β

(1)
i , i = 2, . . . , k. By mixing the 1-step

MIR inequalities (5) for i ∈ K , Günlük and Pochet [1] presented the following inequalities for Qm,1:

v ≥

k
i=1


β

(1)
i − β

(1)
i−1

 βi

α1


− yi


(6)

v ≥

k
i=1


β

(1)
i − β

(1)
i−1

 βi

α1


− yi


+


α1 − β

(1)
k

β1

α1


− y1 − 1


, (7)

where β
(1)
0 = 0 by definition. We refer to (6) and (7) as the type I and type II mixed MIR inequalities generated by K ,

respectively. It is shown in [1] that the convex hull of Qm,1 is completely described by inequalities of the form (6) and (7)
generated by all possible subsets K of M .
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3. Mixed n-step MIR inequalities for the n-mixing set

In this section, we show that mixing can be generalized to the n-step MIR inequalities. In other words, one can mix the
n-step MIR inequalities written for the individual constraints of the n-mixing set Qm,n and get a valid inequality based on
multiple constraints (called the mixed n-step MIR inequality) for this set. Any subset of constraints of Qm,n can be chosen to
be mixed. Let K ⊆ M denote the index set of the chosen constraints. To simplify the notation and without loss of generality
throughout the paper we assume K = {1, . . . , k} and β

(n)
i−1 ≤ β

(n)
i , i = 2, . . . , k. Also note that according to (1), for the

n-step MIR inequality to be valid for each base constraint i, i ∈ K , the conditions

αj


β

(j−1)
i /αj


≤ αj−1, j = 2, . . . , n, i ∈ K (8)

must be satisfied (as mentioned, the assumptions β
(j−1)
i /αj ∉ Z, j = 1, . . . , n, i ∈ K are also required to avoid trivial

inequalities). Now assuming (8) holds, the n-step MIR inequality (2) written for constraint i of Qm,n, i ∈ K , is valid for Qm,n

and can be written as

v ≥ β
(n)
i


n

l=1


β

(l−1)
i

αl


−

n
j=1

n
l=j+1


β

(l−1)
i

αl


yij


. (9)

To simplify notation in the rest of the paper, we define the function φi:Zn
→ Z to denote the integer-valued expression

inside the parentheses in (9) and refer to it as the n-mixing function, i.e.

φi(yi) :=

n
l=1


β

(l−1)
i

αl


−

n
j=1

n
l=j+1


β

(l−1)
i

αl


yij for i ∈ K . (10)

Note that φi is a function of variables yi = (yi1, . . . , y
i
n) which depends on parameters α and βi. Now the n-step MIR

inequality (9) can be written as

v ≥ β
(n)
i φi(yi). (11)

We show that inequalities (11), i ∈ K , can be mixed to obtain the following valid inequalities for Qm,n:

v ≥

k
i=1


β

(n)
i − β

(n)
i−1


φi(yi), (12)

v ≥

k
i=1


β

(n)
i − β

(n)
i−1


φi(yi) +


αn − β

(n)
k

 
φ1(y1) − 1


, (13)

where β
(n)
0 = 0 by definition. We refer to (12) and (13) as the type I and type II mixed n-step MIR inequalities, respectively.

The validity of (12) and (13) can be proved using an argument similar to the one used in [1] for validity of (6) and (7) but
requires an additional lemma.

Lemma 1. For i ∈ K, the inequality

v ≥ β
(n)
i + αn


φi(yi) − 1


(14)

is valid for Qm,n.

Proof. For i ∈ K , since (8) holds, inequality (3) written for the constraint i of Qm,n and j = n, i.e.

αn


n

i=1

n
l=i+1


β

(l−1)
i

αl


yi −

n
l=1


β

(l−1)
i

αl


+


β

(n−1)
i

αn


+ v ≥ β

(n−1)
i (15)

is valid for Qm,n. By subtracting αn


β

(n−1)
i /αn


from both sides and re-arranging the terms we get (14). �

Theorem 2. If conditions (8) hold, the type I and type II mixed n-step MIR inequalities (12) and (13) are valid for Qm,n.

Proof. To prove the validity of (12), consider a fixed point (ŷ1, . . . , ŷm, v̂) ∈ Qm,n. Define λ := maxi∈K φi(ŷi) and
p := max{i ∈ K :φi(ŷi) = λ}. If λ ≤ 0, then it is trivial that (12) is satisfied because v̂ ≥ 0, and by the assumed ordering of
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indices in K , β(n)
i − β

(n)
i−1 ≥ 0, i ∈ K . If λ ≥ 1, then since φi(ŷi) is an integer, we can write

k
i=1


β

(n)
i − β

(n)
i−1


φi(ŷi) ≤

p
i=1


β

(n)
i − β

(n)
i−1


λ +

k
i=p+1


β

(n)
i − β

(n)
i−1


(λ − 1)

= β(n)
p (λ) +


β

(n)
k − β(n)

p


(λ − 1)

= β(n)
p + β

(n)
k (λ − 1)

≤ β(n)
p + αn(λ − 1)

= β(n)
p + αn(φ

p(ŷp) − 1)

≤ v̂.

The last inequality follows from Lemma 1. This proves the validity of (12). The validity of (13) can be proved very
similarly. �

Note that for n = 1 this proof reduces to the proof of validity of the mixed 1-stepMIR inequalities in [1], where Lemma 1
was not required because for n = 1 inequality (14) simply reduces to the base inequality α1yi1 + v ≥ βi.

Consider the following generalization of Qm,n which has different continuous variables in each row:

Qm,n
=


(y1, . . . , ym, v) ∈ (Z × Zn−1

+
)m × Rm

+
:

n
j=1

αjyij + vi ≥ βi, i = 1, . . . ,m


.

Let the variable v ∈ R+ be such that v ≥ vi for all i ∈ K . Then as a direct result of Theorem 2, we have the following.

Corollary 3. If conditions (8) hold, the mixed n-step MIR inequalities

v ≥

k
i=1


β

(n)
i − β

(n)
i−1


φi(yi) (16)

v ≥

k
i=1


β

(n)
i − β

(n)
i−1


φi(yi) +


αn − β

(n)
k

 
φ1(y1) − 1


(17)

are valid for Qm,n. �

Remark 1 (Divisible Coefficients). An interesting special case of the n-mixing set Qm,n is when the coefficients are divisible,
i.e. αj|αj−1, j = 2, . . . , n. Note that in this case for any i ∈ K and j ∈ {2, . . . , n}, by definition of β

(j−1)
i , we have

αj−1/αj ≥ β
(j−1)
i /αj, which implies αj−1/αj ≥


β

(j−1)
i /αj


because αj−1/αj is an integer. That means in this case conditions

(8) are automatically satisfied. Consequently, all results in this paper are always true for the case where the elements of the
parameter vector α are divisible, i.e. αj|αj−1, j = 2, . . . , n. �

4. Facets defined by mixed n-step MIR inequalities

In this section, we prove that the type I mixed n-step MIR inequalities define facets for conv(Qm,n). We also show
that the type II inequalities define faces of dimension at least n(m − 1) for conv(Qm,n) and define facets for this set if
some additional conditions on parameters are satisfied. These results demonstrate the strength and importance of these
inequalities. Note that conv(Qm,n) is non-empty and full-dimensional (is of dimension mn + 1). That is because a point
P = (y1, . . . , ym, v) ∈ (Z × Zn−1

+ )m × R+ with sufficiently large coordinates is feasible to Qm,n (since αj > 0, j = 1, . . . , n)
and P + e ∈ Qm,n for all unit vectors e ∈ Rmn+1.

To prove the facet-defining property of the type I mixed n-step MIR inequality, we need to define some points and prove
some properties for them first.

Definition 4. For i ∈ M, t = 1, . . . , n, define the points pi,t = (pi,t1 , . . . , pi,tn ) ∈ Z × Zn−1
+ such that

pi,tj =



β

(j−1)
i /αj


for j = 1, . . . , t − 1

β
(j−1)
i /αj


for j = t

0 for j = t + 1, . . . , n,
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and for i ∈ K , t = 1, . . . , n, define the points qi,t = (qi,t1 , . . . , qi,tn ) ∈ Z × Zn−1
+ such that

qi,tj =


β

(j−1)
i /αj


for j = 1, . . . , t

0 for j = t + 1, . . . , n.

Lemma 5. The point P = (ŷ1, . . . , ŷm, v̂) ∈ (Z × Zn−1
+ )m × R+ satisfies constraint i of Qm,n if any of the following is true:

(a) i ∈ M and ŷi = pi,t for some t ∈ {1, . . . , n},
(b) i ∈ K and ŷi = qi,t for some t ∈ {1, . . . , n} and v̂ ≥ β

(t)
i .

