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h i g h l i g h t s

• Multiswapped networks generalize OTIS networks and biswapped networks.
• We further investigate the topological properties of multiswapped networks.
• If G and H are Hamiltonian then so is the multiswapped networkMsw(H;G).
• Msw(H;G) can be Hamiltonian even when G and H are not.
• Core to our proofs is finding Hamiltonian cycles in heavily pruned tori.
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a b s t r a c t

OTIS networks are interconnection networks amenable to deployment as hybrid networks containing
both electronic and optical links. Deficiencies as regards symmetry led to the subsequent formulation
of biswapped networks which were later generalized to multiswapped networks so as to still enable
optoelectronic implementation (as it happens,multiswapped networks also generalize previously studied
hierarchical crossed cubes). Multiswapped networks of the form Msw(H;G) are known to possess
good (graph-theoretic) properties as regards their use as (optoelectronic) interconnection networks (in
distributed-memory multiprocessors) and in relation to those of the component networks G and H .
Combinatorially, they provide a hierarchical mechanism to define new networks from existing networks
(so that the properties of the new network can be controlled in terms of the constituent networks).
In this paper, we prove that if G and H are Hamiltonian networks then the multiswapped network
Msw(H;G) is also Hamiltonian. At the core of our proof is finding specially designed Hamiltonian cycles
in 2-dimensional and heavily pruned 3-dimensional tori, irrespective of the actual networks G and H we
happen to be working with. This lends credence to the role of tori as fundamental networks within the
study of interconnection networks.

© 2016 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Interconnection networks are used to interconnect the proces-
sors of a distributed-memory multiprocessor computer (such as a
Cray Jaguar or an IBM Blue Gene) as well as within networks-on-
chip, cluster computers and data centres (it is primarily the combi-
natorics related to the former usage that concerns us in this paper).
The stereotypical examples of interconnection networks are the
hypercubes althoughmany other networks have been so proposed
(for example, the two supercomputersmentioned above have their
processors connected in the formof a 3-dimensional torus). Thede-
sign of an interconnection network is complex with topology, flow
control, routing and traffic patterns all impacting upon its practical
usefulness (see, e.g., [7] for more details).
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There is a strong and established link between the practical be-
haviour of a real interconnection network and the graph-theoretic
properties of its abstraction as a graph. From a topological point
of view, it is desirable for an interconnection network (abstracted
here as an undirected graph) to possess numerous graph-theoretic
properties including: having a small diameter (to aidmessage rout-
ing), a low degree (so as to limit overheads related to communi-
cation) and a high connectivity (so that faults can be tolerated);
possessing embeddings of paths and cycles of various lengths (to
aid simulations and message routing); and being highly symmet-
ric (to assist with programming and analysis). There has been a
considerable amount of research undertaken as to the efficacy of
a whole range of graphs proposed as interconnection networks,
which includes, to mention just a few, n-stars, (n, k)-stars, k-ary
n-cubes, generalized and augmented hypercubes, pancake graphs
and recursive circulant graphs (see, e.g., [19,20,48]). The study of
interconnection networks is an inter-disciplinary mix of discrete
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mathematics, computer science and engineering; moreover, no
matter which application scenario one works in, there does not
exist an optimum interconnection network design and trade-offs
always have to be made.

Traditionally, communicationwithin interconnection networks
has been implemented electronically. However, optoelectronic in-
terconnection networks, where communication is undertaken via
a mix of electronic and optical links, have recently been pro-
posed and constructed. Multiswapped networks were introduced
in [38] as interconnection networks amenable to optoelectronic
implementation. They generalize biswapped networks, as defined
in [46], which in turn generalize OTIS networks, which originated
in [32,39,50–52] (we shall describe these networks and their suit-
ability in an optoelectronic framework in more detail in the next
section). As was demonstrated in [38], not only does a multi-
swapped network Msw(H;G), where G is the base graph and H is
the network graph, have numerous properties appropriate for its
use as an optoelectronic interconnection network but it alsomerits
investigation when viewed solely in graph-theoretic terms as the
provider of a generic mechanism to compose two other graphs, G
and H , to yield a third (in much the sameway as, say, the Cartesian
product or the Tensor product do); indeed, we show that existing
interconnection networks, namely hierarchical crossed cubes [21],
are instantiations of our multiswapped construction. Some of the
graph-theoretic properties of Msw(H;G) studied in [38] involve
the lengths of shortest paths joining any two nodes, the diame-
ter, the connectivity, the fault-diameter and node symmetry. All of
these properties are highly relevant with regard to the use of mul-
tiswapped networks as (optoelectronic) interconnection networks
but they also hint as to the naturalness of Msw(H;G) as a method
of graph composition.

In this paper, we continue with the development of multi-
swapped networks both as providing the topologies of potential
interconnection networks and also as a generic mechanism for
graph composition (we also highlight later howmultiswappednet-
works might be relevant to the design of data centre networks). In
particular, we prove that if G and H are Hamiltonian graphs then
so is Msw(H;G) but that Msw(H;G) might still be Hamiltonian
even if it is the case that G and H are not both Hamiltonian.
As we shall see, our proof relates the construction of Hamilto-
nian cycles in Msw(H;G) with the existence of specially con-
structed Hamiltonian cycles in 2-dimensional and heavily-pruned
3-dimensional tori (that is, with many links removed), no matter
which graphs are chosen as G and H . The study of interconnection
networks with faulty links is well established; however, ordinar-
ily these faults are randomly distributed and limited in number.
The emergence of the heavily-pruned tori in this paper is, in so
far as we are aware, the first time interconnection networks with
abundant faults and structured fault patterns have featured. The
study of Hamiltonicity, as well as various related concepts such
as Hamiltonian-connectedness, Hamiltonian-laceability and path
covers, in interconnection networks is a thriving research area (we
provide numerous examples of roles of Hamiltonicity as motiva-
tion).

