Pointwise Estimate for Linear Combinations of Bernstein–Kantorovich Operators

Shunsheng Guo, Lixia Liu, and Qiulan Qi

College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050016, People’s Republic of China

Submitted by Joel H. Shapiro
Received November 1, 2000

For linear combinations of Bernstein–Kantorovich operators K_n, f, x, we give an equivalent theorem with $\omega_{r\lambda}^2, (f, t)$. The theorem unites the corresponding results of classical and Ditzian–Totik moduli of smoothness.

Key Words: Bernstein–Kantorovich operator; moduli of smoothness; linear combinations.

1. INTRODUCTION

Let f be a function defined on $[0, 1]$. The Bernstein–Kantorovich operator is defined by

$$K_n(f, x) = (n + 1) \sum_{k=0}^{n} P_{n,k}(x) \int_{\frac{k+1}{n+1}}^{\frac{k+2}{n+1}} f(t) \, dt, \quad (1.1)$$

where $P_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$.

The linear combinations of Bernstein–Kantorovich operators (see [1, p. 116 (9.2.6)]) are given by

$$K_{n,r}(f, x) = \sum_{i=0}^{r-1} \alpha_i(n)K_n(f, x), \quad (1.2)$$

Supported by the Natural Science Foundation of Hebei Province.
where n_{i} and $\alpha_i(n)$ satisfy
\begin{equation}
\begin{aligned}
(a) \quad n = n_0 < \cdots < n_{r-1} \leq Kn; & \quad (b) \quad \sum_{i=0}^{r-1} |\alpha_i(n)| \leq C; \\
(c) \quad K_{n,r}(1,x) = 1; & \quad (d) \quad K_{n,r}((t-x)m;x) = 0, \quad m = 1, \ldots, r-1.
\end{aligned}
\end{equation}

In [2] Ditzian introduced $\omega_{\varphi}^2(f, t)$ and gave an interesting direct result for the Bernstein operators which united the result with $\omega^2(f, t)$ and $\omega_{\varphi}^2(f, t)$. For polynomial approximation, in [3] Ditzian and Jiang used $\omega_{\varphi}^r(f, t)$ to bridge the gap between the classical estimate ($\lambda = 0$) and the recently developed estimate by Ditizan–Totik ($\lambda = 1$).

We recall that [1]
\begin{equation}
\omega_{\varphi}^r(f, t) = \sup_{0 \leq h \leq t} \sup_{x \in [0, 1]} \left| \Delta_{h\varphi}^{2r}(x)f(x) \right|, \quad \varphi^2(x) = x(1-x)
\end{equation}

is equivalent to the K-functional
\begin{equation}
K_{\varphi}^r(f, t^2r) = \inf_{g \in C_{1\varphi}^{2r-1}} \left\{ \|f - g\| + t^{2r}\|\varphi^{2r}\| g^{(2r)} \right\},
\end{equation}

\begin{equation}
\Delta_{\varphi}^{2r} f(x) = \sum_{k=0}^{2r} (-1)^k \binom{2r}{k} f(x + rh - kh), \quad \|\| = \|\|_{\infty}.
\end{equation}

In [5–7] we obtained equivalent theorems with $\omega_{\varphi}^r(f, t)$ for Szász-type and Bernstein-type operators. But can this kind of result be improved with $\omega_{\varphi}^{2r}(f, t)$? In this paper we obtain this kind of equivalent theorem with $\omega_{\varphi}^{2r}(f, t)$ for $K_{n,r}$, which includes the corresponding result of [6]. We point out that the Bernstein–Kantorovich operators were introduced because they apply in $L_p[0, 1], 1 \leq p \leq \infty$ (cf. [8, 9]) and not just to $C[0, 1]$. Since for the estimate by $\omega_{\varphi}^{2r}(f, t)_p(\lambda = 0)$ the converse theorem does not work, we cannot deal with $L_p[0, 1]$ by $\omega_{\varphi}^{2r}(f, t)(\lambda \in [0, 1])$. On the converse result, we just get a Steckin–Marchaud inequality in [10] for the Bernstein–Kantorovich operator. In this paper, we attempted to get a strong converse inequality; however, we failed.

Now we state our main result.

Theorem 1. For $f \in C[0, 1], r \in \mathbb{N}, 0 \leq \lambda \leq 1,$ and $0 < \alpha < \frac{2r}{x^r}$ we have
\begin{equation}
|K_{n,r}(f, x) - f(x)| = O\left((n^{-\frac{1}{2}}\delta_{n}^{1-\lambda}(x))^\alpha \right) \Leftrightarrow \omega_{\varphi}^{2r}(f, t) = O(t^\alpha),
\end{equation}

where $\delta_{n}(x) = \varphi(x) + \frac{1}{\sqrt{n}}$.