Proof. See Appendix. �

Lemma 6. For i ∈ M, φi(pi,t) = 0, t = 1, . . . , n, and for i ∈ K, φi(qi,n) = 1.

Proof. See Appendix. �

Recall that without loss of generality we have assumed that the set of indices of inequalities used in mixing are
K = {1, . . . , k}, where β

(n)
i−1 ≤ β

(n)
i , i = 2, . . . , k.

Theorem 7. If conditions (8) hold, the type I mixed n-step MIR inequality (12) defines a facet for conv(Qm,n).

Proof. Consider the support hyperplane of inequality (12), i.e.

v =

k
i=1

(β
(n)
i − β

(n)
i−1)φ

i(yi) (18)

and the face defined by it, i.e. F1 = {(y1, . . . , ym, v) ∈ conv(Qm,n) : (18) }. We prove that any generic hyperplane

λ0v +

m
i=1


n

j=1

λi
jy

i
j


= θ (19)

that passes through F1 has to be a scalar multiple of (18). For this, consider the point P1
= (p1,1, . . . , pm,1, 0) ∈ (Z ×

Zn−1
+ )m × R+. By Lemma 5(a), P1

∈ Qm,n and by Lemma 6, P1 satisfies (18) so P1
∈ F1, and hence must satisfy (19) too. This

means
m
i=1

λi
1


βi

α1


= θ. (20)

Based on (20), hyperplane (19) reduces to

λ0v =

m
i=1


λi
1


βi

α1


− yi1


−

n
j=2

λi
jy

i
j


. (21)

For i ∈ M , consider the point P i,2
= (p1,1, . . . , pi−1,1, pi,2, pi+1,1, . . . , pm,1, 0) ∈ (Z × Zn−1

+ )m × R+. Again by Lemmas 5 and
6, P i,2

∈ F1, and hence must satisfy (21) too. Substituting P i,2, i ∈ M , in (21) gives

λi
1 = λi

2


β

(1)
i

α2


, i ∈ M. (22)

Based on (22), hyperplane (21) reduces to

λ0v =

m
i=1


λi
2


βi

α1


β

(1)
i

α2


−


β

(1)
i

α2


yi1 − yi2


−

n
j=3

λi
jy

i
j


. (23)

Starting with (23), and for each i ∈ M , repeating the same argument using the points P i,3, P i,4, . . . , P i,n
∈ F1 one after the

other, where P i,t
= (p1,1, . . . , pi−1,1, pi,t , pi+1,1, . . . , pm,1, 0) for t = 1, . . . , n, we get the identities

λi
t−1 = λi

t


β

(t−1)
i

αt


, t = 2, . . . , n, i ∈ M. (24)
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Based on (24), we get the identities

λi
t = λi

n

n
j=t+1


β

(j−1)
i

αj


, t = 1, . . . , n − 1, i ∈ M, (25)

which reduce hyperplane (23) to

λ0v =

m
i=1

λi
n


n

l=1


β

(l−1)
i

αl


−

n
j=1

n
l=j+1


β

(l−1)
i

αl


yij


,

or

λ0v =

m
i=1

λi
nφ

i(yi). (26)

Now for i ∈ K , consider the point S i = (q1,n, . . . , qi,n, pi+1,1, . . . , pm,1, β
(n)
i ) ∈ (Z × Zn−1

+ )m × R+. Since β
(n)
t ≤ β

(n)
i for

t = 1, . . . , i, by Lemma 5, S i ∈ Qm,n. By Lemma 6, S i satisfies (18) so S i ∈ F1, and hence must satisfy (26). Substituting in
(26) gives

λ0β
(n)
i =

i
t=1

λt
n, i ∈ K ,

which implies

λi
n = λ0


β

(n)
i − β

(n)
i−1


, i ∈ K . (27)

Identities (27) reduce hyperplane (26) to

λ0v = λ0

k
i=1


β

(n)
i − β

(n)
i−1


φi(yi) +

m
i=k+1

λi
nφ

i(yi). (28)

Now for i = k + 1, . . . ,m, consider the point Gi
= (p1,1, . . . , pi−1,1, g i, pi+1,1, . . . , pm,1, 0) ∈ (Z × Zn−1

+ )m × R+, where
g i

∈ Z × Zm−1
+ , φi(g i) ≠ 0, and g i has sufficiently large coordinates for (g i, 0) to satisfy constraint i in Qm,n (clearly such

g i exists because αj > 0, j = 1, . . . , n). Therefore using Lemma 5, Gi
∈ Qm,n. Also, based on Lemma 6, Gi satisfies (18),

so Gi
∈ F1, and hence must satisfy (28). Substituting Gi in (28), based on Lemma 6 and since φi(g i) ≠ 0, we get λi

n = 0.

Therefore, λi
n = 0, i = k + 1, . . . ,m, so (28) reduces to λ0v = λ0

k
i=1


β

(n)
i − β

(n)
i−1


φi(yi), which is λ0 times (18). This

completes the proof. �

Nextwe address the type IImixed n-stepMIR inequality.Wewill show that the face defined by a type IImixed n-stepMIR
inequality for conv(Qm,n) has always a dimension of at least n(m−1), andmoreover, is a facet if some additional conditions
on (α1, . . . , αn), β1, and βk are satisfied. To prove this result first we define somemore points and establish some properties
for them.

Definition 8. Assuming

β

(j−1)
1 /αj


≥ 1, j = 2, . . . , n, define the points r t = (r t1, . . . , r

t
n) ∈ Z × Zn−1

+ , t = 2, . . . , n, such
that

r tj =




β

(j−1)
1 /αj


for j = 1, . . . , t − 2

β
(j−1)
1 /αj


− 1 for j = t − 1

2

β

(j−1)
1 /αj


+ 1 for j = t

β
(j−1)
1 /αj


for j = t + 1, . . . , n

and the point s = (s1, . . . , sn) ∈ Z × Zn−1
+ such that s = q1,n − en, where en = (0, . . . , 0, 1) ∈ Rn.

Lemma 9. The point P = (ŷ1, . . . , ŷm, v̂) ∈ (Z × Zn−1
+ )m × R+ satisfies constraint 1 of Qm,n if any of the following is true:

(a) ŷ1 = r t for some t ∈ {2, . . . , n} and v̂ ≥ β
(n)
1 + αt−1 − αt


β

(t−1)
1 /αt


,

(b) ŷ1 = s and v̂ ≥ αn + β
(n)
1 .
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Proof. See Appendix. �

Lemma 10. φ1(r t) = 1 for t = 2, . . . , n, and φ1(s) = 2.

Proof. See Appendix. �

Theorem 11. If conditions (8) hold, the type II mixed n-step MIR inequality defines a face of dimension at least n(m − 1) for
conv(Qm,n). Moreover, this inequality defines a facet for conv(Qm,n) if the following additional conditions are satisfied:

(a)

β

(j−1)
1 /αj


≥ 1, j = 2, . . . , n,

(b) β
(n)
k − β

(n)
1 ≥ max


αj−1 − αj


β

(j−1)
1 /αj


, j = 2, . . . , n


.

Proof. Consider the support hyperplane of inequality (13), i.e.

v =

k
i=1


β

(n)
i − β

(n)
i−1


φi(yi) +


αn − β

(n)
k

 
φ1(y1) − 1


, (29)

and the face defined by it, i.e. F2 = {(y1, . . . , ym, v) ∈ conv(Qm,n) : (29) }. We prove that any generic hyperplane defined
by (λ1, . . . , λm, λ0, θ) ∈ Rmn+2, i.e.

λ0v +

m
i=1


n

j=1

λi
jy

i
j


= θ, (30)

that passes through F2 is the linear combination of at most n + 1 linearly independent hyperplanes, making F2 a face of
dimension at leastmn + 1 − (n + 1) = n(m − 1).

