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In the present paper we consider a class of multiobjective B-vex programming
problems involving differentiable B-vex n-set functions and establish duality re-
sults in terms of properly efficient solutions. Further, we relate the problem to a
certain saddle point of a Lagrangian and show multiobjective fractional program as
a special case of the main problem.  © 1996 Academic Press, Inc.

1. INTRODUCTION

Optimization theory dealing with set functions was recently developed
by Morris [11], who defined the notion of local convexity, global convexity,
and differentiability for set functions and established optimality conditions
and Lagrangian duality that are closely parallel to similar results in
nonlinear programming problems with point functions. He also discussed
some computational procedures for the solution of nonlinear programs
with set functions. Corley [8] extended the results presented by Morris [11]
for n-set functions and established optimality conditions along with La-
grangian duality. Zalmai [14] mentioned several applications of nonlinear
programming problems involving n-set functions and considered several
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practical applications for a class of nonlinear programming problems
involving a single objective and differentiable n-set functions. Zalmai [14]
also established several sufficient optimality conditions and duality results
under generalized p-convexity conditions. Bector et al. [3] established
sufficient optimality conditions and proved duality results for multiobjec-
tive programming problems with differentiable n-set functions. In [4],
Bector et al. consider a class of multiobjective fractional programming
problems in which the objectives are ratios of appropriately restricted
differentiable n-set functions and introduce, along the lines of Bector [2],
Wolfe’s dual [13] and establish duality results in terms of properly efficient
solutions. A relationship with a certain vector-valued saddle point of a
Lagrangian is established. In the present paper we generalize the results
presented in [4] to a multiobjective programming problem in which the
functions involved are B-vex n-set functions [1, 5].

2. NOTATION, DEFINITIONS, AND PRELIMINARIES

Throughout the paper we assume that (X, 4, w) is a finite atomless
measure space with L, (X, 4, u) separable. We also assume that S is a
subset of A" = A4 X A X -+ X A, the n-fold product of o-algebra A of
subsets of a given set X. Let d be the pseudometric on A" defined by

n 1/2
d((Ry Ry, R,), (81, 82,...,8,)) = ZMZ(RiASi)} '

i=1
R,S,€ANi=12.n,

where R;AS; denotes the symmetric difference for R, and S,. Thus (A", d)
is a pseudosymmetric space which will serve as the domain for most of the
functions used in the present paper. Thus h € L(X, 4, w) and Z € 4
with indicator (characteristic) function I, € L (X, A, w), the general inte-
gral [, hdp will be denoted by (%, I,).

We now give the following definitions along the lines of Zalmai [14].

DerINITION 2.1. A set function H: A — R! is said to be differentiable
at S* € A if there exists DH,. € L (X, A, p), called the derivative of H
at S*, such that

H(S) = H(S*) + {DHg., Ig» — Ig.) + V(S*,S),
where

Vy(8*,S)is o[d(S*,S)],
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lim V(5% S)/d(S*, S) = 0.
d(§*,8)—0

We now define the differentiation for an n-set function.

DEFINITION 2.2. Let F: A" - R and (S}, S5,...,$*) € A". Then F
is said to have a partial derivative at (S5, S¥,..., S*,) with respect to its
ith argument S, if the set function H(S,) = F(SF, S¥, ...,

S* .S, 8% ..., 8%) has derivative DF,. at S¥*. In that case we define

1 o p

the ith partial derivative of F at (S¥, S¥,...,S¥) to be
D,Fg ¢ =DFg, i=12,...,n.

DEFINITION 2.3. Let F: A" —» R" and (S¥, S5,...,S) € A". Then F is
said to be differentiable at (S§, S%,...,S¥) if all the partial derivatives
DFg:,i =1,2,...,n, exist and satisfy

F(S,,8y,...,8,) = F(S§,85,....8%5) + L(DFgs .15 — L)
i:l e R 13 1
+ We[(SF, 85, 85), (S0, a0 )]
where
Wel(S¥,85,....Dy) (S0, S, 0S,)]
is

ofd[(S¥,8%,...,85),(51,S,,....8,)]} forall (S;,S,,...,S,) € A"

1 n

DEFINITION 2.4. Let F: A" — R' be differentiable. Then F is said to
be convex (strictly convex) [8, 14] if for (R, R,,..., R,), (5, S,,...,S,)
e A"

DEeFINITION 2.5. Let F: A" — R* be differentiable. Then F is said to
be concave (strictly concave) [8, 14] if for (R, R,,..., R,), (8., S,,...,S,)
e A"

F(Ry,Ry,....,R,) —=F(5,,5,,...,8,) (<) L(DFs, 5.1z —I).
i=1
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Next we introduce the following definition of n-set B-vex (strictly B-vex)
function.