Remark 1. For $\lambda = 1$, this is the result of [1, (9.3.3)].

Throughout this paper, C denotes a constant independent of n and x, but it is not necessarily the same in different cases.
2. LEMMAS AND DIRECT THEOREM

To prove our main theorem, we need the following lemmas:

Lemma 2.1. Let \(f \in C[0, 1] \), \(f^{(2r-1)} \in A.C_{\infty} \), and \(r\lambda - m > 0 \). We have
\[
|\varphi^{2r\lambda - 2m}(x)f^{(2r-m)}(x)| \leq C(\|f\| + \|\varphi^{2r\lambda} f^{(2r)}\|). \quad (2.1)
\]

Proof. We observe that (see [1, p. 136])
\[
|f^{(2r-m)}(\frac{1}{2})| \leq C(\|f\|_{\frac{1}{2}, \frac{1}{1}} + \|f^{(2r)}\|_{\frac{1}{1}, \frac{1}{1}}) \leq C(\|f\| + \|\varphi^{2r\lambda} f^{(2r)}\|). \quad (2.2)
\]

For \(r\lambda - m > 0 \), when \(x \) is near 0 \((x \leq \frac{1}{2}) \),
\[
|f^{(2r-m)}(x) - f^{(2r-m)}(\frac{1}{2})| \leq \int_{x}^{\frac{1}{2}} |f^{(2r-m+1)}(u)| du
\]
\[
\leq \|x^{r\lambda - m+1}f^{(2r-m+1)}(x)\|_{[0, \frac{1}{2}]} \int_{x}^{\frac{1}{2}} u^{-r\lambda + m-1} du
\]
\[
\leq C\|x^{r\lambda - m+1}f^{(2r-m+1)}(x)\|_{[0, \frac{1}{2}]} x^{-r\lambda + m},
\]
which implies by (2.2)
\[
|x^{r\lambda - m}f^{(2r-m)}(x)| \leq C(\|f\| + \|\varphi^{2r\lambda} f^{(2r)}\| + \|x^{r\lambda - m+1}f^{(2r-m+1)}(x)\|). \quad (2.3)
\]

From these, by induction one has
\[
|\varphi^{2r\lambda - 2m}(x)f^{(2r-m)}(x)| \leq C(\|f\| + \|\varphi^{2r\lambda} f^{(2r)}\|).
\]

This is (2.1) for \(x \in [0, \frac{1}{2}] \). We can treat the case \(x \in (\frac{1}{2}, 1] \) similarly.

Lemma 2.2. For \(f^{(2r)} \in C[0, 1] \), let \(R_{\Delta}(f, t, x) \) is \(f^{(2r)} \times (u)du \), \(r \in N \), and \(0 \leq \lambda \leq 1 \). Then for \(x \in E_{n} = [\frac{1}{n}, 1 - \frac{1}{n}] \), one has
\[
|K_{n,r}(R_{\Delta}(f, t, x), x)| \leq C(n^{-\frac{1}{r}}\varphi^{1-\lambda}(x))^{2r}\|\varphi^{2r\lambda} f^{(2r)}\|. \quad (2.4)
\]

Proof. From [1, (9.5.3)] \(K_{n,r}((t - x)^{2r}, x) \leq Cn^{-r}\varphi^{2r}(x) \), \(x \in E_{n} \), and
\[
|t - u|^{2r-1}\varphi^{2r\lambda}(u) \leq |t - x|^{2r-1}\varphi^{2r\lambda}(x),
\]
for \(u \) is between \(x \) and \(t \) (see [1, p. 141]). So we have
\[
|K_{n,r}\left(\int_{x}^{t}(t - u)^{2r-1}f^{(2r)}(u)du, x\right)| \leq \|\varphi^{2r\lambda} f^{(2r)}\|K_{n,r}\left(\int_{x}^{t} |t - u|^{2r-1}\varphi^{2r\lambda}(u)du, x\right)
\]
\[
\leq \varphi^{-2r\lambda}(x)\|\varphi^{2r\lambda} f^{(2r)}\|K_{n,r}((t - x)^{2r}, x)
\]
\[
\leq C(n^{-\frac{1}{r}}\varphi^{1-\lambda}(x))^{2r}\|\varphi^{2r\lambda} f^{(2r)}\|.
\]
THEOREM 2. For \(f(x) \in C[0, 1], r \in N, \) and \(0 \leq \lambda \leq 1, J = \max\{i|\lambda - 2r + i \leq 0, i \leq 2r - 1\}. \) Then

\[
|K_{n,r}(f, x) - f(x)| \leq C \left(\sum_{i=r}^J \omega^r_i(f, (n^{-r}\varphi^{2(i-r)}(x))^{1/i}) + \omega_n^r(f, n^{-\frac{1}{2}}\varphi^{1-\lambda}(x)) + \frac{\varphi^{2r(1-\lambda)}(x)}{n^r} \|f\| \right). \tag{2.5}
\]

Proof.