Consider the point S1 = (q1,n, p2,1, . . . , pm,1, β
(n)
1 ) ∈ (Z × Zn−1

+ )m × R+. As argued in the proof of Theorem 7, S1 ∈ Qm,n.
Moreover, using Lemma 6, it is easy to verify that S1 satisfies (29). So S1 ∈ F2 and hence must satisfy (30). Substituting into
(30) gives

λ0β
(n)
1 +

n
j=1

λ1
j


β

(j−1)
1

αj


+

m
i=2

λi
1


β

(j−1)
i

αj


= θ. (31)

Based on (31), hyperplane (30) reduces to

λ0


v − β

(n)
1


+

n
j=1

λ1
j


y1j −


β

(j−1)
1

αj


=

m
i=2


λi
1


βi

α1


− yi1


−

n
j=2

λi
jy

i
j


. (32)

Consider the points Ri,t
= (q1,n, p2,1, . . . , pi−1,1, pi,t , pi+1,1, . . . , pm,1, β

(n)
1 ) ∈ (Z×Zn−1

+ )m×R+, i = 2, . . . ,m, t = 2, . . . , n.
By Lemma 5, these points belong to Qm,n, and by Lemma 6, they satisfy (29). Therefore Ri,t

∈ F2, i = 2, . . . ,m, t = 2, . . . , n.
Starting with hyperplane (32), and for each i ∈ {2, . . . ,m}, substituting the points Ri,2, . . . , Ri,n in the hyperplane, one after
the other, we get

λi
t−1 = λi

t


β

(t−1)
i

αt


, t = 2, . . . , n, i = 2, . . . ,m. (33)

From (33) we get

λi
t = λi

n

n
j=t+1


β

(j−1)
i

αj


, t = 2, . . . , n, i = 2, . . . ,m, (34)

which reduces (32) to

λ0


v − β

(n)
1


+

n
j=1

λ1
j


y1j −


β

(j−1)
1

αj


=

m
i=2

λi
nφ

i(yi). (35)

Now consider the points S i = (q1,n, . . . , qi,n, pi+1,1, . . . , pm,1, β
(n)
i ) ∈ (Z × Zn−1

+ )m × R+, i = 2, . . . , k, that were used in
the proof of Theorem 7. We argued that these points belong to Qm,n. Moreover, using Lemma 6, it can be easily verified that
they satisfy (29), so S i ∈ F2, i = 2, . . . , k. Therefore, they must satisfy (35). Substituting S i, i = 2, . . . , k, in (35), we get

λ0


β

(n)
i − β

(n)
1


=

i
t=2

λt
n, i = 2, . . . , k,
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which implies

λi
n = λ0


β

(n)
i − β

(n)
i−1


, i = 2, . . . , k. (36)

Identities (36) reduce hyperplane (35) to

λ0


v −

k
i=2


β

(n)
i − β

(n)
i−1


φi(yi) − β

(n)
1


+

n
j=1

λ1
j


y1j −


β

(j−1)
1

αj


=

m
i=k+1

λi
nφ

i(yi). (37)

Now for i = k + 1, . . . ,m, consider the points H i
= (q1,n, p2,1, . . . , pi−1,1, hi, pi+1,1, . . . , pm,1, β

(n)
1 ) ∈ (Z × Zn−1

+ )m × R+,
where hi

∈ Z × Zm−1
+ , φi(hi) ≠ 0, and hi has sufficiently large coordinates for (hi, β

(n)
1 ) to satisfy constraint i in Qm,n (clearly

such hi exists because αj > 0, j = 1, . . . , n). Therefore using Lemma 5, H i
∈ Qm,n. Also, based on Lemma 6, H i satisfies (29),

so H i
∈ F2, and hence must satisfy (37). Substituting H i in (37), based on Lemma 6 and since φi(hi) ≠ 0, we get λi

n = 0.
Therefore, λi

n = 0, i = k + 1, . . . ,m, so (37) reduces to

λ0


v −

k
i=2


β

(n)
i − β

(n)
i−1


φi(yi) − β

(n)
1


+

n
j=1

λ1
j


y1j −


β

(j−1)
1

αj


= 0. (38)

So we have shown that in the generic hyperplane (30) defined by (λ1, . . . , λm, λ0, θ) ∈ Rmn+2, at most (λ1, λ0) ∈ Rn+1

are independent. That means the generic hyperplane can be the linear combination of at most n + 1 linearly independent
hyperplanes. This proves that F2 is a face of dimension at least n(m − 1).

To prove the second part of the theorem, assume that the additional conditions (a) and (b) are satisfied. Notice that (29)
can also be written as

v −

k
i=2


β

(n)
i − β

(n)
i−1


φi(yi) − β

(n)
1 =


αn + β

(n)
1 − β

(n)
k

 
φ1(y1) − 1


. (39)

Any point on F2 satisfies both (38) and (39). These two identities together imply that the identity

λ0


αn + β

(n)
1 − β

(n)
k

 
φ1(y1) − 1


+

n
j=1

λ1
j


y1j −


β

(j−1)
1

αj


= 0 (40)

holds for any point on F2. Replacing for φ1(y1) from (A.1) in the proof of Lemma 10 in Appendix, identity (40) can be written
as

n
j=1

cj


y1j −


β

(j−1)
1

αj


= 0 (41)

where cj = λ1
j − λ0


αn + β

(n)
1 − β

(n)
k

n
l=j+1


β

(l−1)
1 /αl


. Now, consider the point U = (s, q2,n, . . . , qk,n, pk+1,1, . . . ,

pm,1, αn + β
(n)
1 ) ∈ (Z × Zn−1

+ )m × R+ (condition (a) guarantees that s ∈ Z × Zn−1
+ ). By Lemma 9(b), U satisfies constraint

1 of Qm,n, and by Lemma 5, it satisfies constraints 2, . . . ,m of Qm,n; therefore U ∈ Qm,n. Also using Lemmas 6 and 10, it
is easy to verify that U lies on (29). Therefore U ∈ F2 and must satisfy (41). Similarly, for t = 2, . . . , n consider the point
V t

= (r t , q2,n, . . . , qk,n, pk+1,1, . . . , pm,1, β
(n)
k ) ∈ (Z × Zn−1

+ )m × R+ (condition (a) guarantees that r t ∈ Z × Zn−1
+ ). By

Lemma 9 and condition (b) of this theorem, V t satisfies the first constraint of Qm,n, and by Lemma 5, it satisfies constraints
2, . . . ,m of Qm,n. Therefore V t

∈ Qm,n, t = 2, . . . , n. Moreover, using Lemmas 6 and 10, it can be easily verified that the
points V t , t = 2, . . . , n, lie on hyperplane (29) and so V t

∈ F2, t = 2, . . . , n, and must satisfy (41). Starting with identity
(41), and substituting in it the points U, V n, V n−1, . . . , V 2 one by one in that order, we get cn = 0, cn−1 = 0, . . . , c1 = 0,
respectively. Therefore

λ1
j = λ0


αn + β

(n)
1 − β

(n)
k

 n
l=j+1


β

(l−1)
1 /αl


, j = 1, . . . , n. (42)

Identities (42) reduce hyperplane (38) to

λ0


v −

k
i=2


β

(n)
i − β

(n)
i−1


φi(yi) − β

(n)
1 +


αn + β

(n)
1 − β

(n)
k

 n
j=1

n
l=j+1


β

(l−1)
1

αl


y1j −


β

(j−1)
1

αj


= 0. (43)
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Using (A.1), hyperplane (43) can be written as

λ0


v −

k
i=2


β

(n)
i − β

(n)
i−1


φi(yi) − β

(n)
1 −


αn + β

(n)
1 − β

(n)
k

 
φ1(y1) − 1


= 0,

or

λ0


v −

k
i=1


β

(n)
i − β

(n)
i−1


φi(yi) −


αn − β

(n)
k

 
φ1(y1) − 1


= 0,

which is simply λ0 times (29). This proves that F2 defines a facet for conv(Qm,n). �

Example 1. Consider the 3-mixing set with 2 rows Q 2,3
= {(y1, y2, v) ∈ (Z × Z2

+
)2 × R+: 31y11 + 10y12 + 3y13 + v ≥

89; 31y21 + 10y22 + 3y23 + v ≥ 59}. Therefore α = (α1, α2, α3) = (31, 10, 3), β1 = 89, β2 = 59, and we have β
(1)
1 = 27,

β
(2)
1 = 7, β(3)

1 = 1, β(1)
2 = 28, β(2)

2 = 8, and β
(3)
2 = 2. So


β

(1)
1 /α2


=

β

(2)
1 /α3


=

β

(1)
2 /α2


=

β

(2)
2 /α3


= 3 and it

is easily verified that conditions (8) are satisfied. Therefore, based on (12) and (13), the type I and type II mixed 3-step MIR
inequalities obtained from the two defining inequalities of Q 2,3 are as follows (note that β

(3)
1 < β

(3)
2 ):

v ≥ (27 − 9y11 − 3y12 − y13) + (18 − 9y21 − 3y22 − y23), (44)

v ≥ (27 − 9y11 − 3y12 − y13) + (18 − 9y21 − 3y22 − y23) + (27 − 9y11 − 3y12 − y13 − 1). (45)

Based on Theorem 7, inequality (44) defines a facet for conv(Q 2,3). The additional conditions (a) and (b) of Theorem 11 are
also satisfied, i.e. (a)


β

(1)
1 /α2


=

β

(2)
1 /α3


= 2 > 1, and (b) β

(3)
2 − β

(3)
1 = 1 ≥ 1 = max


α1 − α2


β

(1)
1 /α2


, α2 −

α3

β

(2)
1 /α3


. Therefore, based on Theorem 11, inequality (45) also defines a facet for conv(Q 2,3).