DerFINITION 2.6 [5]. F: A" — R' be differentiable and B: 4" x A" —
R'B>0. Then F is B-vex (strictly B-vex) on A", if for R =
(Ry,....R),S=(S,,...,5) €A

B(R,S)[F(R.,R,,...,R,) —F(S5.,5,,...,5,))]

1 n

DerINITION 2.7 [5]. Let F: A" — R* be differentiable and B: 4" X A" —
R'B>0. Then F is B-cave (strictly B-cave) on A" if for R =
(R,,R,....,R,), S =(5,,8,,....5,) € A"

B(R,S)[F(Ry, Ry,...,R,) — F(S1,5,,....5,)]

1 n

or equivalently, F is B-cave (strictly B-cave) [5] on 4" if and only if —F is
B-vex (strictly B-vex) on A",

We now consider the nonlinear multiobjective fractional programming
problem (VP) involving differentiable n-set functions,

(VP) V-min[Qy(S1, 85, +.8,) - Q,(81, 85, .., S,) |
subject to
Q(8:,8;,...,8,)<0,i=1,2,...,p,and j=1,2,....m (2.2)
S=(8,.5,,....8,) €A, (2.3)
where

(i) A" is the n-fold product of a o-algebra A of subsets of a given
set X,

(i) Q;, for i=12,...,p, and Q; for i=12,...,p and j=
1,2,..., m are real-valued differentiable B-vex functions defined on A",
and

(iii) the symbol V-min stands for vector minimization.

DerINITION 2.8. A feasible solution (S5, S%,...,S5¥) € A" for (VP) is
said to be efficient for (VP) if and only if there is no other feasible solution
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(8, S8,,...,8,) € A for A for (VP) such that
F(S8.,8,,....8,) = F(Sf.S%,....,85) foralli e (1,2,...,p)
and

F.(S8,,8,,....8,) <F.(S§,8%,...,8¥) forsome k € (1,2,...,p).

DerINITION 2.9.  An efficient solution (Sf, S5,...,S¥) for (VP) is said
to be properly efficient for (VP) if and only if there exists a scalar M > 0
such that for all i € (1,2,..., p),

[Fi(S5.85,....8%) = F(S1,8;,....8,)]
< M[F(5,,8;,....8,) — F(S§.8%,....89)]
for some j € (1,2,..., p) such that
F(S81,8,,...,8,) > F(SF,85,...,87)
whenever (S, S,,...,S,) € A" is feasible for (VP) and
F(81,85,...,8,) <F(Sy,85,...,85).
An efficient solution that is not properly efficient is said to be improperly
efficient. Thus for (S, S%,...,8%) to be improperly efficient for (VP)
means that to every sufficiently large scalar M > 0, there is a feasible
solution (S, S,,...,S,) € A" and an i such that
Fi(S81,85....,8,) <F(Sf,S5,....8%)
and
[F(SE.S%,....8%) = F(S1.5,,....5,)]
> M[F(S;,S;,...,8,) — F(SF,85,...,5)]
forall j € (4,2,..., p), such that
F(S81,85,...,8,) > F(SF,85,...,87).

For a vector maximization problem the above definitions are modified
accordingly.
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In what follows, we shall need the following programming problem (PP),
containing a single objective n-set function:
(PP) minimize F(S,,S,,...,S,)
subject to
H(S,,8,,....5,) <0, j=12,..m
(8,,8,,...,8,) €A4".

DerINITION 2.10. A point (S¥, S5,...,S%) € A" is said to be a regular
feasible solution for (PP) if there exists (S, S,,...,S,) € A" such that

n
Hy(S§,8%,...,88) + L(DHy; .15 —1Ig) <0,  j=1,2,...,p.
i=1

In what follows we shall use the following theorem for (PP) whose proof
may be found in [8, 14].

THEOREM 2.1. Let (SF,S¥,...,8*) be a regular optimal solution of
(PP). Then there exists u* = (uf,u%,...,u*) € R7 (nonnegative orthant of
R™) such that

WH(SE,SE,...,85) =0, (j=12,..,m)
H(S§,S5,...,85) <0,  (j=12,...,m)

u* = (uf,uj,...,u%) = 0.

3. OPTIMALITY CONDITIONS

From (VP), we write the following multiple problems (P}) =
P.(S¥,...,8%), for k =1,2,..., p, each problem having a single objective
n-set function:

(PF) minimize Q,(S;,S,,...,S,)

! n
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subject to

0,(85,,8,,....8,) < Q:(SF, S§,....8%),  Vi=1,2,....pii+k

(3.1)

0;;(8,8,,...,8,) <0, (i=12,...,p;j=12,....m) (3.2)
(81,8,,...,5,) €4” (3.3)

foreach k = 1,2,..., p. (3.4)

The following lemma can be proved along the lines of Chankong and
Haimes [7].

LeEMMA 3.1, Let (S, S%,...,8%) € A" be
H-1. regular for (VP), and
H-2. regular for at least one (Pi), k = 1,2,..., p.

Then (S§,S8%,...,8%) is an efficient solution for (VP) if and only if it is
optimal solution of the problem (P}").
LEMMA 3.2. Fori=1,2,...,p, F, is a Bjvex function on A". Then:

L

() Fora;20,i=1,2,...,p, the function F = a,F| + -+ +a,F, is
B-vex on A".