Case 1. \(x \in E_n = [\frac{1}{n}, 1 - \frac{1}{n}] \). According to the definition of \(K_{\varphi^r}(f, t') \) and \(\omega^{\varphi^r}_i(f, t) \sim K_{\varphi^r}(f, t') \), we can choose \(g = g_{n, x, \lambda} \) for the fixed \(x \) and \(\lambda \) such that

\[
\|f - g\| + (n^{-\frac{1}{2}}\varphi^{1-\lambda}(x))^{2r}\|\varphi^{2\lambda}g^{2r}\| \leq C\omega^r_n(f, n^{-\frac{1}{2}}\varphi^{1-\lambda}(x)). \tag{2.6}
\]

As

\[
|K_{n,r}(f, x) - f(x)| \leq C\|f - g\| + |K_{n,r}(g, x) - g(x)|,
\]

now we estimate the second term. Writing \(R_{n,i}(x) = K_{n,r}((t - x)^i, x) \), \(\tilde{\Delta}_h f(x) = f(x + h) - f(x), \) \(\tilde{\Delta}_h f(x) = \tilde{\Delta}_h (\tilde{\Delta}_h^{-1} f(x)) \),

\[
\omega^i(f, t) = \sup_{0<h \leq t} \sup_{x \in [0, +\infty]} |\tilde{\Delta}_h f(x)|.
\]

From [1, p. 26], we know \(\omega^i(f, t) \sim \omega^i(f, t) \).

We define [4]

\[
T_{n,i}(f, x) = -\frac{1}{i!} \sgn R_{n,i}(x) \tilde{\Delta}_i^{(j)} \left(\frac{\varphi^r_n(x)\tilde{\Delta}_h f(x)}{\varphi^r_n(x)}, r \leq i \leq J. \right.
\]

By a simple calculation, we can get [4]

\[
T_{n,i}(t - x)^i, x = \begin{cases} -R_{n,i}(x), & i = j; \\ C_{ij} |R_{n,i}(x)|^i \sgn R_{n,i}(x), & i < j \leq 2r - 1; \\ 0, & i > j; \end{cases} \tag{2.7}
\]

\[
K_{n,r}((t - x)^i, x) = 0 \quad (1 \leq i \leq r - 1), \tag{2.8}
\]

where \(C_{i,j} \) are constants that depend on \(i, j \) but not on \(n \) and \(x \).

Let \(T_{n,i,j}(g, x) = -\left(C_{i,j} / j! \right) \sgn R_{n,i}(x) \tilde{\Delta}_h^{(j)} \left(g(x) \right. \) \((i < j_1 \leq J) \).

Generally, if

\[
T_{n,i,j_1,...,j_k}(t - x)^h, x = C_{i,j_1,...,j_k} |R_{n,i}(x)|^{\frac{h}{j_k!}} \times \sgn R_{n,i}(x) \quad (i < j_1 < \cdots < j_k \leq J),
\]

then we define the operator

\[
T_{n,i,j_1,...,j_k}(g, x) = -\frac{C_{i,j_1,...,j_k}}{j_k!} \sgn R_{n,i}(x) \tilde{\Delta}_h^{(j_k)} \left(g(x) \right.
\]
These operators have the properties [4]
\[|T_{n,i,j_1,\ldots,j_k}(g, x)| \leq C\omega^h(g, |R_{n,i}(x)|^\frac{1}{h}), \]
where \(C_{i,j_1,\ldots,j_k} \) are constants that depend on \(i, j_1, \ldots, j_k \) but not on \(n \) and \(x \). Now let
\[A_n(g, x) = K_{n,r}(g, x) + \sum_{i=0}^{J} T_{n,i}(g, x) + \sum_{r \leq i < j_1 < \cdots < j_k \leq J} T_{n,i,j_1,\ldots,j_k}(g, x), \]
where the second sum is taken on all finite sequences \(j_1, \ldots, j_k \) which satisfy \(r \leq i < j_1 < \cdots < j_k \leq J \). By computation we have
\[\|A_n\| \leq M + \sum_{i=0}^{J} \frac{2^i}{i!} + \sum_{r \leq i < j_1 < \cdots < j_k \leq J} |C_{i,j_1,\ldots,j_k}| \frac{2^h}{j_k!} \leq C. \quad (2.9) \]
Using the Taylor expansion,
\[g(t) = g(x) + (t-x)g'(x) + \cdots + \frac{1}{J!} g^{(J)}(x)(t-x)^J + \frac{1}{(J+1)!} g^{(J+1)}(x)(t-x)^{J+1} + \cdots \]
\[+ \frac{1}{(2r-1)!} g^{(2r-1)}(x)(t-x)^{2r-1} + R_{2r}(g, t, x), \]
where \(R_{2r}(g, t, x) = \frac{1}{(2r-1)!} \int_{x}^{t} (t-u)^{2r-1} g^{(2r)}(u) du \). By [1, (9.5.3)], we know that for \(x \in E_n \),
\[K_{n,r}((t-x)^{2r-i}, x) \leq Cn^{-r} \varphi^{2r-2i}(x), \quad i \leq r. \]
So for \(x \in E_n, \varphi^{-2}(x) \leq n, \) and \(J+1 \leq j \leq 2r-1, \) we have
\[|A_n((t-x)^j, x)| \leq C|R_{n,i}(x)|^j \leq Cn^{-r} \varphi^{2(j-r)}(x). \quad (2.10) \]
From the definition of \(A_n(g, x) \), we can write
\[A_n(g, x) - g(x) = \sum_{j=J+1}^{2r-1} \frac{1}{j!} A_n((t-x)^j, x)g^{(j)}(x) + A_n(R_{2r}(g, . , x), x) \]
\[\quad := I_1 + I_2. \quad (2.11) \]
First we estimate I_1. From (2.10) and Lemma 2.1, when $r\lambda - 2r + j > 0$, by Lemma 2.1, we can get