Similarly, consider the 2-mixing setQ 2,2
= {(y1, y2, v) ∈ (Z×Z+)2×R+: 31y11+10y12+v ≥ 89; 31y21+10y22+v ≥ 59}.

It is easy to see that conditions (8) as well as conditions (a) and (b) of Theorem 11 are satisfied as α1, α2, β1, and β2 have the
same values as above. Therefore, the type I and type II mixed 2-step MIR inequalities

v ≥ 7(9 − 3y11 − y12) + (6 − 3y21 − y22)

v ≥ 7(9 − 3y11 − y12) + (6 − 3y21 − y22) + 2(9 − 3y11 − y12 − 1)

are facet-defining for conv(Q 2,2) based on Theorems 7 and 11, respectively. �

5. Mixed n-step MIR inequalities for general MIP

As mentioned in Section 2, n-step MIR can be used to generate valid inequalities for the general single-constraint mixed
integer knapsack set Y1 [16]. In this section, we show that the mixed n-step MIR inequality for the set Qm,n can be used
to generate mixed n-step MIR inequalities for the general multi-constraint mixed integer set Ym. This implies that mixed
n-step MIR can generate valid inequalities based on multiple constraints for a general MIP because the feasible set of a
general MIP with m constraints can be relaxed to a set of the form Ym as follows. Define the feasible set of a general MIP as
{(x, w) ∈ ZN

+
×R|C |

+ :


t∈T aitxt +


t∈C citwt = bi, i = 1, . . . ,m}, where C is the index set of the continuous variablesw, and
bi, ait , cit ∈ R for all i and j. This set can be relaxed to {(x, w) ∈ ZN

+
× R|C |

+ :


t∈T aitxt +


t∈C:cit>0 citwt ≥ bi, i = 1, . . . ,m}.
Representing


t∈C:cit>0 citwt by si, we get the set Ym.

Any subset of the m rows in Ym can be used to generate a mixed n-step MIR inequality for this set. Like before without
loss of generality, we assume that this subset of rows is K = {1, . . . , k}, where k ≤ m. A set of n parameters must be chosen
to generate the mixed n-step MIR inequality. We denote the vector of these parameters by α = (α1, . . . , αn), where α ∈ Rn

and α > 0. As we will see, these parameters must satisfy the n-step MIR conditions for all rows in K , i.e.

αj


b(j−1)
i /αj


≤ αj−1, j = 1, . . . , n, i ∈ K (46)

(like before we also assume b(j−1)
i /αj ∉ Z, j = 1, . . . , n, i ∈ K , to avoid trivial inequalities). Notice that conditions (46) are

on the parameters αj chosen by the user and no conditions on coefficients ait in Ym are required. Without loss of generality,
we also assume that the rows are indexed such that b(n)

i−1 ≤ b(n)
i , i = 2, . . . , k. Here we present the type I mixed n-step MIR

inequality for Ym. The type II can be generated in a similar fashion.
Let at = (a1t , a2t , . . . , akt) and b = (b1, . . . , bk) and let π :Rk

→ {0, . . . , n}k be a mapping. For i ∈ K and p = 0, . . . , n,
let T i

p := {t ∈ T :π(at)i = p}, where π(at)i is the ith component of π(at).
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Definition 12. The mixed n-step MIR function σ n
α,b:Rn

→ R is defined as follows

σ n
α,b(d) = min

π∈{0,...,n}k


k

i=1


b(n)
i − b(n)

i−1


δπ
α,bi(di) + uπ (d) : π(d) = π


, (47)

where

δπ
α,bi(d) =


p

j=1

n
l=j+1


b(l−1)
i

αl


d(j−1)
i

αj


+

n
l=p+2


b(l−1)
i

αl


d(p)
i

αp+1


, π(d)i = p; p = 0, 1, . . . , n − 1,

n
j=1

n
l=j+1


b(l−1)
i

αl


d(j−1)
i

αj


π(d)i = n

and

uπ (d) := max{0, d(n)
i for all i that π(d)i = n}. �

Theorem 13. Given a positive parameter vector α = (α1, . . . , αn) ∈ Rn which satisfies conditions (46), the mixed n-step MIR
inequality

t∈T

σ n
α,b(at)xt + s ≥ σ n

α,b(b) (48)

is valid for Ym, where s ∈ R+ is a variable such that s ≥ si for all i ∈ K.

Proof. Given a mapping π , each constraint of Ym can be relaxed in the same way as the defining constraint of Y1 is relaxed
in [16]. In other words, for i ∈ K , constraint i of Ym can be relaxed to

n−1
p=0


t∈T ip


p

j=1

αj


a(j−1)
it

αj


+ αp+1


a(p)
it

αp+1


xt +


t∈T in


n

j=1

αj


a(j−1)
it

αj


+ a(n)

it


xt ≥ bi. (49)

Notice that this is a relaxation because for any p ∈ {0, 1, . . . , n}

ait =

p
j=1

αj


a(j−1)
it /αj


+ a(p)

it (50)

and so

ait ≤

p
j=1

αj


a(j−1)
it /αj


+ αp+1


a(p)
it /αp+1


. (51)

In other words, to get (49), the coefficient ait in every row i ∈ K of Ym is relaxed to the right-hand side of (51) for t ∈ T i
p,

p = 0, 1, . . . , n − 1, and is replaced with the right-hand side of identity (50) for t ∈ T i
n. Rearranging the terms of (49), we

get

n
j=1

αj


t∈T ij−1


a(j−1)
it

αj


xt +

n
p=j


t∈T ip


a(j−1)
it

αj


xt

+


t∈T in

a(n)
it xt + si ≥ bi, i ∈ K . (52)

Now for i ∈ K and j = 1, . . . , n, the expression


t∈T ij−1


a(j−1)
it /αj


xt +

n
p=j


t∈T ip


a(j−1)
it /αj


xt in (52) is an integer (note

that for j = 2, . . . , n it is also nonnegative) and can be treated as yij inQm,n. Also for i ∈ K , the expression


t∈T in
a(n)
it xt + si is

nonnegative and can be treated as vi inQm,n. We choose the upper bound variable v in (16) to be


t∈T u
π (at)xt + s. Since

by assumption conditions (46) hold, according to Corollary 3, the type I mixed n-step MIR inequality for Qm,n (inequality
(16)), when yij and v are replaced with their aforementioned corresponding expressions, is valid for Ym. That is

t∈T

uπ (at)xt + s

≥

k
i=1


b(n)
i − b(n)

i−1

 n
l=1


b(l−1)
i

αl


−

n
j=1

n
l=j+1


b(l−1)
i

αl


t∈T ij−1


a(j−1)
it

αj


xt +

n
p=j


t∈T ip


a(j−1)
it

αj


xt


 . (53)
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Fig. 1. σ 2
α,b(d1, d2) over [−25, 25]2 with α = (25, 10) and b = (39, 18).

Putting all multiples of xt in (53) together for each t ∈ T , we can write it as


t∈T


k

i=1


b(n)
i − b(n)

i−1


δπ
α,bi(aj) + uπ (at)


xt + s ≥

n
i=1


b(n)
i − b(n)

i−1

 n
l=1


b(l−1)
i

αl


. (54)

We would like to choose π(at) such that we get the strongest inequality, i.e. the coefficient of xt in (54) is minimized.
Therefore the smallest coefficient for xt will be obtained by σ n

α,b(at). Also, σ
n
α,b(b) =

n
i=1


b(n)
i − b(n)

i−1

n
l=1


b(l−1)
i /αl


as

it can be easily verified that theminimum in (47) in case of σ n
α,b(b) is achieved at anyπ , whereπ i ≠ n for all i ∈ K . Therefore

(54) reduces to (48) and the proof is complete. �

Notice that one possible choice for s that guarantees s > si for all i ∈ K is s =
k

i=1 si. Theorem 13 shows that a mixed
n-stepMIR inequality for k constraints can be simply obtained by applying the correspondingmixed n-stepMIR functionσ n

α,b
on the coefficient vectors of the variables and the right-hand side vector. Fig. 1 shows an example of the function σ 2

α,b(d1, d2)
with α = (α1, α2) = (25, 10) and b = (b1, b2) = (39, 18) for (d1, d2) ∈ [−25, 25]2.

