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Let M be a uniform space and X the Banach space of bounded and uniformly continuous
functions from M into R, provided with its supremum norm.
The aim of this paper is to discuss the connection between the geometry of X and the
nature of M . In particular, we will prove that certain reconstructions of the unit ball of X
by means of its extreme points admit a translation in terms of extension of uniformly
continuous functions. We also analyze the impact of these properties on the Samuel
compactification of M .
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1. Introduction

Let M be a (not necessarily compact) uniform space and X the algebra of bounded and uniformly continuous functions
from M into R. As usual, we will consider the uniform norm on X :

‖x‖ = sup
{∣∣x(t)∣∣: t ∈ M

}
(x ∈ X).

The closed unit ball of X will be denoted by B X :

B X = {
x ∈ X: ‖x‖ � 1

}
.

If e ∈ B X and the equation e = (1 −λ)x +λy, with 0 < λ < 1 and x, y ∈ B X , implies e = x = y, it is said that e is an extreme
point of B X . The symbol E X will stand for the set of extreme points of B X . It is not difficult to prove that

E X = {
e ∈ X:

∣∣e(t)∣∣ = 1, ∀t ∈ M
}
.

On the other hand, it is also immediate that an element x ∈ X is invertible if, and only if, there exists ρ > 0 such that
x(t) > ρ, for all t ∈ M. The set of invertible elements of X will be represented by X−1.

With respect to the notions of uniformity and uniform space we will follow the criterion of [3]. In particular, only
Hausdorff uniform spaces will be considered and, if U is a uniformity on a certain set, it must be assumed that every
element of U is symmetric.
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If A is a subset of a certain set, the complement of A will be represented by Ac .

We have to mention, for later use, the following result by Katĕtov concerning the extension of uniformly continuous
functions.

Theorem 1. ([4]) Let M be a uniform space, A ⊂ M and f : A → [−1,1] a uniformly continuous function. Then there exists x : M →
[−1,1], uniformly continuous, such that x|A = f .

Now, observe that the previously defined set E X may be very small (if M is connected E X contains exactly two elements).
In this paper we study conditions under which E X is large enough to ensure the equality B X = co(E X ), where co(E X )

denotes the closed convex hull of E X . We analyze the influence of this geometric property over the structure of the uniform
space M and the nature of an adequate compactification of M that we comment below.

Let U be the original uniformity on M and U0 the uniformity determined by X, that is, the initial uniformity corre-
sponding to the family of bounded and uniformly continuous functions from M into R, with respect to U . It is easy to
see that U0 ⊂ U and that both uniformities induce the same topology. Furthermore, (M, U0) is a totally bounded space. The
completion of this last uniform space is called the Samuel compactification of M with respect to the uniformity U [7].

Since Hausdorff compact spaces are uniquely uniformizable, they will be considered to be provided with its correspond-
ing uniformity whenever one refers to any notion depending on such a structure.

The Samuel compactification provides us with the following result:

Theorem 2. Given a uniform space M there exists a Hausdorff compact space K and a mapping Γ : M → K such that

i) Γ (M) is dense in K .

ii) Γ is a homeomorphism from M onto Γ (M).

iii) For every bounded and uniformly continuous function x : M → R there is a unique continuous function x̂ : K → R such that
x̂ ◦ Γ = x.

M
x

Γ

R

K
x̂

iv) For each continuous function f : K → R, the function f ◦ Γ is uniformly continuous.

Observe, in particular, that the mapping f �→ f ◦Γ , from C(K ) onto X , is an isometric isomorphism, where C(K ) denotes
the Banach space of continuous functions from K into R.

A pair (K ,Γ ) satisfying the first three conditions of the above theorem is called a uniform compactification of M. The
Stone–Čech compactification is a remarkable example.

If (K ,Γ ) is a uniform compactification of M , condition iii) holds, in fact, for uniformly continuous functions valued in
any Hausdorff compact space.

In order to highlight the role of condition iv) in Theorem 2 we state the following result which can be easily proved.

Proposition 3. Let M be a uniform space and (K ,Γ ) a uniform compactification of M. The following statements are equivalent:

i) For each continuous function f : K → R, the function f ◦ Γ is uniformly continuous.
ii) Γ is uniformly continuous.

iii) For any uniform compactification (Q ,Ψ ) of M there exists a surjective and continuous mapping F : Q → K such that F ◦Ψ = Γ .