$$
|I_1| \leq C|n^{-r}\varphi^{2(r-j-\alpha)}(x)g(j)(x)|
$$

$$
\leq Cn^{-r}\varphi^{2r(1-\lambda)}(x)|\varphi^{2(j-2r+j)}(x)g(j)(x)|
$$

$$
\leq Cn^{-r}\varphi^{2r(1-\lambda)}(x)(\|g\| + \|\varphi^{2rJ(2r)}\|).
$$

(2.12)

Now we estimate I_2,

$$
|T_{n,i_1,i_2,...,i_k}(R_r(g,t,x))| \leq C\left|\sum_{m=0}^{j_k} \left(\frac{j_k}{m}\right)^{x+(j_k-m)} \int_{R_{n,i}(x)} \left((x+(j_k-m))\right)
$$

$$
\times |R_{n,i}(x)|^{1/2} - u)^{2r-1} g^{2r}(u) du
$$

$$
\leq C\|\varphi^{2rJ(2r)}\|\varphi^{-2rJ}|R_{n,i}(x)|^{2r/2}
$$

$$
\leq Cn^{-r}\varphi^{2r(1-\lambda)}(x)\|\varphi^{2rJ(2r)}\|.
$$

By this and Lemma 2.2 we obtain

$$
|I_2| \leq Cn^{-r}\varphi^{2r(1-\lambda)}(x)\|\varphi^{2rJ(2r)}\|.
$$

(2.13)

From (2.11)–(2.13) and the definition of $A_n(g,x)$, we get

$$
|K_{n,r}(g,x) - g(x)| \leq |A_n(g,x) - g(x)|
$$

$$
+ \left|\sum_{i=1}^{j} T_{n,i}(g,x) + \sum_{1<i_1<...<i_k} T_{n,i_1,i_2,...,i_k}(g,x)\right|
$$

$$
\leq C\left(\sum_{i=1}^{j} \omega^i(g, (n^{-r}\varphi^{2(r-j-\alpha)}(x)))^i\right)
$$

$$
+ n^{-r}\varphi^{2r(1-\lambda)}(x)(\|g\| + \|\varphi^{2rJ(2r)}\|)
$$

$$
\leq C\left(\|f - g\| + \sum_{i=1}^{j} \omega^i(f, (n^{-r}\varphi^{2(r-j-\alpha)}(x)))^i\right)
$$

$$
+ n^{-r}\varphi^{2r(1-\lambda)}(x)(\|f\| + \|\varphi^{2rJ(2r)}\|).
$$

(2.6)

By (2.6), we can deduce (2.5).

Case 2. $x \in E^c_n = [0, \frac{1}{n}] \cap (1 - \frac{1}{n}, 1]$. For fixed x, we can choose $g \equiv g_{n,x}$ satisfying $\|f - g\| + n^{-r}\|g(\cdot)\|^2 \leq C\omega(f, \frac{1}{n})$. From [1, (9.5.12) and (9.5.13)],

$$
B_{n,r}((t-x)^{2r-2-j}, x) = \sum_{m=j}^{r-j-1} \varphi^{2r-2-j-2m}(x)q_m(x)\sum_{s=0}^{r-1} C_n^{-r+j-m}
$$

$$
= n^{-2r} \sum_{m=j}^{r-j-1} \varphi^{2r-2-j-2m}(x)n^{2r}q_m(x)d_{r-j+m}(n).
$$
Using Theorem 2 has been proved.