As we see in Theorem 13, conditions (46) are only on the parameters αj chosen by the user and no conditions on
coefficients ait in Ym are required. An interesting question is whether it is always possible to find a positive parameter vector
α ∈ Rn such that it satisfies conditions (46). The answer is yes. Given the set of rows inK with the right-hand sides b1, . . . , bk,
there is an infinite number of choices for the parameter vector α that satisfy conditions (46). For i ∈ K , j = 2, . . . , n, and
l ∈ N, define the intervals I j,li in R+ as follows:

I j,li =




b(j−1)
i

l
,
αj−1

l


for 2 ≤ l < τ

j
i ,

b(j−1)
i

l
,
b(j−1)
i

l − 1


for l ≥ τ

j
i

where τ
j
i =


αj−1/(αj−1 − b(j−1)

i )

. Then one can choose the elements of the parameter vector α in a recursive fashion as

follows:
Step1. Pick a positive value for α1;
Step2. For j := 2, . . . , n do

Pick a value for αj such that αj ∈ ∩i∈K ∪
+∞

l=2 I j,li ;

We see that in iteration j of Step 2, the set of possible values for αj depends on the values picked for α1, . . . , αj−1. Notice that

for any i, j and l, we have

b(j−1)
i /αj


= l if αj ∈ I j,li . Based on the definitions of τ j

i and the intervals I j,li , it can be easily verified

that each αj picked from the set in Step 2 satisfies the conditions αj


b(j−1)
i /αj


≤ αj−1 for i ∈ K . Moreover, observe that for

each j ∈ {2, . . . , n}, the set∩i∈K ∪
+∞

l=2 I j,li contains the interval

0,min{b(j−1)

i /(τ
j
i − 1), i ∈ K}


except for the discrete values

b(j−1)
i /l, l ∈ N, l ≥ τ

j
i . Therefore there are always infinitely many choices for each αj. We note that the intervals presented

in [24] for the 2-step MIR inequality are the special case of I j,li for n = 2, k = 1, and α1 = 1.

6. Mixed n-step MIR inequalities for special structures

The capacitated lot-sizing problem [3,19,25] and the capacitated facility location problem [3,20,21] have been studied for
years. In this section, we introduce useful generalizations of these two problems, which we refer to as themulti-module lot-
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sizing problem (MML) and the multi-module facility location problem (MMF), respectively, and show that the mixed n-step
MIR inequalities can be used to generate valid inequalities for them. The mixed n-step MIR inequalities for MML generalize
the (k, l, S, I) inequalities for the constant-capacity lot-sizing problem (CCL) [1,19] and the mixed n-step MIR inequalities
for MMF generalize the mixed MIR inequalities for the constant-capacity facility location problem (CCF) [1,20,21].

6.1. Multi-module lot-sizing (MML)

We first define the multi-module lot-sizing (MML) problem. Let T := {1, . . . ,m} be the set of time periods and
{α1, . . . , αn} be the set of capacities of n available capacity modules. In each period the total capacity can be the summation
of some integer multiples of α1, . . . , αn. In MML the goal is to find a production plan that minimizes the sum of production,
inventory, andmodule setup costs over all periodswhilemeeting the demands (without backlogging) and satisfying capacity
constraints. Let xt be the production, st be the inventory at the end of period t , and z jt be the number of modules of capacity
αj, j = 1, . . . , n, used in period t . Then MML is min{


t∈T ptxt +


t∈T htst +


t∈T
n

j=1 f
j
t z

j
t : (x, s, z) ∈ XMML

}, where

XMML
=


(x, s, z) ∈ Rm

+
× Rm

+
× Zm×n

+
: st−1 + xt = dt + st , t ∈ T (55)

xt ≤

n
j=1

αjz
j
t , t ∈ T


, (56)

and dt , pt , ht , and f jt are the demand, production cost per unit, inventory cost per unit, and the setup cost per module of
capacity αj, j = 1, . . . , n, in period t , respectively, and s0 = 0.

When α1 = α2 = · · · = αn = C , the capacity constraints (56) simplify to xt ≤ C
n

j=1 z
j
t , t ∈ T . Now for each t ∈ T ,

one can replace all variables z jt , j = 1, . . . , n in MML, with a single variable yt , where yt = z jtt and jt ∈ {1, . . . , n} is the
index for which f jtt = min{f jt , j = {1, . . . , n}}. As a result of this, theMML reduces to CCL. Pochet andWolsey [19] presented
the so-called (k, l, S, I) inequalities for XCCL, the set of feasible solutions to CCL. In [1] it is shown that these inequalities are
simply the mixed 1-step MIR inequalities generated from base inequalities formed by aggregating and relaxing the flow
balance constraints (55). These results are also true for the special case of CCL in which yt ∈ {0, 1}, t ∈ T .

Here we show that the mixed n-step MIR can be used to get valid inequalities for XMML. These inequalities generalize the
(k, l, S, I) inequalities for XCCL to the case ofmultiple capacitymodules. First, we construct the base inequalities for which the
mixed n-step MIR inequalities will be written. We follow the notation of [19] as much as possible. For any k, l ∈ T , where
k < l, let S ⊆ {k, . . . , l}. For i ∈ S, let Si = S ∩ {k, . . . , i} and bi =

ni−1
t=k dt , where

ni =


min{t: t ∈ S \ Si}, if S \ Si ≠ ∅

l + 1, if S \ Si = ∅.

Adding up equalities (55) from period k to period ni − 1, we get

sk−1 +

ni−1
t=k

xt = bi + sni−1. (57)

Note that Si ⊆ {k, . . . , ni−1} by definition. If we relax xt , t ∈ Si, in (57) to its upper bound based on (56) and drop sni−1(≥ 0),
we get the following valid inequality:

sk−1 +


t∈{k,...,ni−1}\Si

xt +


t∈Si

n
j=1

αjz
j
t ≥ bi. (58)

Setting vi := sk−1 +


t∈{k,...,ni−1}\Si
xt and yij :=


t∈Si

z jt , j = 1, . . . , n, inequality (58) becomes

n
j=1

αjyij + vi ≥ bi, (59)

which is of the same form as the defining inequalities of Qm,n (notice that vi ∈ R+, yij ∈ Z+, j = 1, . . . , n). Let I ⊆ S.
We get an inequality like (59) for each i ∈ I . Without loss of generality and for simplicity of notation assume that the
parameter vector for mixed n-step MIR is α = (α1, . . . , αn) and also I = {1, . . . , |I|} such that b(n)

i−1 ≤ b(n)
i , i ∈ I . Now if

αj


b(j−1)
i /αj


≤ αj−1, j = 2, . . . , n, i ∈ I , then by letting v = sk−1 +


t∈{k,...,n|I|−1}\S xt (note that v ≥ vi for all i ∈ I), based
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on Corollary 3, the mixed n-step MIR inequalities

sk−1 +


t∈{k,...,n|I|−1}\S

xt ≥

|I|
i=1


b(n)
i − b(n)

i−1


φi(yi), (60)

sk−1 +


t∈{k,...,n|I|−1}\S

xt ≥

|I|
i=1


b(n)
i − b(n)

i−1


φi(yi) +


αn − b(n)

|I|

 
φ1
n(y

1) − 1


(61)

are valid for XMML, where yij =


t∈Si
z jt . We refer to inequalities (60) and (61) as the type I and type II multi-module (k, l, S, I)

inequalities. The (k, l, S, I) inequalities for XCCL presented in [1,19] are the special case of (60) for n = 1 (the constant capacity
case).

Remark 2. A special case ofMML iswhen in each period t onlymodules of a specific capacity Ct are available but the capacity
of modules in different periods are not necessarily the same. This is the well-known capacitated lot-sizing problem (CL)
[3,25]. The set of feasible solutions in this case is

XCL
=

(x, s, z) ∈ Rm

+
× Rm

+
× Zm

+
: st−1 + xt = dt + st , t ∈ T ; xt ≤ Ctzt , t ∈ T


.