(i)  Additionally, for i =1,2,...,p, if at least one of F; is a strictly
B-vex functions on A" with corresponding «; > 0, then F = a,F,
+ - +a,F, is strictly Bivex on A".

THEOREM 3.1 (Necessary Conditions). Let (S, S%,...,8%) € A" be a

() regular efficient solution for (VP), and
(i) regular solution for (P¥), k = 1,2,..., p.

Then there exist
M= (A5, A5) >0 and y*f=(y>1"j,y§<]-,...,y;"j,)
20(j=1,2,....,m)

such that

p m P
< )y /\?DrQiSf sx T by ZY?;DrQijsf siodg — Is,*>éov
i=1 j=1i=1

VS, €A, r=12,...,n, (3.5
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VEQ(SF, S5, 8¥) =0 (i=1,2,...,p;j=1,2,...,m) (3.)
Q,(SH S5, S¥) =0  (i=1,2,...,p;j=12...,m) (37)
YEz 0 (i=12...,pij=12...,m). (3.8)

Proof.  Since (S¥, S5,...,8¥) is a regular efficient solution for (VP), by
Lemma 3.1 it is an optimal solution for (P}), k=1,2,...,p. Also
(S, 8%,...,8%) is regular for (P;); therefore, by Theorem 2.2, there exist

T =0, i=1,2,...,p,i#k,u,-jkg0

fori=12,...,pand j=1,2,...,m such that

zjkDrQiij” S Iy — I )20,

i=1

W M"

D Qk?* st Z 7 D, Qm* S Z

VS, ed,r=12,....,n (3.9)
uf Qi (S5, 85,...,87) =0 (i=1,2,...,p;j=1,2,...,m) (3.10)
Q(SF.S5,...,8%) <0 (i=1,2,...,p;j=1,2,...,m) (3.11)
u,JgO (i=12,...,p;j=1,2,....,m) (3.12)
foreach k = 1,2,..., p. (3.13)
Summing over k in (3.9), (3.10), (3.12), and setting
P
N=1+ Y r:>0, k=12,...,p,

i=1
i+k

p
yi=2Yuf 20  (i=12,...,p;j=12,...,m),
k=1

we obtain (3.5)—(3.8).

THeoOREM 3.2 (Sufficient Conditions). Assume that there exist

X0, i=12...,pyi20i=12..pj=12..m
such that (3.5)—(3.8) hold at (S¥,S¥,...,S¥) for all feasible solutions of
(VP). Then (S, S%,...,8¥) is an efficient solution of (VP).

Proof. We assume that (S5, S%,...,5%) is not an efficient solution of
(VP) and exhibit a contradiction. (S5, S5,...,S5¥) not being an efficient



MULTIOBJECTIVE B-VEX PROGRAMMING 709

solution of (VP) yields that there exists a feasible solution (S, S,,...,S,)
to (VP) such that

0/(8,,8,,....8,) < OQ.(SF, S5,...,8%) fori=1,2,....,pi#k
(3.14)

and
Qu(S1,8;.....8,) < Qu(SE. 55.....5%). (3.15)
Since the functions Q, and Q,; are B;-vex, and
/\?>O,y;’;go forall1=1,2,...,pandj=1,2,....,m

by Lemma 3.2,
AQ(S,,8,,....8,) + Zy;jQij(Sl,Sz,...,Sn)
j=1

is B-vex for i = 1,2,..., p. Hence, by Definition 2.6, there is
B;: A" X A" -» R',B; > 0 i=12,...,p
such that for all (5, S,,...,S,) we have

Bi(S’S*)|:()‘;‘in(Sl!""Sn) + i y;l;‘Qij(Sl""!Sn))

m
> <Dr(A?Ql—+ Zy?}Q,-,-) 'Is,_ls;*>’ (3.16)
S¥ S

j=1

where, for notational convenience, we have § = (S,,...,S,) and S* =
(S7,..., 8¥). Using the summation sign on both sides of (3.16) for i =
1,2,..., p, we obtain

p m
ZB(S S* [(/\TQ(Sli’Sn) + Zyi*jQij(Sl""'Sn))
— j=1
_()\TQi(S*!---lS:zk)"" Zy;kaij(S*l""S:))]
j=1
Dr(/\;in"' Zy?;'Qij) vls,_lsj‘>
j=1 S§. Sk

P
= Z ()\*D QzS* % + Zy DQ!]S* S*)’IS,, _IS,*> (317)

j=1
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(3.8), (3.2) and (3.6) yield

m

Zy”Q”(Sl,SZ,...,Sn) < L yEO(SE. 85,88, i=12,...,p.
j=1 j=1
(3.18)

(3.14), (3.15), and (3.18) along with A* >0, i=1,2,..., p, and B;: A" X
A" - RYB,>0,i=1,2,...,p yield

(5.5 [(A?Q,(sl,... AL n>)

—(ATQ,»(S*,...,S,’,") + Zyi”;Qij(S*,...,SZ‘) ]<O. (3.19)
j=1

(3.17) and (3.19) yield

P AR

14
<Z(/\*DQ15* S"+ Zylj r 1181 S*)'I,_IS;"><O’

which contradicts (3.5). Hence the result.