\[B_{n,r}((t-x)^{2r-2j+1}, x) = \sum_{m=j-1}^{r-j-1} \varphi^{2r-2j-2m}(x)q_m(x)dr_{j+m+1}(n), \]

where \(B_{n,r} \) is the combination of Bernstein operators, \(q_m \) is a fixed bounded polynomial, and \(\sum_{j=0}^{r-1} C_i n^{\alpha} = d_\rho(n) = O(n^{-\rho}) \). When \(j = 0 \), we have

\[B_{n,r}((t-x)^{2r}, x) = n^{-2r} \sum_{l=0}^{r-1} (n\varphi^2(x))^{r-l} q_l(x)dr_{r+l}(n)n^{r+l}, \]

\[B_{n,r}((t-x)^{2r+1}, x) = n^{-2r} \varphi^2(x) \sum_{l=0}^{r} (n\varphi^2(x))^{r-l} q_l(x)dr_{r+l}(n)n^{r+l}. \]

Using \(n\varphi^2(x) \leq C \) for \(x \in \mathbb{E}_n^\circ \) and the relation of \(B_n \) and \(K_n \) [1, (9.5.14)],

\[K_n((t-x)^{2r}, x) = \frac{d}{dx} \left[B_{n+1} \left(\frac{(t-x)^{2r+1}}{2r+1}, x \right) \right] + B_{n+1}((t-x)^{2r}, x), \]

we know (see [1, Chap. 9.2, the definition of \(K_{n,r}(f, x) \)])

\[|K_{n,r}((t-x)^{2r}, x)| = \sum_{s=0}^{r-1} C_s K_{n,s-1}((t-x)^{2r}, x) \]

\[= \sum_{s=0}^{r-1} C_s B_{n,s}((t-x)^{2r}, x) + \sum_{s=0}^{r-1} C_s \frac{d}{dx} B_{n,s}((t-x)^{2r+1}, x) \]

\[= B_{n,r}((t-x)^{2r}, x) + \frac{d}{dx}(B_{n,r}((t-x)^{2r+1}, x)). \]

So, \(|K_{n,r}((t-x)^{2r}, x)| \leq Cn^{-2r} \); by the Hölder inequality we have \(|K_{n,r}((t-x)^{i}, x)| \leq Cn^{-\gamma}. \) From \(K_{n,r}((t-x)^i, x) = 0, 0 < i \leq r-1 \), we have

\[|K_{n,r}(f, x) - f(x)| \leq C\|f - g\| + |K_{n,r}(g, x) - g(x)| \]

\[\leq C\|f - g\| + \left| K_{n,r} \left(\int_0^1 (t-u)^{r-1} g^{(r)}(u) \, du, x \right) \right| \]

\[\leq C \left(\|f - g\| + n^{-r}\|g^{(r)}\| \right) \leq C\omega^r \left(f, (n^{-r})^\frac{1}{2} \right). \]

Theorem 2 has been proved.

3. PROOF OF THEOREM 1

To prove Theorem 1, we need the following lemmas:

Lemma 3.1. For \(0 < \alpha < \frac{2r}{2^r-1}, 0 \leq \lambda \leq 1 \), if \(\omega^{2r}_\psi(f, t) = O(t^\alpha) \), then

\[\omega'(f, t) = O(t^{\alpha(1-\frac{1}{2})}), \quad r \leq i \leq 2r. \]
From [1, (3.1.5)], we get
\[
\omega^{2r}(f, t) = \omega^{2r}(f, (t^{1 - \frac{1}{r'}})^{\frac{1}{r'}}) \\
\leq C\omega^{2r}(f, t^{1 - \frac{1}{r'}}) \leq C^r(1 - \frac{1}{r'}). \tag{3.1}
\]
From [1, (4.3.1)] and \(0 < \alpha(1 - \frac{1}{r}) < r\), we have
\[
\omega^{2r-1}(f, t) \leq C^r \bigg(\int_t^\infty \frac{u^{\alpha(1 - \frac{1}{r})}}{u^{2r}} \, du + \|f\| \bigg) \leq C^r(1 - \frac{1}{r'}). \tag{3.2}
\]
By induction, we can obtain Lemma 3.1.

By [6] or [11, (2.6)] with the H"older inequality, we can easily get

Lemma 3.2. For \(0 < t < \frac{1}{12}, \frac{\mu}{2} < x < 1 - \frac{\mu}{2}, 0 \leq \beta \leq 2r\), we have
\[
\int \cdots \int_x^\infty \varphi^{-\beta}(x + u_1 + \cdots + u_{2r}) \, du_1 \cdots du_{2r} \leq C^r \varphi^{-\beta}(x). \tag{3.3}
\]

Lemma 3.3. For \(r < N, 0 \leq \lambda \leq 1\), and \(0 < \alpha < 2r\), we have
\[
\begin{align*}
|\varphi^{2\lambda}(x)K_n^{(2r)}(f, x)| &\leq Cn^\beta \delta_n^{2\lambda-2r}(x)\|f\|, \quad (3.1) \\
|\varphi^{2\lambda}(x)K_n^{(2r)}(f, x)| &\leq C\|\varphi^{2\lambda}f^{(2r)}\|. \quad (3.2)
\end{align*}
\]