We note that in many studies the special case of binary zt variables is considered [3,25]. The mixed n-step MIR inequalities
(60) and (61) can be easily specialized to XCL. Assume that {α1, . . . , αn} is the set of distinct capacity values, i.e. for any t ∈ T ,
Ct = αj for some j ∈ {1, . . . , n}. Sowithout loss of generalitywe assume that the parameter vector isα = (α1, . . . , αn). Then
the only difference in the above derivation is that (58) becomes sk−1 +


t∈{k,...,ni−1}\Si

xt +


t∈Si
Ctzt ≥ bi, and therefore in

(60) and (61), we must set yij =


t∈Si:Ct=αj
zt for i ∈ I , j = 1, . . . , n. �

Considering an i ∈ I , recall that bi =
ni−1

t=k dt , i.e. bi is the total demand in periods k to ni − 1. The n-step MIR conditions
on bi and the module capacities α1, . . . , αn, i.e.

αj


b(j−1)
i /αj


≤ αj−1, j = 2, . . . , n, (62)

which are required for validity of (60) and (61) have an interesting interpretation. First note that for j = 2, . . . , n, we
have b(j)

i > 0 and αj > 0, and therefore

b(j−1)
i /αj


≥ 1. This along with (62) means the module capacities must be

in a non-increasing order, i.e. α1 ≥ α2 ≥ · · · ≥ αn. Now given a j ∈ {2, . . . , n}, consider a strategy for opening a
total capacity of bi that only uses modules α1, . . . , αj and opens units of the largest module possible without the total
opened capacity exceeding bi. When this is not possible anymore, one additional unit of αj is opened to make the total
opened capacity greater than or equal to bi. Clearly under this strategy the total capacity opened, denoted by Oj, will be

Oj =
j−1

l=1 αl


b(l−1)
i /αl


+ αj


b(j−1)
i /αj


. Now it is easy to see that conditions (62) are equivalent to O1 ≥ O2 ≥ · · · ≥ On.

As a result, the n-step MIR conditions (62) mean that the module capacities α1, . . . , αn should be such that if we consider
more of them in the strategy above (i.e. we increase j), the total opened capacity for covering the demand bi using this
strategy will decrease or remain the same.

Example 2. Consider the MML with two capacity modules α = (α1, α2) = (9, 4) and 6 time periods with demands
(d1, d2, d3, d4, d5, d6) = (4, 10, 17, 6, 1, 11). Now let k = 2, l = 6 and choose S = {3, 5, 6} and I = {3, 5}. Therefore
S3 = {3}, S5 = {3, 5}, n3 = 5, n5 = 6, b3 = 33, b5 = 34. The base inequalities (59) corresponding to time periods i = 3 and
i = 5 are

9y31 + 4y32 + v3 ≥ 33,

9y51 + 4y52 + v5 ≥ 34,

where v3 = v5 = s1 + x2 + x4, y31 = z13 , y
3
2 = z23 , y

5
1 = z13 + z15 and y52 = z23 + z25 . Note that we have b(1)

3 = 6, b(1)
5 = 7,

b(2)
3 = 2, b(2)

5 = 3, and

b(1)
3 /α2


=


b(1)
5 /α2


= 2. We see that the conditions α2


b(1)
i /α2


≤ α1, i = 3, 5, are satisfied.

Therefore, the type I and type II mixed 2-stepMIR inequalities obtained frommixing the two base inequalities are (note that
b(2)
3 < b(2)

5 ):

v ≥ 2(8 − y32 − 2y31) + (8 − y52 − 2y51),

v ≥ 2(8 − y32 − 2y31) + (8 − y52 − 2y51) + (8 − y32 − 2y31 − 1),

respectively, where v = s1 + x2 + x4. Written in terms of the original variables, these inequalities are

s1 + x2 + x4 ≥ 2(8 − z23 − 2z13) + (8 − z23 − z25 − 2z13 − 2z15),

s1 + x2 + x4 ≥ 2(8 − z23 − 2z13) + (8 − z23 − z25 − 2z13 − 2z15) + (8 − z23 − 2z13 − 1). �
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6.2. Multi-module facility location (MMF)

We first define the multi-module facility location (MMF) problem. Let P := {1, . . . , nP} be a set of potential facilities,
Q := {1, . . . , nQ } be a set of clients, and {α1, . . . , αn} be the set of capacities for n capacity modules. In MMF the goal is to
decide the capacity of facilities and assign the demand of clients to facilities such that the summation of capacity setup costs
and distribution costs isminimizedwhile the demands and the capacity constraints are satisfied. The capacity of each facility
is the summation of some integer multiples of α1, . . . , αn. Let xpq be the portion of demand of client q satisfied by facility p,
and uj

p be the number of capacity modules installed in facility p. Then MMF is min{


p∈P


q∈Q cpqxpq +


p∈P f
j
pu

j
p: (x, u) ∈

XMMF
}, where

XMMF
=


(x, u) ∈ RnPnQ

+ × ZnPn
+ :


p∈P

xpq = dq, q ∈ Q (63)


q∈Q

xpq ≤

n
j=1

αjuj
p, p ∈ P


, (64)

and dq, cpq, and f jp are the demand of client q, the distribution cost per unit between facility p and client q, and the setup cost
per module of capacity αj, j = 1, . . . , n, in facility p, respectively.

Let I := {1, 2, . . . , nI}, and for i ∈ I , choose Si ⊆ P and Ki ⊆ Q . Let bi :=


q∈Ki
dq be the total demand of clients in Ki.

Adding the demand constraints (63) for q ∈ Ki, we get
p∈P

wi
p = bi (65)

where wi
p =


q∈Ki

xpq is the total demand of clients in Ki satisfied by facility p. Now by (64), we have wi
p ≤

n
j=1 αju

j
p.

Therefore for p ∈ Si, we relax wi
p in (65) to its upper bound to get

p∈P\Si

wi
p +


p∈Si

n
j=1

αjuj
p ≥ bi, i ∈ I. (66)

When there is only one module size, i.e. αj = C , j = 1, . . . , n, the capacity constraints (64) simplify to


q∈Q xpq ≤

C
n

j=1 u
j
p, p ∈ P . Now for each p ∈ P , one can replace all variables uj

p, j = 1, . . . , n in MMF, with a single variable yp, where

yp = z jpp and jp ∈ {1, . . . , n} is the index for which f jpp = min{f jp, j = {1, . . . , n}}. As a result of this, the MMF reduces to
CCF. We denote the feasible set of CCF by XCCF . In this case, inequalities (66) reduce to


p∈P\Si

wi
p +


p∈Si

Cyp ≥ bi, i ∈ I .
Thesewere used as base inequalities by Günlük and Pochet [1] to generatemixed 1-stepMIR inequalities for XCCF . According
to [1], in the case where yp, p ∈ P , are restricted to be binary, if Ki ⊂ Ki+1 and Si ⊂ Si+1 for all i, these mixed 1-step MIR
inequalities are the same inequalities introduced by Aardal et al. [20,21] for XCCF and define facets or high-dimensional faces
for its convex hull as shown in [20,21].

Here we show that the mixed n-step MIR inequalities can be used to get valid inequalities for XMMF. These inequalities
generalize the inequalities presented in [1] for XCCF to the case of multiple capacities. Defining vi :=


p∈P\Si

wi
p and

yij :=


p∈Si
uj
p, for i ∈ I , inequality (66) becomes

vi +

n
j=1

αjyij ≥ bi, i ∈ I. (67)

Notice that vi ∈ R+, yij ∈ Z+, i ∈ I, j = 1, . . . , n. Without loss of generality assume that the parameter vector for mixed

n-step MIR is α = (α1, . . . , αn) and also the indices in I are such that b(n)
i−1 ≤ b(n)

i , i ∈ I . Now if αj


b(j−1)
i /αj


≤ αj−1, j = 2,

. . . , n, i ∈ I , by letting v =


(p,q)∈T xpq, where T = {(p, q): p ∈ P \ Si, q ∈ Ki for some i ∈ I} (note that v ≥ vi for all i ∈ I),
based on Corollary 3, the mixed n-step MIR inequalities

(p,q)∈T

xpq ≥

nI
i=1


b(n)
i − b(n)

i−1


φi(yi), (68)


(p,q)∈T

xpq ≥

nI
i=1


b(n)
i − b(n)

i−1


φi(yi) +


αn − b(n)

nI

 
φ1
n(y

1) − 1


(69)

are valid for XMMF, where yij =


p∈Si
uj
p. The inequalities for XCCF presented in [1] are the special case of (68) for n = 1 (the

constant capacity case).
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Remark 3. A special case of MMF is when each facility p can have only modules of a specific capacity Cp but the capacity
of modules in different facilities are not necessarily the same. This is the well-known capacitated facility location (CF)
problem [3,20,21]. The set of feasible solutions in this case is

XCF
=


(x, u) ∈ RnPnQ

+ × ZnP
+ :


p∈P

xpq = dq, q ∈ Q ;


q∈Q

xpq ≤ Cpup, p ∈ P


.