Remark 3.1. We observe that Theorem 3.2 can be strengthened if the
assumption (ii) (for i = 1,2,..., p each Q, and each Q;; is a real-valued
differentiable B;-vex functions on A" for j=1,2,..., m) in (VP) is re-
placed by the following:

(i) Foralli=1,2,...,peach
XQi(S1,8,,...8,) + Zy;kaij(Sl'SZ""'Sn)
j=1

is a differentiable B;-vex function on A", or

(i)
P m
Z)\T 0;(81,8,,...,8,) + Zy;;Qij(Sllszl---vSn)
i=1 j=1

is a differentiable B;-vex function on A".
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4. DUAL PROBLEM AND DUALITY THEOREMS

The above necessary and sufficient theorems (Theorems 3.1 and 3.2)
provide us the motivation for introducing the following vector maximiza-
tion problem as the Wolfe-type [13] dual problem (VD) for the primal
vector minimization problem (\VP).

(VD)

maximize (Ql(T v ) + gylelj(T oo 1)y Q(Ty, -0, T)
j=1

+ Zyp]Qp](T L "TI’L))
j=1

(4.1)
subject to
p m
Dr Z )‘i(Qi(T 1 Tn) + Z yijQij(T 1 Tn)) J Is,. - IT,* > 0,
i=1 =1 TE T

forall S, €A, r=1,2,....,n, (42)
/\,->O,ying(i=l,2,...,p,j=1,2,...,m),(Tl,TZ,...,Tn) € A",
(4.3)

Henceforth, we shall use, for notational convenience, the following nota-
tions for (VP) and (VD):

A=A, Ay 0 A) >0, T=(T,T,,...,T,) € A",
S=(85,5,,....8,) €A".

Also,

Yu Y2 o Yim
Y = Yoo Yo v 0 Yom e RpXm

Yor Y2 “ Yom



712 BECTOR AND SINGH
is the matrix of Lagrange multipliers for the constraints of (VP),

Vo= (Vs Vizr oo Yim)s  i=1,2,...,m,
F(8) = [0S, 8500 8,)0 . Qp(81, S5, 8] (4.4)
0.(S) = 081, 8,.....8,),  i=12....p (4.5)
Qii(8) = Qii(81. 85, 8,), i=12,...,p;j=12,...,m (4.6)

Ll-(T,yi) = 0«1, T,,....T,) + ZyijQij(TllTZ""'Tn)'
j=1

i=12,....,p (47)
L(T,Y) = [Ly(T,y"), Ly(T, y*),...., L,(T,y")]. (4.8)

Thus, we have the vector minimization problem as the primal problem
(VP),

(VP) V-minimize F(.S)
subject to
0,(8) <0 (i=12,...,p;j=12,...,m) (4.9)
SeA”

and the following vector maximization problem as the vector dual program
(VD):

(VD) V-maximize L(T,Y)

subject to

P
<D, YNLAT, Yy 7x, Iy — IT,*> >0, forallTeA" (4.10)
i=1

A>0,Y>0,YER\V™ ANeRP, yeR" TeA". (4.11)

THEOREM 4.1 (Weak Duality). Let S € A" be feasible to (VP) and
(A, T,Y) be feasible to (VD). Then F(S) « L(T,Y).

Proof. 1f possible let F(S) < L(T,Y). This implies

0/(S) < L(T.y"), i=1.2....pi+k
0, (8) <Ly (T,y").
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This along with (4.9) and (4.12) yields
0:(S) + Zyl’jQij(S)éLi(Tnyi): i=12,...,pi#+k
j=1
O,(S) + Zijij(S) <Lk(T,yi).
j=1

Since A; > 0 and B(S,T) >0 for all i =1,2,..., p, from the above we
have

AiBi(S'T)l(Qi(S) + i yijQij(S)) - (Qi(T) + i yijQij(T))]éoy

i=12,....pi+k

FQ
]Q

(4.12)

0.(5) + £ n0u5)] -2 + Ey0,r)

j=1

)\kBk(S,T)[

respectively. This leads to

_Z ABi(S, T)l(Qi(S) + i yijQij(S)) - (Qi(T) + i yijQij(T)

(4.12) along with the B-vexity assumption on functions Q; and Q,; for
i=12,...,pand j=1,2,...,m yields

P
<D, Y /\iLi(T, y")Ti* ,,,,, s Ig — IT,*> <0, for § € A"
i=1

being a primal feasible solution. This contradicts (4.10). Hence F(S) &
L(T,Y).