This paper is structured as follows. In Section 2, we provide
some background as to OTIS networks, biswapped networks and
multiswapped networks; we also explain how a multiswapped
network is a generalization of the previously studied hierarchical
crossed cubes. In addition, we provide a reasonably detailed ac-
count of the role of Hamiltonicity in and its relevance to intercon-
nection networks. In Section 3, we prove our main results, and we
present our conclusions in Section 4. We reiterate that throughout
an interconnection network is equated with its abstraction as an
undirected graph. For standard graph-theoretic terminology, we
refer the reader to [9] and for the fundamental aspects of inter-
connection networks we refer the reader to [7,20,48]. In order to
emphasize the architectural origins of our graphs, we often refer
to graphs as networks (though we use the two terms interchange-
ably) and we always refer to vertices as nodes and (undirected)
edges as links.

2. Background and motivation

In this section, we describe the evolution of multiswapped
networks from their origins as OTIS networks and through their
emergence from biswapped networks. In addition, we provide
motivation for the study of Hamiltonicity within interconnec-
tion networks and their various implementations as, for ex-
ample, distributed-memory multiprocessors, networks-on-chips,
compute clusters and data centre networks.

2.1. Optoelectronic interconnection networks

Ordinarily, interconnection networks are implemented elec-
tronically and the ‘two-dimensional nature’ of this environment
can impose restrictions. Free-space optical interconnect technolo-
gies can offer several advantages over electronic implementations.
For example, optical signals can pass through one another with
little interference, and over a distance of greater than a few mil-
limetres optical connections out-performelectronic connections in
terms of power consumption, speed and crosstalk. However, opti-
cal connections are not a panacea for it can be difficult to route
messages and the additional hardware components can be costly
(the reader is referred to, e.g., [6,14,18,23,53] for further details on
the physical properties of optical connections).

2.1.1. OTIS networks
A popular model of optical communication is the Optical

Transpose Interconnection System (OTIS) (OTIS networks originated
within the optics community in [32] and within the computer
architecture community in [39] and, independently under the
name of swapped networks, in [50–52]). OTIS networks have a base
graph G, on n nodes, and consist of n disjoint copies of G. These
copies are labelled G1,G2, . . . ,Gn and the nodes of any copy are
v1, v2, . . . , vn. The links involved in any one of these copies of G
are intended to model (shorter) electronic connections whereas
additional links, where there is a link from node vi of copy Gj to
node vj of copy Gi, for every i, j ∈ {1, 2, . . . , n} with i ≠ j, are
intended to model the (longer) optical connections. The resulting
OTIS network is denoted by OTIS-G. Of course, an OTIS network
is dependent upon its base graph G, and there is an extensive
literature concerning the structural and algorithmic properties for
both specific base graphs and classes of base graphs (see, e.g., [4,5,
8,22,29–31,33–36,56] for a selection). In particular, it was proven
in [34] that if G is Hamiltonian then OTIS-G is Hamiltonian.

2.1.2. Biswapped networks
Wementioned in the previous section that symmetrywithin an

interconnection network is important. There is a precise definition
of what we mean by symmetry: an interconnection network is
node-symmetric if given any two distinct nodes u and v, there
is an automorphism of the interconnection network mapping
u to v (that is, a one-to-one map f whose domain and range
is the set of nodes and so that (x, y) is a link if, and only if,
(f (x), f (y)) is a link). Intuitively, when an interconnection network
is node-symmetric every node ‘looks exactly the same’ as every
other node. A stronger property than node-symmetry is when an
interconnection network is a Cayley graph (see, e.g., [20,48] for a
precise definition). This is a group-theoretic condition that yields
additional benefits in relation to, for example, routing and analysis.
Node-symmetry is an important property of an interconnection
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Fig. 1. Banks of lenslets used in OTIS and biswapped networks.

network: the same routing algorithm, for example, can be
deployed at each node; loads tend to be well-balanced; and in any
analysis of a property that is required to hold for every node, the
property need only be verified at one (randomly) chosen node (see,
e.g., [7,20,48] for more on aspects of symmetry).

One displeasing aspect of OTIS networks is that no matter
what the base graph G is, the corresponding OTIS network OTIS-
G cannot be a Cayley graph, or even a node-symmetric graph, as
an OTIS network is not regular (a regular graph is a graph where
every node has the same number of neighbours). In order to try
and surmount this deficiency, the biswapped network Bsw(G) was
defined in [45] very similarly to the OTIS network OTIS-G except
that instead of having n copies of the base graph G (where G has
n nodes), we have 2n copies G1

0,G
2
0, . . . ,G

n
0,G

1
1,G

2
1, . . . ,G

n
1 and

the ‘optical’ links join node vj in Gi
0 with node vi in Gj

1, where
i, j ∈ {1, 2, . . . , n}. Immediately we see that if G is regular then the
biswapped network Bsw(G) is regular and so there is some hope for
recapturing any symmetric properties of the base graph G; indeed,
ifG is a Cayley graph thenBsw(G) is. The reader is referred to [44,46,
47,55] for more detailed discussions on biswapped networks and
recent related research. In particular, it was proven in [44] that if
G is Hamiltonian then Bsw(G) is Hamiltonian (this latter result was
reported in [46] but not proven there nor subsequently).