Wenote that inmany studies the special case of binaryup variables is considered [3,20,21]. Themixedn-stepMIR inequalities
(68) and (69) can be easily specialized to XCF very similar to the way (60) and (61) were specialized to XCL in Remark 2 with
yij =


p∈Si:Cp=αj

up for i ∈ I , j = 1, . . . , n. �

Considering an i ∈ I , the n-step MIR conditions on the demand bi and the module capacities α1, . . . , αn,
i.e. αj


b(j−1)
i /αj


≤ αj−1, j = 2, . . . , n, which are required for validity of (68) and (69) have an interpretation similar

to the one described in Section 6.1.

7. Computational results

In this section, we present our preliminary computational results on using the mixed n-step MIR inequalities for general
MIP in solving small MIPLIB instances as well as using the mixed n-step MIR inequalities (60) in solving multi-module lot-
sizing (MML) instances.

7.1. MIPLIB instances

In the first part of our computational study, we investigate the differential impact of adding 2-row mixed 1-step MIR
and 2-row mixed 2-step MIR cuts over MIR (i.e. 1-step MIR) cuts on small MIPLIB instances. It is known that the separation
problem for MIR cuts is strongly NP-complete [26], so naturally, one does not expect the existence of an efficient exact
separation algorithm for the MIR cuts. The complexity and existence of an efficient exact separation for the n-step MIR cuts
for n ≥ 2, and the mixed n-step MIR cuts for n ≥ 1, are open problems. These problems have not been addressed even
for the 2-step MIR [27] and the mixed 1-step MIR [1], which were introduced before n-step MIR [16] (we note that Dash
and Günlük [14] formulated the separation problem for the mixed 1-step MIR cuts as mixed integer programs). Given the
more complicated structure of n-step MIR and mixed n-step MIR cuts, the exact separation problems for these cuts and
determining their complexity do not seem to be easy.

As a result, in our study we used a heuristic separation algorithm based on the ideas of the heuristic proposed by
Marchand and Wolsey [28] for 1-step MIR cuts. To our knowledge, this separation heuristic (or its variants) is the only
existing heuristic which works well for application of general purpose MIR-based cuts on instances such as those in MIPLIB,
which are generally quite sparse and have bounds on a large number of integer variables. The aggregation and bound
substitution elements of this heuristic provide suitable base inequalities to apply n-step MIR functions. The details of our
separation heuristic are as follows.

We used the aggregation and bound substitution heuristics of [28] to generate the base inequalities for which the cuts
are developed. Given an instance and the optimal solution of its LP relaxation, we converted the constraints of the problem
to equality constraints by adding necessary slack variables and used the aggregation heuristic of [28] to aggregate the
constraints of the problem according to the procedure presented in [28] (the MAXAGGR parameter of [28] was set to 6).
We then applied criterion (a) of the bound substitution heuristic in [28] (which uses the optimal LP relaxation solution) to
generate base constraints of the form of the defining constraints of Ym.

For each instance we performed three experiments. In each experiment, the cuts were generated only at the root node
and from the base constraints developed as explained above. In the first experiment, denoted by 1MIR, we added only 1-step
MIR cuts to the problem. For each base constraint, we generated the 1-stepMIR cuts (see Section 2) by setting the parameter
α1 equal to each one of the positive coefficients of integer variables in the base constraint and added those cuts that were
violated by the optimal LP relaxation solution to the problem. Rounds of 1-step MIR cuts were added until no more violated
cuts could be generated. After each round, the LP relaxation was re-optimized and its new solution was used in generating
the cuts in the next round.

In the second experiment, denoted by 1MIR1MIX, we added one round of mixed 1-step MIR cuts in addition to the 1-step
MIR cuts that were added in experiment 1MIR. More specifically, after adding the cuts of 1MIR, we re-optimized the LP
relaxation and used the new LP relaxation solution in separation with mixed 1-step MIR cuts. We only considered 2-row
mixing (k = 2). All pairs of the base constraints were considered for mixing. For each pair, we generated a set of mixed
1-step MIR cuts according to Theorem 13 (we used s = s1 + s2) by setting the value of the parameter α1 equal to each one
of the positive coefficients of integer variables in the two base constraints. Out of all the cuts generated by these choices of
α1, we added to the problem those that were violated by the optimal LP relaxation solution.

The third experiment, denoted by (1MIR2MIX), is similar to 1MIR1MIX, howeverwe addedone roundofmixed2-stepMIR
cuts (Section 5) instead of mixed 1-step MIR cuts. The details are the same as 1MIR1MIX. The only difference is in choosing
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Table 1
Results of computational experiments on small MIPLIB instances.

Instance flugpl gt2 lseu mas74 mas76 mod008 p0033 rgn

DEFAULT

zlp 1,167,190 13,460.2 834.68 10,482.8 38,893.9 290.93 2520.57 48.8
zmip 1,201,500.0 21,166.0 1120.0 11,801.2 40,005.1 307.0 3089.0 82.2
Time 0.0 0.0 0.1 278.6 50.2 0.2 0.0 0.1
Nodes 94 1 101 2,672,210 403,345 577 6 523

1MIR

Cuts 0 22 47 81 116 98 28 31
zcut 1,167,190.0 20,592 918.9 10,575.6 39,024.0 298.9 2598.1 57.6
Time 0.0 0.0 0.1 305.6 19.5 0.1 0.0 0.3
Nodes 94 1 123 2,764,416 178,778 45 1 1050
Gapclosed 0.00 92.55 29.50 7.04 11.71 49.32 13.64 26.39

1MIR1MIX

Cuts 0 29 23 35 40 19 23 0
zcut 1,167,190.0 20,592.9 942.9 10,580.0 39,036.0 299.4 2628.2 57.6
Time 0.0 0.0 0.1 325.0 32.5 0.1 0.0 0.3
Nodes 94 1 140 2,954,935 281,679 22 3 1050
Gapclosed 0.00 92.56 37.93 7.37 12.79 52.49 18.93 26.39

1MIR2MIX

Cuts 0 472 75 347 138 1432 11 0
zcut 1,167,190.0 20,726.5 998.9 10,583.1 39,056.2 300.3 2636.3 57.6
Time 0.0 0.1 0.1 316.4 78.8 0.2 0.0 0.3
Nodes 94 1 132 2,734,233 296,988 39 1 1050
Gapclosed 0.00 94.30 57.57 7.61 14.61 58.58 20.36 26.39

parameters α1 and α2. For each pair of the base constraints, we constructed a list consisting of all positive coefficients of
integer variables in the two base inequalities and then considered all pairs of parameters from this list that satisfy the 2-step
MIR condition, i.e. conditions (46) for n = k = 2. Out of all the cuts generated by these choices of α1 and α2, we added to
the problem those that were violated by the LP relaxation solution.

We note that in the experiments above, our method of choosing values for the parameters α1 and α2 (choosing from the
coefficients of base constraints) was motivated by the facet-defining conditions for the n-step MIR inequalities presented
in [17].

We limited our experiments to small instances in MIPLIB libraries. More specifically, we selected all instances from
MIPLIB 3.0, 2003, and 2010 which have less than 40 rows and less than 1000 columns. Out of these instances, we ignored
one infeasible instance (p2m2p1m1p0n100 fromMIPLIB 2010) as well as the following instances: enigma fromMIPLIB 3.0
because it has an integrality gap of zero as well as markshare1 and markshare2 fromMIPLIB 2003, and markshare_5_0
from MIPLIB 2010, because their solution time using CPLEX 11.0 [29] even with no cuts was prohibitively long. This left us
with 8 instances which are from MIPLIB 3.0 and 2003.

In all three experiments, we solved the LP relaxation after adding the cuts and found its optimal solution. We then
dropped the cuts that were inactive at this optimal solution and solved the MIP with active cuts. We also solved the LP
relaxation andMIP without adding any of our own cuts (denoted by DEFAULT). We used CPLEX 11.0 with its default options
in all our experiments. The program was coded in Microsoft Visual C++ and run on a PC with Intel Quad Core 2.4 GHz
processor with 4 MB of RAM. The results are presented in Table 1. The cuts row shows the number of 1-step MIR cuts in
1MIR, number of mixed 1-step MIR cuts (in addition to 1-step MIR cuts) in 1MIR1MIX, and number of mixed 2-step MIR
(in addition to 1-step MIR cuts) in 1MIR2MIX. The nodes and time rows show the number of branch-and-bound nodes and
time (in seconds) to solve theMIP to optimality. The gapclosed row shows the percentage of the integrality gap closed by the
cuts in each experiment, i.e. gapclosed = 100(zcut − zlp)/(zmip − zlp), where zlp, zcut, and zmip are the optimal objective
values of the LP relaxation with no cuts, LP relaxation with the cuts, and MIP, respectively.