Proof. From [1, (3.1.5)], \(\|\varphi^{2r}(x)K_n^{(2r)}(f, x)\| \leq Cn^\beta\|f\|\), for \(x \in E_n\), we have
\[
|\varphi^{2\lambda}(x)K_n^{(2r)}(f, x)| \leq \varphi^{2\lambda(\lambda-1)}(x)|\varphi^{2r}(x)K_n^{(2r)}(f, x)| \\
\leq Cn^\beta \varphi^{2\lambda(\lambda-1)}(x)\|f\| \leq Cn^\beta \delta_n^{2\lambda(\lambda-1)}(x)\|f\|.
\]

For \(x \in E_n^c\), from the procedure of the proof of [1, (9.4.1)] and noticing \(\|\varphi^{2\lambda}\|_{L_r(E_n)} \sim n^{-\lambda}\), we can easily get
\[
|\varphi^{2\lambda}(x)K_n^{(2r)}(f, x)| \leq Cn^{2r}n^{-\lambda}\|f\| \leq Cn^\beta \delta_n^{2\lambda(\lambda-1)}(x)\|f\|.
\]
So we have (3.1).

Now, we prove (3.2). When \(\lambda \neq 0\), by the Jensen inequality, we have (cf. [1, (9.4.4)])
\[
|K_n^{(2r)}(f, x)| \leq \frac{n!}{(n-2r)!} \sum_{k=0}^{n-2r} |\Delta^{2r}a_k(n+1)|P_{n-2r, k}(x) \\
\leq \frac{n!}{(n-2r)!} \left(\sum_{k=0}^{n-2r} P_{n-2r, k}(x)(|\Delta^{2r}a_k(n+1)|)^{\frac{1}{2}} \right)^{\lambda}.
\]
where $a_k(n) = n \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(u) \, du$, $\Delta a_k = a_{k+1} - a_k$, and $\Delta^m a_k = \Delta^{m-1} a_k$.

Therefore (cf. [1, p. 153])

$$|\phi^{2r}(x)R_n^{(2r)}(f, x)| \leq \frac{n!}{(n-2r)!} \left(\sum_{k=0}^{n-2r} \phi^{2r}(x) P_{n-2r,k}(x) (|\Delta^{2r} a_k(n+1)|)^{\frac{1}{2}} \right)^{\lambda}$$

$$= \left(\frac{n!}{(n-2r)!} \right)^{1-\lambda}$$

$$\times \left(\sum_{k=0}^{n-2r} P_{n,k+r}(x)(k + r) \cdots (k + 1)(n - r - k) \cdots \right.$$

$$\times (n - 2r - k + 1)(|\Delta^{2r} a_k(n+1)|)^{\frac{1}{2}} \left. \right)^{\lambda}$$

$$\leq C \left(\frac{n!}{(n-2r)!} \right)^{1-\lambda}$$

$$\left(n' P_{n,r}(x)|\Delta^{2r} a_0(n+1)|^{\frac{1}{2}} + n' P_{n,n-r}(x)$$

$$\times |\Delta^{2r} a_{n-2r}(n+1)|^{\frac{1}{2}} + n^{2r-1} \sum_{k=1}^{n-2r-1} P_{n,k+r}(x)$$

$$\times \left(\frac{k}{n} \left(1 - \frac{k}{n} \right) \right)^{r} |\Delta^{2r} a_k(n+1)|^{\frac{1}{2}} \right)^{\lambda}$$

$$: = C \left(\frac{n!}{(n-2r)!} \right)^{1-\lambda} (I_1 + I_2 + I_3)^{\lambda}. \quad (3.3)$$

For $k = 1, 2, \ldots, n-2r-1$ (cf. [1, p. 154])

$$|\Delta^{2r} a_k(n+1)|^{\frac{1}{2}} \leq C \left(n^{-2r+1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} |f^{(2r)}(u)| \, du \right)^{\frac{1}{2}}$$

$$\leq C \left(n^{-2r+1} \|\phi^{2r}\| \int_{\frac{k}{n}}^{\frac{k+1}{n}} (u(1-u))^{-\lambda} \, du \right)^{\frac{1}{2}}$$

$$\leq C \left(n^{-2r+1} \|\phi^{2r}\| \frac{k}{n} (1 - \frac{k}{n})^{-\lambda} \right)^{\frac{1}{2}}$$

$$= C n^{r} \|\phi^{2r}\|^{\frac{1}{2}} \left(\frac{k}{n} \left(1 - \frac{k}{n} \right) \right)^{-\frac{1}{2}}.$$