From this proposition it can be deduced that if (K1,Γ1) and (K2,Γ2) are uniform compactifications of M which satisfy
condition iv) in Theorem 2, then the spaces K1 and K2 are homeomorphic.

Therefore, up to a homeomorphism, the Samuel compactification of M, usually denoted by sM, is the unique uniform
compactification of M satisfying the four conditions in Theorem 2. In [8], an interesting study of the Samuel compactification
of metric spaces can be found. The terminology in this reference (the minimum uniform compactification) is clear in the
light of Proposition 3.

2. Extreme points and extension of uniformly continuous functions

The extremal structure of continuous function spaces has been studied over a long time period. For any compact Haus-
dorff space K , W.G. Bade proved that the unit ball of C(K ) is the closed convex hull of its extreme points if, and only if,
K is zero-dimensional (see [1] and [2]). Later, N.T. Peck [6, Theorem 4] established that, if K is a zero-dimensional compact
metric space, then BC(K ) is the sequentially convex hull of its extreme points (a formulation of this property can be found
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in the statement viii) of Theorem 4). A similar result was obtained by D. Oates without the hypothesis of metrizability
of K [5].

In this paper, the aforementioned results will be extended to the context of uniformly continuous function spaces.
According to previously settled notation, let M be a not necessarily compact uniform space and X the Banach space of

bounded and uniformly continuous functions from M into R. In this section we will show that the abundance of extreme
points in B X is, in a certain sense, equivalent to the abundance of invertible elements in X . At the same time, such condi-
tions determine an attractive kind of disconnectedness of M and a property of extension of uniformly continuous functions.
Moreover, we will study the impact of these properties over the Samuel compactification of M . In essence, our goal is the
identification of those uniform spaces that have a zero-dimensional Samuel compactification.

We will make use of the following concept:
Given two subsets A and B of M, it is said that A is uniformly contained in B if there exists U ∈ U (the original

uniformity of M) such that U (A) ⊂ B. In such a case, we will write A ⊂u B.

Obviously, the relation of uniform inclusion is more restrictive (in general) than the relation of inclusion. Notice, in this
connection, that the condition A ⊂u A implies, in particular, that A is open-and-closed.

Theorem 4. Let M and X be as in the introduction. The following statements are equivalent:

i) B X = co(E X ).
ii) For each x ∈ B X there exists y ∈ co(E X ) such that ‖x − y‖ < 1.

iii) For any two subsets A and B of M such that A ⊂u B there exists G, uniformly contained in itself, such that A ⊂ G ⊂ B.

iv) The set X−1 of invertible elements of X is dense in X .

v) For every x ∈ X, there exists y ∈ X−1 such that ‖x − y‖ < 1.
vi) Given D ⊂ M and a uniformly continuous function f : D → {−1,1} there exists a uniformly continuous function e : M → {−1,1}

such that e|D = f .
vii) B X = λE X + (1 − λ)B X , for all λ ∈ ]0, 1

2 [.
viii) For every x ∈ B X there exist a sequence {en} in E X and a sequence {λn} in [0,1], with

∑∞
n=1 λn = 1, such that x = ∑∞

n=1 λnen.

Proof. The second condition is an immediate consequence of the first one.
Assume that the second statement holds and let A and B be subsets of M such that A ⊂u B. It is then immediate that

the function f : A ∪ Bc → R defined by

f (t) =
{

1 if t ∈ A,

−1 if t ∈ Bc,

is uniformly continuous. By Theorem 1 there exists a uniformly continuous function x : M → [−1,1] such that x|A∪Bc = f .
Hence, x ∈ B X and, by the hypothesis, there exists y ∈ co(E X ) such that ‖x − y‖ < 1. Taking into account that the set y(M)

is finite, we may define the following real numbers:

α = min
([0,1] ∩ y(M)

)
and β = max

([−1,0[ ∩ y(M)
)
.

Moreover, let ε = α − β. The uniform continuity of y gives a U ∈ U such that

(t, t′) ∈ U ⇒ ∣∣y(t) − y(t′)
∣∣ < ε.

Consider G = {t ∈ M: y(t) � α}. Then, Gc = {t ∈ M: y(t) � β} and, for t ∈ G and t′ ∈ Gc,

∣∣y(t) − y(t′)
∣∣ = y(t) − y(t′) � α − β = ε.