COROLLARY 4.1.  Let §* be a feasible solution of (VP) and let (\*, T*,Y*)
be a feasible solution of (VD) with F(S§*) = L(T*,Y*). Then S* and
(X*, $*Y™) are efficient solutions of (VP) and (VD), respectively.

COROLLARY 4.2. Let S be a feasible solution of (VP) and (A, T,Y) be a
feasible solution of (VD). Then there exists \* > 0, \* € R? such that

M=

1

P
NQ(S) = X AL(T.y").
1 i=1
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THEOREM 4.2 (Strong Duality). Suppose S* € A" satisfies H-1 and H-2
of Lemma 3.1 and is a properly efficient solution of (VP). Then there exist
* e RP,Y* € RP*™ X* > 0,Y* =2 0 such that (A\*, S*,Y*) is a properly
efficient solution of (VD) and the objective value of (VP) at S* is equal to the
objective value of (VD) at (X*, $*,Y*).

Proof.  Since S* is a properly efficient solution of (VP) and satisfies H-1
and H-2 of Lemma 3.1, by Theorem 3.1, there exist

A* € RPand U* € RP*™ 2* > 0,u* >0
such that

p m p
< > )\TDrQiST ,,,,, wgr T XX M?_:jDrQiij ,,,,, sioIg — I;r> > 0,

i=1 j=1i=1
VS, €A, r=1,2,...,n.
whQ(Sf. S5, 85) =0 (i=1,2,...,p;j=1,2,...,m)
Q,;(SF,85,....,8%) <0 (i=1,2,....,p;j=1,2,...,m)
X>0,uf 20 (i=1,2,...,p;j=12,...,m).
Since A¥ > 0, setting
—)\*ylj (i=12,...,p;j=1,2,...,m),

we obtain

u M 3
W Mﬁ
:<
b
IS

%
%
o~
N
—_
1\%
o

p
<Z /\*D QtS* ..... ;’,‘

i=1
VS, €A, r=12,...,n, (413)

XEYEQ(SE,SE,...,85) =0 (i=1,2,...,p;j=12,....,m)
(4.14)

Q,(S¥,8%,....85) <0  (i=12,....,p;j=1,2,...,m) (4.15)
NS>0, AyE >0 (i=1,2,...,pj=1.2,...,m). (4.16)
(4.7), (4.13), and (4.16) yield

<D 2 AL, (S y )S* ..... s:f’ls,_lsf>éo
i=1
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and

>0,y =0 (i=1,2,...,p;j=12,...,m).

This yields that (A*, S*, Y*) is a feasible solution to (VD). From (4.14) we
get

Zy;;Qij(S*) =0 foralli=1,2,...,p
j=1
Therefore,
Qi(S*) — Qi(S*) + .Zly;';Qij(S*) forall i =1, 2, e Py
=

that is,
F(S8*) = L(S*,Y*).

This implies that the objective value of (VP) at S* is equal to the
objective value of (VD) at (A*, $*,Y*). Using Corollary 4.1 we have that
(A*, $*, Y*) is an efficient solution of (VD). We next show that (A*, $*, Y*)
is a properly efficient solution of (VD). For doing so we assume that
(A*,§*,Y*) is not a properly efficient solution of (VD) and exhibit a
contradiction. If (A*, S*,Y*) is not a properly efficient solution of (VD),
then it is only improperly efficient. Therefore, to every sufficiently large
scalar M > 0, there is a solution (X, S,Y) feasible to (VD) such that for
some i, L (S, 5) > L,(8* y*) and

Li(8.5) = L(S* y*) > M| L, (8%, y**) = L,(8.5")]

forall M>0and all k=1,2,...,p such that L,(S* y**) > L,(§, 7).
Equivalently, L(S ") is infinitely better than L,(S*, y*') for some i,
whereas Lk(S* *k) is at most finitely better than LS, 5*) for any
k=1,2,..., p. Hence for any A > 0, A € R?,

Mw

AL(S*, y*), (4.17)

p ~
Y AL(S.F) >
i=1

1

i

but

'Zly;;Qij(S*) =0 foralli=1,2,...,p;
im
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therefore, by (4.17) we have for any A > 0, A € R?,

f NL(S,5) > f X0,(5%), (4.18)

Il
-
Il
-

but (4.18) contradicts Corollary 4.2, and therefore, (A*, $*,Y*) is a prop-
erly efficient solution of (VD).

Remark 4.1. We observe that Theorems 4.1 and 4.2 can be strength-
ened if assumption (ii) (for i =1,2,...,p each O, and each Q,; is a
real-valued differentiable B-vex function on A" for j =1,2,...,m) in
(VP) is replaced by the following:

(i) Forall i=1,2,...,p each L(T,y") is a differentiable B.-vex
function on all feasible solutions of (VP) and (VD), or

(i) ATL(T,Y) is a differentiable B-vex function on all feasible
solutions of (VP) and (VD).

We now prove the following Mangasarian-type converse duality theorem
[10] for (VP) and (VD).