The basic mechanism by which OTIS and biswapped networks
are implemented using free-space optical interconnections can be
visualized in Fig. 1, where two banks of lenslets focus light from a
node’s transmitter to another node’s receiver (see, e.g., [53] for a
good account of free-space optics).

2.1.3. Multiswapped networks
In [38], biswapped networks were generalized so as to obtain

multiswapped networks. This generalization arises from the simple
observation that if one ‘concatenates’ biswapped networks then
one can still obtain networks that can easily be laid out (in an
optoelectronic sense, just as OTIS and biswapped networks can)
but where these new networks have increased flexibility and
improved topological and algorithmic properties (that one might
do this was hinted at in [53] where it was stated that the OTIS
optical architecture ‘can be cascaded to accommodate successive
processing planes’). The new networks are not only parameterized
by a base graph G but also by a network graphH which determines
the ‘pattern of concatenation’; we denote the resulting network
by Msw(H;G). As such, a network Msw(H;G) is hierarchical. The
biswapped network Bsw(G), with base graph G, is the network
Msw(H;G) where H consists of a solitary link.

Our generalization of a biswapped network is defined as
follows.

Definition 1. Let H = (U, F) and G = (V , E) be graphs where
U and V both contain at least 2 nodes. The network Msw(H;G) is
known as themultiswapped network with network graph H and base
graph G and is defined as follows:

• Msw(H;G) has node set {(u, v, w) : u ∈ U, v, w ∈ V }

• Msw(H;G) has link set consisting of:
– {((u, v, w), (u, v, w′)) : u ∈ U, v, w, w′

∈ V , (w,w′) ∈ E},
the cluster links, and

– {((u, v, w), (u′, w, v)) : (u, u′) ∈ F , v, w ∈ V }, the swap
links.

We say that the nodes corresponding to some node u ∈ U are
the nodes of Msw(H;G) whose first component is u, and that a
node (u, v, w) of Msw(H;G) corresponding to u ∈ U has index
v ∈ V . In addition, the links induced by the nodes of Msw(H;G)
corresponding to some node u ∈ U are the cluster links.We denote
the copy ofG induced by the nodes corresponding to u and indexed
by v as Gv

u .
The nodes corresponding to the nodes u and u′ of U and the

link (u, u′) of F are depicted in two different ways in Fig. 2. In
both depictions, the nodes of V are enumerated as v1, v2, . . . , vn.
In the top depiction, the node (u, vi, vj), for example, lies on the
row corresponding to node u ∈ U , and within this row it is node vj
of the cluster indexed by vi. In the bottom depiction, as regards the
nodes corresponding to u′, there is one row for the nodes indexed
by each v ∈ V , and the node (u′, vi, vj), for example, lies on the
row indexed by node vi ∈ V .

Various properties of Msw(H;G) were proven in [38], in terms
of those of the graphs G andH . For example: the lengths of shortest
paths between specific pairs of nodes in G andH , and consequently
a formula for the diameter ∆(Msw(H;G)) of Msw(H;G) in terms
of the diameters ∆(G) and ∆(H) of G and H , were obtained; it
was proven that if G is a graph of connectivity κ ≥ 1 and H is a
graph of connectivity λ ≥ 1 where λ ≤ κ then Msw(H;G) has
connectivity at least κ +λ; upper bounds on the (κ +λ)-diameter
ofMsw(H;G) in terms of the κ-diameter ofG and theλ-diameter of
H were derived; a distributed routing algorithm for a distributed-
memory multiprocessor whose underlying topology is Msw(H;G)
was obtained; and it was proven that if G and H are Cayley graphs
thenMsw(H;G) need not be a Cayley graph, but when additionally
H is a bipartite Cayley graph, the graphMsw(H;G) is necessarily a
Cayley graph.

One immediate observation from the above results is that
specific properties of Msw(H;G) are strongly related to the same
properties of G and H . Not only are multiswapped networks
conducive for deployment in an optoelectronic context but their
modular nature means that they enable existing networks to be
‘joined together’ in a uniform way so that structural properties
of the component networks can be retained (or even enhanced).
In general, methodologies enabling the modular construction of
new interconnection networks from old are extremely important.
For example, modular constructions enable a much more effective
packaging (analysis) of component parts (packaging is, essentially,
the partitioning of nodes to the same or different boards or
racks and of links as intra-board or inter-rack, for example; see,
e.g., [7]). Multiswapped networks provide for much flexibility in
the consideration and analysis of packaging and are reflective of
the increasing move towards hierarchical constructions within
interconnection networks.
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Fig. 2. Some links in Msw(H;G).
2.1.4. Hierarchical crossed cubes
The construction of Msw(H;G) is closely related with the

construction of hierarchical crossed cubes HCC(k, n), originating
in [21] and further investigated in, e.g., [25,26]. The focus in [21] on
the definition of hierarchical crossed cubes is algebraic (the reader
is referred to [21] for a precise definition of crossed cubes as it is
not important to the content of this paper).

Definition 2. The hierarchical crossed cube HCC(k, n) has node-set
{0, 1}k+2n. Each node of HCC(k, n) is written as (u, v,w), where
u ∈ {0, 1}k and v,w ∈ {0, 1}n. The set of links of HCC(k, n) is
partitioned into 2 sets, Eint and Eext . The set Eint is referred to as the
set of internal links, whilst the set Eext is referred to as the set of
external links. In more detail,

Eint = {((u, v,w), (u, v,w′)) : (w,w′) is a
link of the crossed cube CQn}

and

Eext = {((u, v,w), (u′,w, v)) : (u,u′) is a
link of the hypercube Qk}.