So,

$$I_3 \leq C n^{2r(1-\frac{1}{2})} \|\phi^{2r}\|^{\frac{1}{2}}. \quad (3.4)$$
Therefore we get
\[n^{-r+1} \int_0^{\frac{n}{r+1}} u^r |f^{(2r)}(u)| \, du \]
\[\leq \left(n^{-r+1} \| \varphi^{2r \lambda} f^{(2r)} \| \int_0^{\frac{n}{r+1}} u^{r(1-\lambda)}(1 - u)^{\lambda} \, du \right)^\frac{1}{r} \]
\[\leq C(n^{-2r+2\lambda} \| \varphi^{2r \lambda} f^{(2r)} \|) \frac{1}{r}. \]

Therefore we get
\[I_1 \leq Cn^{-\frac{1}{2}(2r-\lambda)+r} \| \varphi^{2r \lambda} f^{(2r)} \| \frac{1}{r}. \] (3.5)

Similarly, we have
\[I_2 \leq Cn^{-\frac{1}{2}(2r-\lambda)+r} \| \varphi^{2r \lambda} f^{(2r)} \| \frac{1}{r}. \] (3.6)

Combining (3.3), (3.4), (3.5), and (3.6), we get for \(\lambda \neq 0 \),
\[|\varphi^{2r \lambda}(x) K_{n}^{(2r)}(f, x)| \leq C \| \varphi^{2r \lambda} f^{(2r)} \|. \]

For \(\lambda = 0 \),
\[|K_{n}^{(2r)}(f, x)| \leq \frac{n!}{(n-2r)!} \sum_{k=0}^{n-2r} |\Delta^{2r} a_k(n+1) P_{n-2r, k}(x)\]
\[\leq n^{2r} (P_{n-2r, 0}(x)) |\Delta^{2r} a_0(n+1)| + P_{n-2r, n-2r}(x) |\Delta^{2r} a_{n-2r}(n+1)| \]
\[+ \sum_{k=1}^{n-2r-1} |\Delta^{2r} a_k(n+1)| P_{n-2r, k}(x). \]

From the procedure of the proof in the case where \(\lambda \neq 0 \), we have
\[|\Delta^{2r} a_k(n+1)| \leq C n^{-2r} \| f^{(2r)} \|(k = 1, 2, \ldots, n-2r-1), |\Delta^{2r} a_0(n+1)| \leq C n^{-2r} \| f^{(2r)} \|, |\Delta^{2r} a_{n-2r}(n+1)| \leq C n^{-2r} \| f^{(2r)} \| \]

Thus we have (3.2). This finishes the proof of Lemma 3.3.

The proof of Theorem 1:

\(\Leftarrow \): By Theorem 2,
\[|K_{n, r}(f, x) - f(x)| \leq C \left(\sum_{i=r}^{j} \omega^i(f, n^{-r} \varphi^{2(i-r)}(x)) \right)^\frac{1}{r} + \omega^2(f, n^{-1/2} \varphi^{1-\lambda}(x)) \]
\[+ n^{-r} \varphi^{2r(1-\lambda)}(x) \| f \|. \] (3.7)

For the first term on the right side of (3.7), from Lemma 3.1, we cannot obtain \(O((n^{-1/2} \varphi^{-1}(x))^a) \). For example, if \(i = r, \omega^i(f, n^{-r})^\frac{1}{r} = O((n^{-r})^{a/2}) \neq O((n^{-1/2} \varphi^{-1}(x))^a) \). In fact, if \((n^{-r})^{a/2} \leq C(n^{-1/2} \varphi^{-1}(x))^a \), then \(\left(\frac{1}{\sqrt{n}(x)} \right)^{a(1-\lambda)} \leq C \). Let \(x \to 0 \); this is impossible. So, we cannot
get the result as in the following:
\[
\omega^2_{\varphi}(f, t) = O(t^a) \Rightarrow |K_{n,r}(f, x) - f(x)| = O\left(n^{-1/2} \varphi^{1-\lambda}(x)\right).
\]

But from (3.7) and Lemma 3.1, for \(\alpha < \frac{2r}{\lambda - 2} \), we have
\[
|K_{n,r}(f, x) - f(x)| \leq C\left(\sum_{i=0}^{r} \omega^i(f, n^{-r} \delta_n^{2(i-r)}(x))^{\frac{1}{r}} + \omega^2_{\varphi}(f, n^{-1/2} \delta_n^{1-\lambda}(x)) + n^{-r} \delta_n^{2r(1-\lambda)}(x) \|f\|\right)
\]
\[
\leq C\left(\sum_{i=0}^{\frac{2r}{\lambda-2}} (n^{-r} \delta_n^{2(i-r)}(x))^{\frac{\alpha(1-\lambda/2)}{\alpha}} + \left(n^{-1/2} \delta_n^{1-\lambda}(x)\right)^{\alpha} \right).
\]

(3.8)

For \(r \leq i \leq J, r\lambda - 2r + i \leq 0 \); noticing \(\delta_n^{-1}(x) \leq \sqrt{n} \), then
\[
(n^{-r} \delta_n^{2(i-r)}(x))^{\frac{\alpha(1-\lambda/2)}{\alpha}} \leq \left(n^{-1/2} \delta_n^{1-\lambda}(x)\right)^{\alpha}.
\]

Hence, the relation of “\(\Leftarrow \)” in (1.6) holds.