THEOREM 4.3 (Strict Converse Theorem).  Suppose S* satisfies H-1 and
H-2 of Lemma 3.1, and is a properly efficient solution of (VP). Let
(X*,T*,Y*) be a properly efficient solution of (VD). If at least one of

Li=1,2,...,p, is strictly Bvex and/or at least one of Qij, with the
corresponding Yij > 0,i=12,....,p;, j=1,2,...,m, is strictly B-vex, then
S* = T%*; that is, T* is a properly efficient solution of (VP) and F(§*) =
L(T*,Y*).

Proof. We assume that S* # T* and exhibit a contradiction. By Theo-
rem 4.2, there exist

N>0,y520i=1,2,...,p;j=12,..,m,

such that (4.13)—(4.16) hold and (A*, S*,Y*) is a properly efficient solution
for (VD), and

F(8*) = L(S*,Y*)
= L(T*,Y*). (4.19)

This yields

L(S*,Y*) — L(T*,Y*) = 0. (4.20)
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From (4.16) and (4.20) we have

057 + ¥ v} y:;-Qi,(s*)) - (Q,-(T*) ) ysgij(T*)) -0,

j=1
i=1,2,...,p. (421)

Since A¥ > 0,i=1,2,..., p, and for all feasible (S, A, T,Y), B(S,T*) > 0,
i=1,2,...,p, (421 yields

_Z Af Bi(S*'T*)l(Qi(S*) + i y;Qi_f(S*))

_(Qi(T*) + g‘f J’?;‘Qij(T*))] =0. (4.22)

j=1

Now we are given the hypothesis that at least one of Q,,i = 1,2,..., p, is
strictly B-vex and/or at least one of Q,;, with the corresponding y;; > 0,
i=12,...,p;j=12,...,m, is strictly B,-vex. To be specific we assume
that Q, is strictly B,-vex. We can handle the strict B-vexity of other
functions exactly along the same lines. This, by Lemma 3.2 (ii), implies that
the function Q, + X7, y/:Q;; is strictly B-vex for i = k. Therefore, for
S* # T* we have

M~

A?B&S*,T*)HQZ-(S*) « £ 10,657

i=1

0,(T*) + i y;Qij(T*))]

p
> <Dr > NLA(T, Y ) s Isr — ITr*>. (4.23)
i=1

Using (4.10) in (4.23) we have

i )\jf‘Bi(S*,T*)l(Qi(S*) + i y?;»Qi,»(S*))

—(Q,(T*) + ¥ y50,(T%) ] >0, (424)
j=1

(4.24) contradicts (4.22). Hence S* = T*. Also from (4.19), F(S§*) =
L(S*, Y™*).
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Remark 4.2. We observe that Theorem 4.3 can be strengthened if
assumption (ii) (for i = 1,2,..., p each Q; and each Q,; is a real valued
differentiable B.-vex functions on A" for j =1,2,...,m) in (VP) is re-
placed by the following.

(i) Forall i=1,2,...,p each L(T,y") is a differentiable B-vex
function on all feasible solutions of (VP) and (VD), or

(i) AML(T,Y) is a differentiable B-vex function on all feasible
solutions of (VP) and (VD).

5. VECTOR-VALUED LAGRANGIAN AND VECTOR
SADDLE POINT

In this section we consider the vector-valued Lagrangian L: A" X
RP?*™ — R? given by

L(8.Y) = [Ly(S.31). Lo(8,2). - L (S y7)],

where LS, y"), as already defined, is
Li(S’yi)=Qi(S)+ ZyijQij(S)’ iel={12,...,p}
j=1

and R2*™ contains nonnegative elements.
Along the lines of Rodder [12], we define a vector saddle point (or
generalized saddle point) of L and study its relationship to (VP).

DEerINITION 5.1. A point (§*,Y*) € R2*™ is said to be a vector saddle
point of the vector-valued Lagrangian L if
L(S*,Y) 2 L(S*,Y*) forallY € R)*"™
and
L(S*,Y*) 2 L(S,Y*) forall § € 4"
V\{e r]low prove the following two theorems along the lines of Mangasar-
ian [10].

THEOREM 5.1.  Suppose S* € A" satisfies H-1 and H-2 of Lemma 3.1
and is a properly efficient solution of (MP). Then there exist A¥ >0, i € I,
and Y* € RP*™ such that (S*,Y*) is a vector saddle point of the vector-
valued Lagrangian L(T,Y).
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Proof. Since §* € A" satisfies H-1 and H-2 of Lemma 3.1 and is a
properly efficient solution of (VP), there exist A* >0, i €1, and Y*
R2*™ such that

p .
<D, S AL(S, Y¥) st s I — IS;_.F> >0,
i=1

for all (VP)-feasible S € A", (5.1)
VEQ(SF,S5,....85) =0  (i=12,....p;j=1,2,....,m) (52)
Q;(S7,85,....,8) <0 (i=1L12,...,p;j=12,...,m) (53)
AE>0,y520  (i=1,2,...,p;j=1,2,...,m). (5.4)
We first prove that
L(S*,Y*) # L(S,Y*) forall S € 4".