Consequently, HCC(k, n) is identical to Msw(Qk; CQn), and it is in-
teresting to note that the same network has arisen independently
from two entirely different directions. However, HCC(k, n) is but
one instantiation of a multiswapped network where the network
graph is chosen to be Qk and the base graph to be CQn.

In [25], the Hamiltonicity of HCC(k, n) was investigated with
HCC(k, n) shown to beHamiltonian. Explicit algebraic properties of
hypercubes and crossed cubes were used to construct Hamiltonian
cycles in HCC(k, n) via generalized Gray codes in the form of
reflective edge-labelled sequences and cycle patterns. Of course,
the approach taken in [25] cannot be taken here as we consider
Msw(H;G) where H and G are arbitrary graphs. Also, if we apply
our upcoming constructions to Msw(Qk; CQn) then, interestingly,
we obtain a very different Hamiltonian cycle to that constructed
in [25].
2.2. Hamiltonicity in interconnection networks

Not only is Hamiltonicity a fundamental graph-theoretic con-
cept but it is also extremely relevant in the context of inter-
connection networks where the existence of Hamiltonian cycles
or paths can have a number of applications. The relevance of
Hamiltonicity runs across the spectrum of instantiations of in-
terconnection networks as distributed-memory multiprocessors,
networks-on-chips, compute clusters, and data centre networks.
Now that we have provided some background as regards multi-
swapped networks, it is apposite that we explain andmotivate the
study of Hamiltonicity within interconnection networks.

We illustrate below some of the roles Hamiltonian cycles and
paths have assumed within interconnection networks. We begin
with some general applications (that are well established within
the literature; see, e.g., [1,12,20,27]) before looking at some more
specific examples. In an all-to-all communication pattern, the
existence of a Hamiltonian cycle enables every node to send its
packets out so that in a one-port, synchronous systemwhat results
is an optimal algorithm (the algorithm works in an asynchronous
system too, although without an associated claim of optimality);
if there are edge-disjoint Hamiltonian cycles then these cycles
can be used to reduce the time complexity when the system
is multi-port; and regardless of whether the system is one-port
or multi-port, edge-disjoint Hamiltonian cycles enable improved
fault-tolerance. Cycles and paths are recognized as important data
structures as a large number of parallel algorithms in contexts such
as matrix–vector multiplication, Gaussian elimination, and bitonic
sorting have been developed within which these data structures
are commonplace; consequently, having a Hamiltonian cycle or
path in an interconnection network facilitates the implementation
of these algorithms (as arbitrarily long paths, up to the number of
nodes in the interconnection network, can be embeddedwithin the
cycle). In addition, many interconnection networks are recursively
structured; consequently, the existence of Hamiltonian cycles (in
the recursive sub-structures) also yields sets of disjoint cycles
(within which multiple paths can be embedded).
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Now for some more specific applications. An influential pa-
per was [28] where a deadlock-free path-based multicast worm-
hole routing algorithm for distributed-memory multiprocessors
was devised, with the freedom from deadlock stemming from the
existence and use of a Hamiltonian cycle embedded within the
interconnection network; this paper has inspired a range of re-
lated research (see, e.g., [43] and the references therein). In [49]
a method for diagnosing faults in distributed-memory multipro-
cessors (under the PMC model) was devised where a necessary
condition is that the interconnection network is Hamiltonian: the
nodes of a fault-free portion of a Hamiltonian cycle are used to di-
agnose the remaining nodes, so as to obtain a five-round adaptive
diagnosis algorithm. In wavelength-division-multiplexing optical
networks, the existence of Hamiltonian cycles in the underlying
network has been used so as to develop protection algorithms; that
is, algorithmswhich prolong the survival of paths in a faulty system
(see, e.g., [15] for a recent application). As regards a networks-on-
chip context, in [54] a bufferless routing algorithm for the Gaus-
sian macrochip (an optical chip-scale network) is developed that
ensures that deflected packets reach their destinations; the rout-
ing algorithm takes advantage of Hamiltonian cycles within the
underlying Gaussian network. Furthermore, the paper [28], men-
tioned above, has influenced not only deadlock-free routing in
distributed-memory multiprocessors but also fault-tolerant rout-
ing in three-dimensional networks-on-chips where Hamiltonian
paths are used to yield fault-tolerance [13]. In [37], the complex-
ity of the black hole search problem (a black hole in an agent-
based network is a location in which a resident process, such as
an unknowingly-installed virus, deletes visiting agents or incom-
ing data) in various interconnection networks is studied; this is
the first consideration of this problem in interconnection networks
and crucial to the agent-based algorithms that are developed is the
existence of Hamiltonian cycles in the underlying interconnection
networks. In [24], the existence of Hamiltonian cycles in specific
cubic symmetric graphs (from the Foster Census) is used to build
broadcast schedules that facilitate the solution of parallel molecu-
lar dynamics problems. In [11], Hamiltonian cycles are used to de-
sign privacy-preserving algorithms for distributed data mining in
networks. Finally, the existence of Hamiltonian cycles in intercon-
nection networks can be used implicitly; for example, in [2] the ex-
istence of a Hamiltonian cycle in various interconnection networks
was used to obtain bounds in a congestion analysis.

In summary, Hamiltonicity in interconnection networks is an
important consideration; moreover, as new networks, method-
ologies, and applications arise, it is likely that new applications
for Hamiltonicity will arise. For example, researchers have re-
cently turned their attention toHamiltonicity and associated struc-
tural concepts in certain data centre networks (see, e.g., [40–42])
and to the use of Hamiltonian cycles in grids and clouds (see,
e.g., [3]). Furthermore, the study of Hamiltonicity has given rise to
the study of many new concepts in interconnection networks such
as Hamiltonian-connectedness, Hamiltonian-laceability, and path
covers (see, e.g., [20]).

