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1. INTRODUCTION 

Combinatorial properties of vector spaces over finite fields have been 
extensively investigated (see Goldman and Rota [ 1, 21, Knuth [3], Milne [4], 
Calabi and Wilf [S], etc.). In this paper we will obtain a number of results 
by a unified method. The method, as used in [5], is the observation that the 
canonical invariant of a vector subspace over a finite field is a matrix over 
the field, in reduced row echelon form (rref), whose rows span the subspace. 
If two such matrices differ in even a single entry then they represent different 
vector subspaces. 

Combinatorially this means that to count subspaces we just count 
matrices in rref. Here are the results we obtain in this way: 

(a) a “one-line” pictorial proof of an elegant description, due to Polya 
[6], of the coefficients of the Gaussian polynomials in terms of areas of 
certain lattice walks (Section 2, below). 

(b) a bijective proof of a three term recurrence relation satisfied by the 
“Galois coefficients” that was found by Goldman and Rota [ 1 ] by formal 
methods. 

(c) an evaluation of the alternating sum of the Gaussian coefficients. 
First recall that a k x n matrix over a field of q elements is in rref if in 

each row i = 1 ,..., k the first nonzero entry is a 1, the index of the column in 
which the 1 occurs (“pivotal column”) strictly increases with i, and the k 
pivotal columns are, in order, the columns of the k x k identity matrix. 
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Since we will never need to do field arithmetic, we will assume that the 
entries of the marix are from the set Q = (0, l,..., q - 1 } of “letters,” and q 
need not be a prime power. The Gaussian coefficient 

n [ 1 (q” - l)(q”-’ - 1) . . . (q”-k+’ _ 1) 
k ‘,= (qk - 1)(qk-’ - 1) *.* (q - 1) 

counts the k x n matrices in rref over Q (see below). The bijections that we 
will produce will be mappings between certain sets of matrices over Q in rref. 

2. P~LYA'S THEOREM ON LATTICE WALKS 

Let p(n, k, r) be the coefficients in the expansion 

n [ 1 = x p(n, k, r) qr. 
k, r 

Then we have 

(2) 

THEOREM l(Polya, 1969). p(n, k, r) is the number of walks on lattice 
points in the first quadrant that begin at (O,k), move at each stage either a 
unit to the right or down, end at (n - k, 0), and have “area” r, i.e., r unit 
cells lie between the walk and the lines y = k and x = n - k. 

The one-line proof that we promised is the one jagged line in Fig. 1. There 
we show a given k x n matrix in rref, in which the k pivotal columns are to 
be ignored, leaving a k x (n - k) array. The jagged line starts at the top left 
corner of the matrix, exactly encloses the entries that are allowed to be 
different from 0 or 1, and ends at the lower right corner. 

If the area above the jagged line is r, then each of those r entries might 
hold any of the q elements of Q, and so there are exactly q’ matrices over Q 
in rref that yield the same walk. Hence the number of k X n matrices over Q 
that are in rref is given by the polynomial on the right hand side of (2). Since 

Lo 0 0 0 0 0 0 0 I tx:x, 
FIGURE 1 
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this number equals the number of k dimensional vector subspaces of n-space 
over GF(q), Eq. (2) holds when q is a prime power, and so, since both sides 
are polynomials, it holds identically in q. This proof is similar in spirit to the 
one in [3], though it is a bit more general in that it gives information even 
when q is not a prime power. 

3. BWECTIVE MAPPINGS 

Let RR(n, k) (0 Q k < n) be the set of k x n matrices over Q in rref, let 
RR(n) be the union lJk RR(n, k), and finally let G, = IRR(n)l. We will now 
give a bijective proof of the following result of [ 11. 

THEOREM 2. The Galois numbers G, satisfy the recurrence 

G n+~=2G,+W’- l>G,-, 

(n > 0; G-I = 0; G, = 1). (3) 

(Of course, when q is a prime power, (3) is a recurrence for the number of 
subspaces of n-space.) 

For the proof, we define three injection mappings: 

a,: RR@, k)-t RR(n + 1, k), 

&:RR(n,k)+RR(n+ l,k+ l), 

where 

yn: RR@ - 1, k) x Qn --, RR(n f 1, k + l), 

a,(w) has a first column of zeros, followed by the columns of W, 
/3,(w) borders W with a new last row and last column, all zeros except 

a 1 in the last row and last column, 
y,( W, u) borders W with a new first column, a new first row, and a new 

last column. The new leading element is 1, below it are all zeros, and to the 
right of it zeros are placed above the pivotal columns of W. The remaining n 
places, in the first row and last column, are filled with the entries of u, in 
order. 

LEMMA 1. The images of the three maps 

a n, P,IW(n) - a,-,RW - l>>T and Y, 

are disjoint subsets of RR(n + 1). 

Proof. The matrices in Im(a,) have a first column of zeros. The matrices 
in RR(n) - a,-,RR(n - 1) have as first column a pivotal column (= column 
1 of the identity matrix), and their images under /I,, have the same property. 
The matrices in Im(r,) also have a pivotal column for a first column. The 
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last column of a matrix of the image of RR(n) - a,- i RR(n - 1) under p, is 
also a pivotal column (= the last column of the identity matrix), while the 
last pivot column of a matrix in Im(r,) occurs before the last column, 
completing the proof of the lemma. 

LEMMA 2. Every matrix in RR(n + 1) is either in the image of a,, , of 
&W(n) - a,-,RR(n - I)), or of yn. 

Proof Let FP (resp. LP) be the proposition that the first (resp. last) 
column of the matrix is pivotal. The three cases in the statement of the 
lemma are respectively, -FP, FP A LP, FP A (wLP). 

Proof of Theorem 2. Since the mappings are injective and the three 
images partition RR(n + l), we have 

G n+l =IRR(n+ ll=la,W4 +lP,(RR(n)-a,-,RR(n-1))l 

+ l~n(RR(n - 1) x Q'7 

= (RR(n)1 + [RR(n) - aneIRR(n - I)1 + lRR(n - 1) X Q”l 

= G, + (G, - G,- 1) + q”G,-, 

=2G,+(q”- l)G,-,. 

Remark 1. A slight modification of the argument would have produced a 
bijection between RR(n + 1) U RR(n - 1) and 

RR(n) i, RR(n) ;I RR@ - 1) x Q” 

giving an even “purer” proof of (3). The above proof was chosen, however, 
because it more clearly reveals the recursive structure of RR(n). 

Remark 2. The argument actually proves more, namely, it is a bijective 
proof of the recurrence 

from which (3) follows by summation on k. 
Finally, suppose we define 

FJx)=x ; xk. 
k I I 4 

Then (4) gives 

F,+,(x)=U +x>F,(x)+(q”- l)xF,-,(x) 

(n>O; F-,=0; F,= 1). 

(5) 

(6) 
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If we now put x = -1 we obtain immediately Gauss’ evaluation of the alter- 
nating sum 

=(I-q”-‘)(1-q”-+. (l-q) n even 
Q 

=o n odd. 
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