_ If possible let L(S*,Y*) > L(S,Y*) for some (VP)-feasible solution
S € A". This implies

Li(S* y*) = Ly(S,y¥) foralliel,i+k
and
Li(8*, y*) > L (8, y*).

This yields

N (Li(S,y*) = Li(S*,y*)) <0  for some (\VP)-feasible .

1

M

i=1

(5.5)

Using the above hypothesis along with Theorem 2.2, (5.5) in conjunction
with (5.2)—(5.4) gives

p . [
<D, X NLA(S vy ) sr s — Isf> <0, for some (VP)-feasible S,
i=1

(5.6)

but (5.6) contradicts (5.1). Thus,

L(S*,Y*) # L(S,Y™*) for all (\VP)-feasible S € A".
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To prove the other part of the vector saddle point inequality we have
Li(S*’y*i) - Li(S*’yi) =- ) yijQij(S*) > 0, el
j=1

Thus,
L(S*,Y) # L(S*,Y%) forall Y € R2*™

We shall now prove Theorem 5.2 under a somewhat restricted vector
minimization (RVP) model of the vector minimization problem (VP). We
consider the (RVP) model

(RVP) V-min[Q4(5), Q5(S), .-, Q,(S)]
subject to
H]-(S)go, j=12,...,m,
S eA,
where

(i) A" is the n-fold product of a o-algebra A4 of subsets of a given
set X,

(i) Q,fori=1,2,...,p,and H, for j =1,2,..., m, are real-valued
differentiable B;-vex functions defined on A", and

(iii) the symbol V-min stands for vector minimization.

We write the constraint set of (RVP) as
r={Seda" H(S)<0 j=1.2,...,m}.

Fori=1,2,..., p, we now introduce a differentiable mapping 7;: R* - R*
for which (7;)~* exists and 7, > 0 and T(0) = 0 such that 7-*(0) = 0 and
write

Qij(S) = T,(H](S))
and modify the set I' to obtain an equivalent constraint set I, as follows:
L, ={sedm 0,(8) =T,(H(S)) <0,
i=1,2,...,pj=12,..,m}

Constraint sets I' and T, are equivalent in the sense that § € A" isiin I' if
and only if it is in [,. We then have the modified vector minimization
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(MVP) of (RVP)
(MVP) vemin [0,(5), Qo(S), -+ 0y (5)],
where
()
L,={Seam 0,(8) =T(H(S)) =0,
i=1,2,...,pj=12,..,m}

(ii) A" is the n-fold product of a o-algebra A of subsets of a given
set X,

(i) Q,fori=1,2,...,p, and Q;fori=12...,pj=12..,m,
are real-valued differentiable B;-vex functions defined on A"

We see that (MVP) is of the same type as (VP). Therefore, a dual
problem for (MVP) will be of the same type as (VD). Also, we can easily
define a saddle point for (MVP) in a manner similar to Definition 5.1.
Furthermore, it is easy to see that (RVP) and (MVP) are equivalent in the
following sense:

(i) SeA"isin I if and only if it is in L,
(i) S T is an efficient (properly efficient) solution of (RVP) if and
only if it is an efficient (properly efficient) solution of (MVP).

THEOREM 5.2.  Let (S*,Y™*) be a vector saddle point of the vector-valued
Lagrangian L(S,Y) for (MVP); then S* is (RVP)-feasible,

m
Zl yiH(S*) =0  foratleastonei=1,2,...,p.
i

Furthermore S* is an efficient solution of (RVP).

Proof. (§*,Y*) is a vector saddle point of the vector-valued Lagrangian
L(S,Y) for (MVP) yields

L(S*Y) 2 L(S*,Y*) forall Y € RZ*™
and
L(S*Y*) 2 L(S,Y*) forall S € A",

We first consider L(S*,Y) % L(S*,Y*) for all Y € R?*™ This implies
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that for any Y € R?*™,
L(S* y") —L,(S*,y*) <0 forat least one i

Zl (yi; —¥5)0,;(8*) =0 for at least one i. (5.7)
im

Assume that (5.7) holds for i = k (say), where 1 < k < p. Then, in (5.7),
setting

yk=y* + e/, e/ =(0,...,0,1,0,...,0) € R",
with 1 being at the jth place, we get
ij(S*)SO forj=1,2,...,m.
Thus we have
T,(H/($%) <0 forj=1,2,....m.