3. The composition of Hamiltonian graphs

In this section, we prove our main result; that is, we prove
that if G = (V , E) and H = (U, F) are Hamiltonian graphs
then Msw(H;G) is Hamiltonian too (we also show that whilst
this condition on G and H is sufficient, it is not necessary). Our
constructions differ depending upon the parity of the number of
nodes ofH andG. Throughoutweuse the fact that ifG′ is a subgraph
of G and H ′ is a subgraph of H then Msw(H ′

;G′) is a subgraph of
Msw(H;G).

We begin with the case when H has an even number of nodes.
Note that we regard a path in a graph as a sequence of nodes and
so it makes sense to concatenate paths to obtain longer paths (so
long as there is a link joining the last node of the first path to the
first node of the second).

Lemma 3. Let H and G be Hamiltonian graphs where H has an even
number of nodes. The network Msw(H;G) is Hamiltonian.

Proof. Enumerate the nodes of V as v1, v2, . . . , vn so that this
enumeration forms a Hamiltonian cycle in G, and define the path
ρ(vi, vj) to be a Hamiltonian sub-path of this Hamiltonian cycle
(and so j = i − 1 or j = i + 1, where we identify n + 1 with 1
and 0 with n). Denote the isomorphic copy of any path ρ(vi, vj) in
the copy Gv

u of G corresponding to the node u ∈ U and with index
v ∈ V by ρu

v (vi, vj). Suppose that (u, u′) ∈ F . Define the path σu,u′

in Msw(H;G) as follows:

ρu
v1

(vn, v1), ρ
u′

v1
(v1, v2), ρ

u
v2

(v1, v2),

ρu′

v2
(v2, v3), ρ

u
v3

(v2, v3), ρ
u′

v3
(v3, v4),

. . . , ρu
vn

(vn−1, vn), ρ
u′

vn
(vn, v1).

The path σu,u′ can be visualized (in bold) as in Fig. 3.
Now, let u1, u2, . . . , um be an enumeration of the nodes of

U so that they form a Hamiltonian cycle in H (recall that m
is even). The path σu1,u2 , σu3,u4 , . . . , σum−1,um is a Hamiltonian
path in Msw(H;G) from the node (u1, v1, vn) to the node
(um, vn, v1), and so yields a Hamiltonian cycle in Msw(H;G) (as
((um, vn, v1), (u1, v1, vn)) is a link of Msw(H;G)). �

Note that the construction in the proof of Lemma 3works when
H consists of a solitary link; that is, σu,u′ is a Hamiltonian path
of Msw(H;G) = Bsw(G) from (u, v1, vn) to (u′, vn, v1), and so
Msw(H;G) is Hamiltonian (as was shown in [44,45]).

Now, we turn to the more difficult case where H has an odd
number of nodes; but first we define the k × k torus Q k

2 as being
a k × k mesh with wrap-around links on every row and in every
column.

Theorem 4. Let H and G be Hamiltonian graphs where H has an
odd number of nodes and where G has an even number of nodes. The
network Msw(H;G) is Hamiltonian.

Proof. Let C and D be Hamiltonian cycles in G and H , respectively,
so that C = v1, v2, . . . , vn and D = u1, u2, . . . , um. We shall work
only in the spanning subgraphMsw(D; C) ofMsw(H;G). We begin
by giving an example of aHamiltonian cycle in a particular scenario
and then we show how this Hamiltonian cycle can be ‘flattened’ to
obtain a Hamiltonian cycle in a two-dimensional torus. We next
apply the reversal of this construction in the general case so as to
turn a specially constructed Hamiltonian cycle in an n × n torus
into a Hamiltonian cycle ofMsw(D; C).

Consider the subgraph X of Msw(D; C) corresponding to the
sub-path u1, u2, u3 of D (that is, induced by the nodes whose first
component is u1, u2 or u3). Let us start with a specific construction.
The subgraph X is depicted in Fig. 4(a) in the case when n = 4 (the
indices are shaded in grey and not all nodes are named). Moreover,
in this figure, there is depicted a cycleY (in bold) spanning all nodes
of X . Note how Fig. 4(a) is obtained by ‘re-drawing’ Fig. 2 so that the
nodes lie in the shape of a ‘heavily pruned’ 3-dimensional torus;
that is, with many of the links removed. The links that have been
removed are alternately the row links and the column links on each
‘horizontal plane’ of the 3-dimensional torus (this might be better
appreciated by viewing the forthcoming Fig. 6).

Consider the 16 nodes of X corresponding to the node u2 ∈ U .
We can also imagine these nodes as being the nodes of a 4×4 torus
Q 4
2 where the node on row i and in column j is the node (u2, vi, vj).

Note that in Q 4
2 all row and column links of Q 4

2 are present; so, Q 4
2

contains links that do not exist in X . In particular, all the row links
of Q 4

2 are also present in X but none of the column links is.
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Fig. 3. The path σu,u′ inMsw(H;G).
Fig. 4. The subgraph X of Msw(H;G) and the ‘flattened’ cycle Z in Q 4
2 .
Consider the cycle Y . Trace this cycle Y around the nodes of X
so as to obtain a cycle Z in Q 4

2 as follows:

• consider the nodes of Q 4
2 as being those nodes of X correspond-

ing to the node u2 ∈ U and whenever the cycle Y leaves the
‘plane’ ofQ 4

2 , introduce a column link in Z inQ 4
2 joining the node

where it left the plane to the node where it rejoined the plane.