In consequence, (t, t′) /∈ U and so U (G) ⊂ G.

On the other hand, given t ∈ A, it is clear that x(t) = 1 and thus y(t) > 0. From that, it follows that t ∈ G. Similarly, if
t ∈ Bc, then x(t) = −1 and therefore y(t) < 0. This implies that t ∈ Gc . In this way, we conclude that A ⊂ G ⊂ B and hence
ii) ⇒ iii).

Next, we will prove that iii) ⇒ iv). For this purpose, let x ∈ X, ε ∈ ]0,1[ and consider

A =
{

t ∈ M:
∣∣x(t)∣∣ � ε

2

}
and B =

{
t ∈ M:

∣∣x(t)∣∣ � ε

4

}
.

Since x is uniformly continuous there is U ∈ U such that

(t, t′) ∈ U ⇒ ∣∣x(t) − x(t′)
∣∣ <

ε

4
.

Given t′ ∈ U (A) let t ∈ A be such that (t, t′) ∈ U . Then,

∣∣x(t′)
∣∣ = ∣∣x(t) − (

x(t) − x(t′)
)∣∣ �

∣∣x(t)∣∣ − ∣∣x(t) − x(t′)
∣∣ � ε − ε = ε

,

2 4 4
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and then t′ ∈ B. Therefore U (A) ⊂ B and thus A ⊂u B. By iii), there is G ⊂ M such that G ⊂u G and A ⊂ G ⊂ B. Let
y : M → R be the function defined by

y(t) =
{

x(t) if t ∈ G,
ε
2 if t ∈ Gc.

The condition G ⊂u G ensures that y is uniformly continuous. Moreover, it is bounded and |y(t)| � ε
4 , for every t ∈ M. This

shows that y is an invertible element of the algebra X . On the other hand, given t ∈ G, |x(t) − y(t)| = 0 and, if t ∈ Gc,

|x(t) − y(t)| < ε. Therefore, ‖x − y‖ < ε.

Obviously iv) ⇒ v) and we will see now that v) ⇒ vi). To this end, let D ⊂ M and f : D → {−1,1} a uniformly
continuous function. Then there exists x : M → [−1,1], uniformly continuous, such that x|D = f . By the hypothesis, there is
y ∈ X−1 with ‖x − y‖ < 1. The function e : M → {−1,1} defined by e(t) = y(t)

|y(t)| , for each t ∈ M, is a uniformly continuous
extension of f . In order to verify this last statement, fix a point t ∈ D . If f (t) = 1, the inequality |x(t)− y(t)| < 1 guarantees
that y(t) > 0. Thereby, e(t) = 1 = f (t). Similarly, if f (t) = −1, then y(t) < 0 and, in consequence, e(t) = −1 = f (t).

With the objective of proving that vi) ⇒ vii), consider λ ∈ ]0, 1
2 [ and x ∈ B X . Then, define D = {t ∈ M: |x(t)| � 1 − 2λ}

and let f : D → {−1,1} given by f (t) = x(t)
|x(t)| , for every t ∈ D. By the hypothesis, there is a uniformly continuous function

e : M → {−1,1} such that e|D = f . Accordingly, the function y = x−λe
1−λ

belongs to X and we will show that ‖y‖ � 1. For this
purpose, fix t ∈ M. If t ∈ D,

∣∣y(t)
∣∣ = |x(t) − λe(t)|

1 − λ
= ||x(t)| − λ|

1 − λ
� 1.

On the other hand, if t ∈ DC , |y(t)| = |x(t)−λe(t)|
1−λ

� |x(t)|+λ
1−λ

� 1−2λ+λ
1−λ

= 1. To conclude this implication, it suffices to observe
that x = λe + (1 − λ)y.

With the aim of proving that vii) ⇒ viii), let x ∈ B X and λ ∈ ]0, 1
2 [. In accordance with the assumption, there are

e1 ∈ E X and y1 ∈ B X such that x = λe1 + (1 − λ)y1. For the same reason, y1 = λe2 + (1 − λ)y2 for some e2 ∈ E X and
y2 ∈ B X . By proceeding in this way, we find a sequence {en} of extreme points of B X and a sequence {yn} in B X such that
yn = λen+1 + (1 − λ)yn+1, for every n ∈ N. Consequently, for any natural number n,

x = λe1 + (1 − λ)λe2 + · · · + (1 − λ)nλen+1 + (1 − λ)n+1 yn+1.