This along with the assumption that 7.: R* — R*, (T,)"! exists, T, > 0 and
T710) =0, fori=1,2,...,p, gives

H(S8*)) <0 forj=1,2,....,m.
Thus, S* is (RVP)-feasible. Now
y?;-go,iel, and Qij(S*)go,j=l,2,...,m;

therefore,
)y y50;;(8*) £0, el
j=1
Setting Y = 0 in L(S*,Y) # L(S* Y*), we obtain,
- .Zl y50,;(8*%) <0, foratleastonei /.
i-
This along with

Zy;i;Qlj(S*) éoa iEI,
j=1
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gives

3

Y yi0Q,(8*) =0  foratleastonei € 1.
-1

Using the assumption that 7:: R* — R*, (T))"! exists, T, > 0 and 7; *(0) =
Ofori=1,2,...,p we have

3

Y. yiH(S*) =0,  foratleastonei e I.
-1

For any (RVP)-feasible S (hence for any (MVP)-feasible §) and for all
i €I, we have

Qi(S) - Qi(S*) = Li(S,y*i) - Li(S*vy*i) - i yi*jQij(S)
j=1

> L,(S,y*) — Li(S*, y*), (5.8)

But L(S*,Y*) % L(S,Y™*) for (RVP)-feasible S. Hence (5.8) implies that
there do not exist any (VP)-feasible S such that F(S) < F(S*). Hence S*
is efficient to (RVP).

6. SPECIAL CASES

In the present section we consider a vector-valued fractional program-
ming problem (VFP) involving n-set functions and relate it to a special
case of (VP).

F(S,,S,,...,S F(S,,S,,....,8,
(VFP) V-minimize (5.5, ) AL )
Gi(81, 85, n) Gp(Sl’SZ""'Sn)
subject to
H(S8,8,,...,5,) =0, j=12,....m
(8:,5,,...,8,) € A",
where

(i) A" is the n-fold product of a o-algebra A4 of subsets of a given
set X,

(i) F,G,fori=12,...,pand H, for j = 1,2,...,m, are real-val-
ued differentiable functions defined on A",
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(iii) fori=1,2,...,p, F, is a convex and nonnegative function, G, is
a concave and positive function, and whenever a G; is both convex and
concave the corresponding F,, i = 1,2,..., p, is not necessarily restricted
to be nonnegative,

(iv) forj=1,2,...,m, H; is a convex function.
From (VFP) we now obtain, along the lines of Bector [2], Bector et al.
[4], and Chandra et al. [6], an equivalent problem (EVFP). It may be
verified that the constraint set and the set of efficient (properly efficient)

points of (VFP) are equivalent, respectively, to the constraint set and the
set of efficient (properly efficient) points of (EVFP):

(EVFP)

Fy(S,,8,,....5,) F,(8,,8,5,...,S,)
Gy(81,82,.8,) " Gy(81, 85, 8,)

V-minimize (6.1)

subject to

(SISy,S)

JAF1 2 n . .

G <0 _112,..-,p; —1,2,..., 6
i(SlISSZ|---,A;n) (l ) ﬂl) ( 2)

(8,,8,,...,8,) A" (6.3)
Writing
S S S f E(Sl!SZ!""Sn) . 1 2
0(81,8,,...,8,) for G.(S1, S, 8" 1=1,2,...,p
in (6.1), and

H(S1,85,...,5,)
Gi(81, 85,8,

Q;;(8:1,8,,...,8,) for

i=1,2,...,p;j=12,....m

in (6.2), we see that (EVFP) reduces to (VP).
We now state the following Lemma 6.1, which can be proved easily.

LEMMA 6.1. Let F,G: A" — R* be differentiable functions and let Q =
F/G.
(i) G is concave and strictly positive.

(i) If F is convex and nonnegative (F need not be nonnegative if G is
both convex and concave), then Q is a B-vex function on A" with B(R, S) =
G(R)/G(S) > 0 for all R and S in A"
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Remark 6.1. In Lemma 6.1, if at least one of the functions F and G is
strictly convex /strictly concave, Q = F/G is a strictly B-vex function on
A"

We now introduce the dual program (DFP) to (VFP),

(DFP) V-maximize L(T,Y)
subject to
p .
D, Y NL(T, Y g oz, Iy —Ips )20,  forall T € 4"
i=1
A>0,y>0YERI*" NeRP,y  €R™, T € A",
where we assume that

0]

F(T) + ¥ H(T)

L(T,y") = J/G(T), i=1.2,....p

and

(i) if a function G; is not both convex and concave on A", then the
corresponding function

F(T) + X y;H(T) 20 forally; =0,
j=1

i=1,2,....,p.j=12,....mTeA"

In view of assumptions (i) and (ii) of (DFP); Lemma 6.1, Remarks 3.1, 4.1,
4.2, and 6.1; and the results of (RVP) and (MVP), the duality results
relating (VFP) and (DFP) are easily established.

7. CONCLUSION

In this paper we present necessary and sufficient optimality conditions
and a Wolfe-type [13] dual for a vector-valued primal problem in which
each of the objective functions and the constraint functions is an appropri-
ately restricted B-vex n-set functions. Weak, strong, and strictly converse
duality theorems are proved. The concept of a vector saddle point for a
vector-valued Lagrangian for n-set functions is introduced and its relation-
ship to the vector-valued primal problem is studied. Results for a certain
multiobjective fractional programming problem are shown to follow as a
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special case. By introducing the concept of ( p, B)-vex functions, the results
presented in this paper can be easily generated further.
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