So, for example, when Y leaves the plane of Q 4
2 at node

(u2, v1, v1) to follow the path (u3, v1, v1), (u3, v1, v2) before
rejoining the plane at node (u2, v2, v1), we introduce the link
((u2, v1, v1), (u2, v2, v1)) into Z . Note that all such paths in Y that
leave the plane of Q 4

2 at (u2, vi, vj) before rejoining it at (u2, v
′

i , vj)
are such that i and i′ differ by 1 or are 1 and 4 (and so correspond to
column links inQ 4

2 ). This construction can be visualized in Fig. 4(b),
where the dotted lines denote the new column links (which, of
course, only exist in Q 4

2 and not in Msw(D; C)). What results is a
Hamiltonian cycle Z of Q 4

2 , namely:

(v4, v1), (v3, v1), (v2, v1), (v1, v1), (v1, v2), (v4, v2),

(v3, v2), (v2, v2), (v2, v3), (v1, v3), (v4, v3),

(v3, v3), (v3, v4), (v2, v4), (v1, v4), (v4, v4)

(we have suppressed the first component u2 in the names of
all these nodes). Note that the column links used in Z (and
derived from Y ) correspond to either a link of some cluster of X
(corresponding to u3) or a path of length 3 in some cluster of X
(corresponding to u1).

We can extend this construction (or, more precisely, its
reversal) to the general case as we now describe. Whereas in our
example above we have constructed a Hamiltonian cycle Z in Q 4

2
from our spanning cycle Y in X , we can equally well start with a
Hamiltonian cycle in Q 4

2 , with certain properties (to be defined),
and use this cycle to obtain a spanning cycle Y of X . For the
moment, we continue to work with our sub-path u1, u2, u3 of D.
However, suppose that Q n

2 is an n × n torus whose node set is
the set {(u2, vi, vj) : i, j = 1, 2, . . . , n} and where there is a link
((u2, vi, vj), (u2, vi′ , vj′)) if either: i = i′ and (j = j′ + 1 or (j = 1
and j′ = n)): or j = j′ and (i = i′ + 1 or (i = 1 and i′ = n)). In what
follows, we suppress the first component u2 when we denote such
nodes. Suppose that we can find a Hamiltonian cycle Z in Q n

2 with
the following property:

• the intersection I of any set of n column links of Q n
2 (lying in

the same column) with the links of Z results in a set of n
2 − 1

mutually node-disjoint paths all but one of which is a link so
that the remaining path has length 3.

Such a Hamiltonian cycle Z for the torus Q 8
2 is depicted in Fig. 5(a)

where, if one looks at the first column, for example, the intersection
set I consists of the links ((v1, v1), (v2, v1)) and ((v3, v1), (v4, v1))

together with the path ((v5, v1), (v6, v1), (v7, v1)) (the cycle Z is
given by the bold black and grey links in Fig. 5(a)).

Colour the n
2 − 2 isolated links of all such intersection sets I

(that is, all paths in I consisting of a solitary link) black and also
colour the twonon-incident links of the path of length 3 black,with
the internal link of the path of length 3 coloured grey (as is done
in Fig. 5(a)). Fix some column of Q n

2 . Note that when the nodes of
this column are regarded as nodes in X , there are links from every
node to the nodes of a cluster inMsw(D; C) corresponding to node
u1 ∈ U and also to the nodes of a cluster corresponding to node
u3 ∈ U (these links are the vertical links in Fig. 4(a)). For each
column: replace every black link by a path of length 3 through a
link of the cluster corresponding to node u3 ∈ U; and replace the
grey link by a path of length n + 1 through all nodes of the cluster
corresponding to node u1 ∈ U (this corresponds to a reversal of
the ‘flattening’ of Y in Fig. 4(a) to get Z in Fig. 4(b)). Because of the
specific property required of Z , this gives us a cycle spanning all
the nodes of X .

What is more, if our (Hamiltonian) path D is u1, u2, u3, . . . , um
with m ≥ 5 odd then we can extend the cycle spanning X
constructed above by removing every column link involving nodes
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Fig. 5. A cycle in Q 8
2 and replacing links of Q 8

2 with paths.
Fig. 6. A Hamiltonian path whenm and n are odd.

corresponding to u3, such as the link ((u3, vi, vj), (u3, vi, vj+1)),
and replacing it with the path

(u3, vi, vj), (u4, vj, vi), . . . , (um−1, vj, vi),

(um, vi, vj), (um, vi, vj+1), (um−1, vj+1, vi),

. . . , (u4, vj+1, vi), (u3, vi, vj+1).

The construction can be visualized in Fig. 5(b) for the torus Q 8
2

(the white nodes are the nodes corresponding to u2 and not all
nodes and links are depicted). What results is a Hamiltonian cycle
ofMsw(H;G).

It is important to note that if our (Hamiltonian) path D is
u1, u2, u3, . . . , um, with m ≥ 4 even, then our construction
does not work: for example, starting from (u2, v3, v1), there is no
‘vertical’ path ‘up’ to (um, v1, v3) and on to (um, v1, v4) and ‘down’
to (u2, v4, v1). This is why we require the number of nodes in H to
be odd.

All that remains is to demonstrate that such aHamiltonian cycle
Z , with the required properties, exists inQ n

2 irrespective of n (recall
that n is always even). Construct Z as follows (with reference to
Fig. 5(a)).
• Build the path (vn−j+1, vj), (vn−j, vj), (vn−j−1, vj), (vn−j−2,
vj) in each column j for which j ≠ n − 1 is odd, and in column
n − 1 build the path (v2, vn−1), (v1, vn−1), (vn, vn−1), (vn−1,
vn−1).