From here it can be deduced immediately that x = ∑∞
n=1(1 − λ)n−1λen. Observe now that

∑∞
n=1(1 − λ)n−1λ = 1.

Finally, it is clear that viii) ⇒ i). �
From now on, a uniform space M will be called uniformly disconnected if M satisfies condition iii) of the above theorem.
Let M be a uniform space and K = sM , the Samuel compactification of M. We have already observed that spaces X and

C(K ) are isometrically isomorphic. Therefore, B X = co(E X ) if, and only if, BC(K ) = co(EC(K )). On the other hand, this last
equality holds true if, and only if, K is zero-dimensional. Thus, the equivalence between statements i) and iii) of Theorem 4
has the following consequence:

Corollary 5. A uniform space M is uniformly disconnected if, and only if, the Samuel compactification of M is zero-dimensional.

As it can be easily checked, if M is uniformly disconnected then M has no non-trivial connected sets (M is totally
disconnected). In fact, if the uniformity of M is metrizable, we have the following result:

Proposition 6. Every uniformly disconnected metric space is strongly zero-dimensional.

Proof. Let M be a uniformly disconnected metric space and consider a pair A, B of subsets of M such that A is closed,
B is open and A ⊂ B. It suffices to prove the existence of an open-and-closed set G ⊂ M such that A ⊂ G ⊂ B (see [3,
Theorem 6.2.4]).

To avoid the trivial case we will assume A �= ∅. First, let us show the existence of an open-and-closed covering
{Gn: n ∈ N} of M, consisting of pairwise disjoint sets, such that, for each n ∈ N, Gn ∩ A = ∅ or Gn ⊂ B:

For every natural number n, define En = {t ∈ M: d(t, Bc) � 1
n } and Fn = {t ∈ M: d(t, A) � 1

n }. Since En ⊂u B, there exists
Pn ⊂ M, with Pn ⊂u Pn (that is, d(Pn, P c

n) > 0), such that En ⊂ Pn ⊂ B. Likewise, Fn ⊂u Ac and thus there exists Q n ⊂ M,

with Q n ⊂u Q n , such that Fn ⊂ Q n ⊂ Ac . In particular, Q n ∩ A = ∅.

In order to prove that {Pn: n ∈ N} ∪ {Q n: n ∈ N} is a covering of M, fix a point t ∈ M. If t ∈ A it is clear that t /∈ Bc and
therefore d(t, Bc) > 0. Consequently, there is n ∈ N such that t ∈ En ⊂ Pn. On the other hand, if t /∈ A, then d(t, A) > 0 and
there is n ∈ N such that t ∈ Fn ⊂ Q n.

Given n ∈ N, define R2n = Pn and R2n−1 = Q n. The family {Rn: n ∈ N} is an open-and-closed covering of M. Finally, the
family {Gn: n ∈ N} given by
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G1 = R1, Gn+1 = Rn+1

∖ n⋃
j=1

R j, for every n ∈ N,

is a covering of M consisting of pairwise disjoint open-and-closed sets. It is also clear that, for every n ∈ N, G2n−1 ∩ A = ∅
and G2n ⊂ B. Therefore {Gn: n ∈ N} satisfies the required properties.

To finish the proof, define I = {n ∈ N: Gn ∩ A �= ∅} and G = ⋃
n∈I Gn. Obviously Gn ⊂ B, for every n ∈ I and hence G ⊂ B.

Moreover, given n ∈ N\I, Gn ∩ A = ∅. Thus,

A =
( ⋃

n∈N

Gn

)
∩ A =

⋃
n∈N

(Gn ∩ A) =
⋃
n∈I

(Gn ∩ A) ⊂ G.

Since Gc = ⋃
n∈N\I Gn it is also clear that G is an open-and-closed set. �

The reverse of the above result is not true in general. For example, the set of rational numbers with its usual metric
is strongly zero-dimensional but it is not uniformly disconnected. In order to check this last assertion observe that every
uniformly continuous function from Q into {−1,1} can be continuously extended to R and, hence, it is constant. Therefore,
Q does not satisfy statement vi) of Theorem 4 and, hence, it does not satisfy statement iii) either, that is, Q is not uniformly
disconnected.
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