Remark 2. In Theorem 1 (1.6), when \(\alpha > \frac{2r}{\lambda - 2} \), the “\(\Leftarrow \)” is not true. We observe that \(f(t) = t^r, r \geq 2 \). Obviously, \(\omega^2_{\varphi}(f, t) = 0 \). Let \(x = n^{-1} \); we have
\[
K_{n,r}(f, x) - f(x) = K_{n,r}((t-x)^r, x) \sim \frac{1}{n^r}.
\]

If the relation “\(\Leftarrow \)” is right, then \(K_{n,r}(f, x) - f(x) = O(n^{-1/2} \delta_n^{1-\lambda}(x)) \sim n^{-\alpha(1-\lambda/2)} \), but we know, when \(\alpha > \frac{2r}{\lambda - 2}, \alpha(1-\lambda/2) > r \), so “\(\Leftarrow \)” is not true.

“\(\Rightarrow \)” Let \(\gamma_{n,\lambda}(x) = n^{-\frac{1}{2}} \delta_n^{1-\lambda}(x) \). If \(K_{n,r}(f, x) - f(x) = O(\gamma_{n,\lambda}^a(x))\), for every \(n : n > 2r \), we have
\[
\left|\Delta_{\varphi(x)}^2 f(x)\right| \leq C_{\gamma_{n,\lambda}}^a(x) + \sum_{i=0}^{r-1} |C_i(n)| \int \cdots \int_{\frac{\varphi(x)}{2}} \frac{\varphi(x)}{2} \frac{\varphi(x)}{2}
\]
\[
\times \left|K_n^{(2r)}(f, x + \sum_{j=1}^{2r} u_j)\right| du_1 \cdots du_{2r}
\]
\[
\leq C_{\gamma_{n,\lambda}}^a(x) + \sum_{i=0}^{r-1} |C_i(n)| \int \cdots \int_{\frac{\varphi(x)}{2}} \frac{\varphi(x)}{2} \frac{\varphi(x)}{2}.
\]
\[K_n^{(2r)}(f - g, x + \sum_{j=1}^{2r} u_j) \, du_1 \cdots du_{2r} \]
\[+ \sum_{j=0}^{r-1} C(n) \int \cdots \int_{-\frac{\gamma_n}{2r}}^{\frac{\gamma_n}{2r}} K_n^{(2r)}(g, x + \sum_{j=1}^{2r} u_j) \, du_1 \cdots du_{2r} \]
\[:= C_{n,\lambda}(x) + J_1 + J_2. \quad (3.9) \]

Combining Lemma 3.2 and Lemma 3.3, we have
\[J_1 \leq Ct^{2r} \gamma_{n,\lambda}(x) \| f - g \|. \quad (3.10) \]
\[J_2 \leq Ct^{2r} \| \varphi^{2r} \| (2r). \quad (3.11) \]

Using (3.9), (3.10), and (3.11), choosing appropriate \(g \), we can obtain
\[\left| \Delta_{2r}^{(2r)} f(x) \right| \leq C \left(\gamma_{n,\lambda}(x) + t^{2r} \gamma_{n,\lambda}^{-2r}(x) \omega^{2r}_{\varphi}(f, \gamma_{n,\lambda}(x)) \right). \]

For every fixed \(h : 0 < h < \frac{1}{16r} \) and every \(x : x \geq rt \), we can choose \(n \) such that \(\gamma_{n,\lambda}(x) \leq h < 2\gamma_{n,\lambda}(x) \). Then
\[\left| \Delta_{2r}^{(2r)} f(x) \right| \leq C \left(h^\alpha + \left(\frac{t}{h} \right)^{2r} \omega^{2r}_\varphi(f, h) \right). \]
So,
\[\omega^{2r}_\varphi(f, t) \leq C \left(h^\alpha + \left(\frac{t}{h} \right)^{2r} \omega^{2r}_\varphi(f, h) \right), \]
which yields the assertion of Theorem 1 by the Berens–Lorentz lemma.

Remark 3. For Szász–Kantorovich and Baskakov–Kantorovich operators, one can get similar results with the same method.

ACKNOWLEDGMENTS

The authors express their sincere gratitude to the referee for his helpful suggestions and comments.

REFERENCES