• In each column j for which j ∉ {2, n} is even, build the path
(vn−j+3, vj), (vn−j+2, vj), (vn−j+1, vj), (vn−j, vj); in column 2,
build the path (v1, v2), (vn, v2), (vn−1, v2), (vn−2, v2); and in
column n, build the path (v3, vn), (v2, vn), (v1, vn), (vn, vn).

• In all columns, include a maximal set of mutually non-incident
links so that all links are also non-incident with the path of
length 3 in that column as built above. So, for example, in
column 1 we include the links ((v1, v1), (v2, v1)), ((v3, v1),
(v4, v1)), . . . , ((vn−5, v1), (vn−4, v1)).

• If j ≠ n − 1 is odd then include the link ((vi, vj), (vi, vj+1)),
for every i ∉ {n − j + 1, n − j, n − j − 1}, and include the link
((vi, vn−1), (vi, vn)), for every i ∉ {2, 1, n}.

• If j ≠ n is even then include the link ((vn−j, vj), (vn−j, vj+1)),
and also include the link ((vn, vn), (vn, v1)).

It is not difficult to verify that the links of Z form a Hamiltonian
cycle in Q n

2 so that the intersection of the set of links of Z with
the set of links in some column results in a mutually node-disjoint
collection of n

2 − 1 paths all but one of which is a link so that the
remaining path has length 3. The result follows. �

In fact, the proof of Theorem 4 yields the following slightly
stronger result.

Corollary 5. Let H be a graph containing a Hamiltonian path and
let G be a Hamiltonian graph where H has an odd number of nodes
and where G has an even number of nodes. The network Msw(H;G)
is Hamiltonian.

Of course, Corollary 5 shows that there exist graphs H of
arbitrary size for which Msw(H;G) is Hamiltonian even though H
is not.

We now deal with the case where both H and G have an odd
number of nodes.

Theorem 6. Let H and G be Hamiltonian graphs where both H and G
have an oddnumber of nodes. The networkMsw(H;G) is Hamiltonian.

Proof. Let C and D be Hamiltonian cycles in G and H , respectively,
so that C = v1, v2, . . . , vn and D = u1, u2, . . . , um, with both m
and n odd.We shallwork only in the spanning subgraphMsw(D; C)
ofMsw(H;G).
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We begin with an observation. Consider the m × n × n
mesh M(m, n, n) where the first component denotes the ‘level’,
the second the ‘row’ and the third the ‘column’. Thus, viewed
3-dimensionally, M(m, n, n) consists of m levels of n × n two-
dimensional meshes with ‘vertical’ links joining corresponding
nodes on adjacent levels. We suppose that the ‘bottom’ level is
level 1 and the ‘top’ level is level m. Amend M(m, n, n) so that
there are wrap-around links for each row and each column of each
level (there are no wrap-around links from the top level to the
bottom level), and then remove all row (resp. column) links from
all odd-numbered (resp. even-numbered) levels. Denote the re-
sulting graph by M̃(m, n, n). Our observation is that if we ignore
links joining nodes of Msw(D; C) corresponding to u1 ∈ U and
nodes corresponding to um ∈ U then the remaining subgraph of
Msw(D; C) is the graph M̃(m, n, n). In particular, M̃(m, n, n) is a
spanning subgraph ofMsw(H;G). The graph M̃(7, 5, 5) is depicted
in Fig. 6 where not all of the (row and column) wrap-around links
are shown and where we have added some additional (dotted)
links (from Msw(H;G)) that we shall return to later (for the mo-
ment, ignore the fact that some links are bold and some are not,
and ignore the dotted links). This observation assists in visualizing
the following construction.

There is an alternate view of M̃(m, n, n). We can think of it
as n disjoint copies of an m × n ‘mesh’, where there are m rows
and n columns, so that there are (wrap-around) row links on the
odd-numbered rows but no row links on the even-numbered rows
(in Msw(D; C), the ith m × n mesh is induced by the nodes of
{(uj, vi, vk) : 1 ≤ j ≤ m, 1 ≤ k ≤ n}). With reference to
Fig. 6, the first of these five 7 × 5 meshes is that sub-graph in the
‘vertical’ plane containing the nodes (u1, v1, v3) and (u7, v1, v4)
(for example), the second is that containing the nodes (u1, v2, v4)
and (u7, v2, v5), and so on. We shall construct, in each of these
meshes, a spanning path so that we can join these paths together,
using links of Msw(D; C) joining nodes corresponding to um ∈ U
and nodes corresponding to u1 ∈ U (dotted links, as in Fig. 6),
so as to obtain a Hamiltonian cycle in Msw(D; C). In Fig. 6, note
how the bold spanning paths of the meshes are joined by dotted
links to yield a Hamiltonian path inMsw(D; C) from (u1, v1, v3) to
(u7, v3, v1), and that there is a link ((u7, v3, v1), (u1, v1, v3)) (not
shown).

We require the following simple result. If a = (i, j) ∈

{1, 2, . . . , n}2 then define a+1 = (i, j+1), where n+1 is equated
with 1 (as we assume in the claim) and define ã = (j, i). A simple
proof by induction (on i) suffices to prove the claim.

Claim 7. Let n = 2p + 1 ≥ 3 be odd. Define the sequence
a1, b1, a2, b2, . . . , an, bn, where each ai and bi is an element of
{(j, k) : 1 ≤ j, k ≤ n}, as follows:

• a1 = (1, p + 1);
• for every i ∈ {1, 2, . . . , n}, bi = ai + 1;
• for every i ∈ {2, 3, . . . , n}, ai = b̃i−1.