Comparing the percentage of integrality gap that is closed among the three experiments, we see that in all instances
except flugpl and rgn, for which our separation did not result in any mixed 1-step or 2-step MIR cuts, adding mixed
1-stepMIR cuts over 1-stepMIR cuts has improved the closed gap. Themaximum improvement is 37.93%−29.50% = 8.43%
(forlseu).More interestingly, in these instances addingmixed 2-stepMIR cuts over 1-stepMIR cuts has improved the closed
gap more than adding mixed 1-step MIR cuts over 1-step MIR cuts. For 1MIR2MIX, the maximum improvement over 1MIR
is 57.57% − 29.50% = 28.07% (for lseu). These results are quite promising in light of the fact that MIPLIB instances are
notorious with respect to gap improvement beyond what is achieved by 1-step MIR [30].

7.2. Multi-module lot-sizing instances

In the second part of our computational study, we studied the performance of the mixed 2-step MIR cuts (60) in solving
randomly generated MML instances with two capacity modules. Here we also used a heuristic separation algorithm. Our
separation is designed based on the method presented in Section 6.1 to generate inequality (60). Using the notation of
Section 6.1, given an instance and the optimal solution of its LP relaxation, denoted by (x, s, z), our heuristic is as follows.
We considered all possible choices k, l ∈ {1, . . . , T } such that k < l. For each choice of k and l, we generated all the
cuts obtained by three heuristic choices for the set S, i.e. S = {k, . . . , l}, S = {t ∈ {k, . . . , l}: z1t > 0 or z2t > 0}, and
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Table 2
Results of computational experiments on MML instances.
Instance DEFAULT 2MIX
(α1, α2) (f 1t , f 2t ) zlp zmip Time Nodes Cuts zcut Time Nodes Gapclosed
(180, 80) (1000, 600) 559,248 567,703 0.3 517 729 566,565 0.4 73 86.54

646,576 654,258 0.2 506 509 653,332 0.2 17 87.95
615,880 623,663 0.1 261 443 622,775 0.1 1 88.59
612,767 620,872 0.0 58 589 620,185 0.2 2 91.52
571,612 580,115 0.2 470 607 579,458 0.1 1 92.27

(5000, 2600) 761,700 785,624 109.7 508,198 572 782,166 5.0 2534 85.55
812,633 835,040 53.1 228,982 741 831,892 7.7 1942 85.95
831,488 852,734 61.2 240,425 567 849,985 4.8 2603 87.06
812,841 832,604 30.3 145,749 520 830,666 0.9 399 90.19
761,053 782,019 39.8 164,846 570 780,009 1.2 564 90.41

(270, 130) (1000, 600) 730,889 741,886 0.0 43 488 740,768 0.2 22 89.83
590,107 598,604 0.0 29 664 597,766 0.3 9 90.14
616,219 627,391 0.3 412 578 626,296 0.2 1 90.20
619,897 630,661 0.0 18 721 629,622 0.3 22 90.35
541,672 550,644 0.0 157 458 549,868 0.1 1 91.35

(5000, 2600) 604,703 629,971 19.2 86,812 742 626,920 4.9 3288 87.93
749,124 774,130 2.0 6,809 517 771,468 0.9 453 89.35
703,081 726,339 0.5 1,161 652 724,118 0.6 123 90.45
660,877 684,319 0.6 1,439 651 682,235 0.6 183 91.11
669,220 691,974 0.6 973 612 690,164 0.5 43 92.05

S = {t ∈ {k, . . . , l}: z1t ∉ Z or z2t ∉ Z}. Similar to the previous section, we only considered 2-row mixing (i.e. |I| = 2).
Therefore our choices for I included all possible two-element subsets of S. For each I , we generated inequality (60) if
α2


b(1)
i /α2


≤ α1 for i ∈ I and added it as a cut if it was violated by the optimal LP relaxation solution. As before, all

the cuts were added to the root node.
We created randomMML instanceswith two capacitymodules (n = 2) for this experiment. All our instances had 60 time

periods, i.e. T = {1, . . . , 60}. The holding cost in all periods was 10, i.e. ht = 10, t ∈ T . Demand dt and production cost pt in
each period were integers drawn from uniform[10, 190] and uniform[81, 119], respectively. In [31] it was observed that the
difficulty of capacitated lot-sizing (CL) instances is a function of tightness of the capacities with respect to the demand and
the ratio of the setup cost to holding cost. Therefore, we used two sets of capacity modules: α = (α1, α2) = (180, 80) and
α = (α1, α2) = (270, 130), the former resulting in harder instances than the latter. We also used two sets of setup costs for
these modules: (f 1t , f 2t ) = (1000, 600), t ∈ T , and (f 1t , f 2t ) = (5000, 2600), t ∈ T , the former resulting in easier instances
than the latter. We generated 5 instances for each combination of α and (f 1t , f 2t ), i.e. a total of 20 instances. We note that
some of the instance generation and separation ideas we used here are inspired by the ideas used in [31] for CL problems.

For each instance, we solved the LP relaxation and MIP without adding any of our own cuts (denoted by DEFAULT). We
also solved the LP relaxation after adding the cuts, found its optimal solution, dropped the cuts that were inactive at this
optimal solution, and solved the MIP with active cuts (denoted by 2MIX). The software and hardware platforms we used
was the same as those used for MIPLIB instances. The results are presented in Table 2. The definitions of column labels are
the same as the definitions of row labels for Table 1 described in Section 7.1.

Table 2 shows that the mixed 2-step MIR cuts are very effective in solving the MML problems. The percentage of
integrality gap closed by these cuts is between 85.55% and 92.27% (the average is 89.44%). We also observe that adding the
cuts has reduced the number of nodes in almost all instances by several orders of magnitude, especially in harder instances
(whichhave larger number of nodes and solution times). In harder instances, the solution timehas also substantially reduced.

8. Concluding remarks

We showed that mixing can be generalized to n-step MIR resulting in the mixed n-step MIR inequalities for a
generalization of the mixing set called the n-mixing set. The parameters α1, . . . , αn must satisfy the same conditions
required for the validity of n-step MIR inequalities. As a special case these conditions are automatically satisfied if the
parameters α1, . . . , αn are divisible. Moreover, the type I and type II mixed n-step MIR inequalities are strong in the sense
that they define facets for the n-mixing set. We also showed that mixed n-step MIR can be used to generate cuts based on
multiple constraints for generalMIPs aswell asmulti-module lot-sizing and facility location problems. Themixed n-stepMIR
encompasses, as the special case corresponding to n = 1, the inequalities that were previously generated based on mixing
ofMIR inequalities for themixing set [1] aswell as lot-sizing and facility location problemswith a constant capacity [19–21].
Our preliminary computational results on applying mixed n-step MIR inequalities in solving multi-module lot-sizing
instances and small MIPLIB instances justify their effectiveness.
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Appendix

Proof of Lemma 5. If (a) is true, by substituting the point P in constraint i of Qm,n, we get
t−1

j=1 αj


β

(j−1)
i /αj


+

αt


β

(t−1)
i /αt


+ v̂ ≥ βi, or αt


β

(t−1)
i /αt


+ v̂ ≥ β

(t−1)
i , which is trivial since v̂ ≥ 0. If (b) is true, by substituting the

point P in constraint i of Qm,n, we get
t

j=1 αj


β

(j−1)
i /αj


+ v̂ ≥ βi, or v̂ ≥ β

(t)
i , which is true based on (b). �

Proof of Lemma 6. For i ∈ M and t = 1, . . . , n, we have
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Notice that for i ∈ K we have qi,n = pi,n + en, where en = (0, . . . , 0, 1) ∈ Rn. Based on (10), it is easy to see that
φi(qi,n) = φi(pi,n) + 1 = 1. �

Proof of Lemma 9. If (a) is true, by substituting the point P in constraint 1 of Qm,n, we get
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β

(j−1)
1 /αj
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This simplifies to v̂ ≥ β
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1 /αt


, which is true by (a). If (b) is true, by substituting the point P in constraint

1 of Qm,n, we get
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Proof of Lemma 10. The function φ1(y1) can be written as
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Based on (A.1), for t = 2, . . . , nwe have
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