For every i ∈ {1, 2, . . . , n}, if i is odd then ai = ( i+1
2 , p +

i+1
2 ), and

if i is even then ai = (p + 1 +
i
2 ,

i
2 ). In particular, a1 = b̃n.

Consider Claim 7 when n = 5. We obtain the sequence

(1, 3),(1, 4),(4, 1),(4, 2),(2, 4),(2, 5),(5, 2),(5, 3),(3, 5),(3, 1)

with the ai’s and bi’s defined accordingly.
For some pair a = (i, j) ∈ {1, 2, . . . , n}2, we write (u, va) to

denote the node (u, vi, vj). Note that there is a link joining (u, va)
and (u, va+1) and if (u, u′) is a link of H then there is a link join-
ing (u, va) and (u′, vã). In Fig. 6, note how there is a spanning path
of: the first mesh from (u1, va1) to (u7, vb1); the fourth mesh from
(u1, va2) to (u7, vb2); the second mesh from (u1, va3) to (u7, vb3);
and so on. Note also that there are links ((u7, vb1), (u1, va2)),
((u7, vb2), (u1, va3)), and so on.

In general, if a1, b1, a2, b2, . . . , an, bn is the sequence as in the
statement of Claim 7 then let f (i) be the first component of ai and bi
(f is well-defined). In particular, f is a permutation of {1, 2, . . . , n}.
For every i ∈ {1, 2, . . . , n}, in the mesh induced by the nodes
whose second component is f (i), there is a spanning path from
node (u1, vai) to node (um, vbi) (this spanning path is obtained by
going up and down the columns and across the rows as depicted
in Fig. 6). Moreover, for every i ∈ {1, 2, . . . , n − 1}, there is a link
((um, vbi), (u1, vai+1)), as well as a link ((um, vbn), (u1, va1)). Con-
sequently, we obtain a Hamiltonian cycle in Msw(D; C) and so in
Msw(H;G). �

The following is immediate from Lemma 3 and Theorems 4 and
6.

Corollary 8. If H andGare bothHamiltonian graphs thenMsw(H;G)
is a Hamiltonian network.

Note that the fact that Msw(H;G) can be Hamiltonian
when both G and H are not can be viewed positively, with
the multiswapped construction enhancing properties of the
component networks.

4. Conclusion

In this paper, we have demonstrated that multiswapped
networks provide a mechanism for graph composition, as well
as further demonstrating the efficacy of multiswapped networks
as interconnection networks for parallel computing (and not
just in an optoelectronic environment). Our proofs also reinforce
the fundamental role of low-dimensional tori in interconnection
network design.

There are numerous directions for further research, motivated
by the role of multiswapped networks as interconnection net-
works. For example, from a structural perspective, it would be in-
teresting to consider the embedding of various paths and cycles
within multiswapped networks and also the tolerance of multi-
swapped networks to faults (be these node or link faults), as well
as more refined Hamiltonicity properties such as Hamiltonian-
connectedness; and from an algorithmic perspective, it would be
interesting to develop message-routing and broadcasting proto-
cols in the situations where messages need to be simultaneously
routed from one node to a collection of nodes and from a collec-
tion of nodes to another collection of nodes (the fact that mul-
tiswapped networks are designed to be used in optoelectronic
environments could mean that any performance analysis might
have to be with respect to specific switching techniques). In short,
it would be useful to generalize results on hierarchical crossed
cubes to multiswapped networks (we note that previously estab-
lished results on the connectivity, symmetry and Hamiltonicity of
hierarchical crossed cubes from [21,25,26] actually follow from
general results here and in [38]).

It is worthwhile mentioning existing research on the Hamil-
tonicity of Cartesian products of graphs. The Cartesian product
of two Hamiltonian graphs is clearly Hamiltonian (the Cartesian
product of two cycles, a 2-dimensional torus, is Hamiltonian).
Hence, any 3-dimensional torus is clearly Hamiltonian. We reduce
the problem of determining the Hamiltonicity ofMsw(H;G) (with
G and H Hamiltonian) to determining the Hamiltonicity of a sub-
graph of a 3-dimensional torus where this subgraph is missing
many links of the 3-dimensional torus; as we have seen, this sit-
uation is much more complex. However, there has been quite a bit
of work on necessary and sufficient conditions for the Hamiltonic-
ity of the Cartesian product of two (not necessarily Hamiltonian)
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graphs (see, e.g., [10]). Obtaining necessary and sufficient condi-
tions for the Hamiltonicity of Msw(H;G) in terms of properties of
G and H is worthy of further study (and [10] might be a good place
to start).

Finally, the design of data centre networks (DCNs) is becoming
increasingly important as the scale of these networks expands
rapidly (someDCNs consist of hundreds of thousands of processors
and have footprints of thousands of square metres) so that
physically laying out these DCNs is a complex process. Recently-
proposedDCNs (such as DCell, BCube and FiConn; see, e.g., [16]) are
recursively definedwith clusters being recursively interconnected.
Multiswapped networks have much potential as blueprints for the
design of DCNs: their cluster links will correspond to the links
within clusters; and their swap links will correspond to longer
inter-cluster links. Of course, it will be important to choose the
base graph and the network graph carefully but the theory of
multiswapped networks will allow us to better understand the
properties of the resulting DCNs. Multiswapped networks also
have potential as regards the design of DCNs such as the very
recently-proposed DCN FireFly [17] where wireless or optical
inter-rack links are added to a DCN. It should be clear as to how
the swap links of a multiswapped network can be used to model
and design DCNs such as FireFly.
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