Borel-fixed ideals and reduction number ${ }^{\text {* }}$

Lê Tuân Hoa and Ngô Viêt Trung*
Institute of Mathematics, Box 631, Bò Hô, 10000 Hanoi, Viet Nam
Received 8 October 2002
Communicated by Craig Huneke

Abstract

The aim of this paper is to study the relationship between the reduction number and Borel-fixed ideals in all characteristics. Especially it is shown that $r(R / I) \leqslant r\left(R / I^{\text {lex }}\right)$, where $I^{\text {lex }}$ denotes the unique lex-segment ideal whose Hilbert function is equal to that of I. This solves a recent question by Conca.

© 2003 Elsevier Inc. All rights reserved.
Keywords: Reduction number; Borel-fixed ideal; Hilbert function

Introduction

Let A be a standard graded algebra over an infinite field k. An ideal $\mathfrak{q}=\left(z_{1}, \ldots, z_{s}\right)$, where z_{1}, \ldots, z_{s} are linear forms of A, is called an s-reduction of A if $\mathfrak{q}_{t}=A_{t}$ for t large enough (cf. [10]). The reduction number of A with respect to \mathfrak{q}, written as $r_{\mathfrak{q}}(A)$, is the minimum number r such that $\mathfrak{q}_{r+1}=A_{r+1}$. The s-reduction number of A is defined as

$$
r_{s}(A):=\min \left\{r_{\mathfrak{q}}(A) \mid \mathfrak{q}=\left(z_{1}, \ldots, z_{s}\right) \text { is a reduction of } A\right\} .
$$

Let $d=\operatorname{dim} A$. It is well-known that a reduction \mathfrak{q} of A is minimal with respect to inclusion if and only if \mathfrak{q} can be generated by d elements. In this case, $k\left[z_{1}, \ldots, z_{d}\right] \hookrightarrow A$ is a Noether normalization of A and the reduction number $r_{\mathfrak{q}}(A)$ is the maximum degree of the generators of A as a graded $k\left[z_{1}, \ldots, z_{d}\right]$-module [16]. For short, we set $r(A)=r_{d}(A)$. The reduction number $r(A)$ can be used as a measure for the complexity of A. For instance,

[^0]we can relate $r(A)$ to other important invariants of A such that the degree, the arithmetic degree and the Castelnuovo-Mumford regularity (see [13,16,17]).

Let I be an arbitrary homogeneous ideal in a polynomial ring $R=k\left[x_{1}, \ldots, x_{n}\right]$. It is shown recently in [5] and [15] (see also [3]) that $r(R / I) \leqslant r(R / \operatorname{in}(I))$, where in(I) denotes the initial ideal of I with respect to a given term order. In particular, we have $r(R / I)=r(R / \operatorname{gin}(I))$, where $\operatorname{gin}(I)$ denotes the generic initial ideal of I with respect to the reverse lexicographic term order [14]. Since generic initial ideals are Borel-fixed (see the definition in Section 1), we may restrict the study on the reduction number to that of Borel-fixed ideals. If $\operatorname{char}(k)=0$, Borel-fixed ideals are characterized by the so-called strong stability which gives information on their monomials [1]. Similar characterizations can be established for the positive characteristic cases [11]. But these characterizations are not good enough for certain problems. For instance, Conca [5] has raised the question whether $r(R / I) \leqslant r\left(R / I^{\text {lex }}\right)$, where $I^{\text {lex }}$ denotes the unique lex-segment ideal whose Hilbert function is equal to that of I. He solved this question for $\operatorname{char}(k)=0$ by using the strong stability, but his proof does not work for the positive characteristic cases.

The aim of this paper is to study the relationship between the s-reduction number and Borel-fixed ideals in all characteristics. By definition, Borel-fixed ideals are closed under certain specializations which is similar to the strong stability. Using this property we show that the reduction numbers of s-reductions of the quotient ring of a Borel-fixed ideal are attained by s-reductions generated by variables (Theorem 1.2). This gives a practical way to compute the s-reduction number. We will also estimate the number of monomials which can be specialized to a given monomial in the above sense (Theorem 1.7). As a consequence, we obtain a combinatorial version of the well-known Eakin-Sathaye's theorem which estimates the s-reduction number by means of the Hilbert function (Corollary 1.9 and Theorem 2.1). Furthermore, we show that the bound of Eakin-Sathaye's theorem is attained by the s-reduction number when I is a lex-segment monomial ideal (Theorem 2.4). These results help solve Conca's question for all characteristics in a more general setting, namely, that $r_{s}(R / I) \leqslant r_{s}\left(R / I^{\text {lex }}\right)$. Finally, since $r\left(R / I^{\text {lex }}\right)$ is extremal in the class of ideals with a given Hilbert function, we will estimate $r\left(R / I^{\text {lex }}\right)$ in terms of some standard invariants of I. We shall see that $r\left(R / I^{\text {lex }}\right)$ is bounded by a polynomial of $r(R / I)$ (Theorem 2.7).

Throughout this paper, if $Q \subset R$ is an ideal which generates a reduction of R / I, then we will denote its reduction number by $r_{Q}(R / I)$.

1. Borel-fixed ideals

Let I be a monomial ideal of the polynomial ring $R=k\left[x_{1}, \ldots, x_{n}\right]$. Let \mathcal{B} denote the Borel subgroup of $\mathrm{GL}(n, k)$ which consists of the upper triangular invertible matrices. Then I is called a Borel-fixed ideal if for all $g \in \mathcal{B}, g(I)=I$. We say that a monomial x^{B} is a Borel specialization of a monomial x^{A} if x^{B} can be obtained from x^{A} by replacing every variable x_{i} of x^{A} by a variable $x_{j_{i}}$ with $j_{i} \leqslant i$. The name comes from the simple fact that any Borel-fixed monomial ideal is closed under Borel specialization.

Lemma 1.1. Let I be a Borel-fixed monomial ideal. If I contains x^{A} then I contains any Borel specialization of x^{A}.

Proof. Let x^{B} be a monomial obtained from x^{A} by replacing each variable x_{i} by a variable $x_{j_{i}}$ with $j_{i} \leqslant i, i=1, \ldots, n$. Let g be the element of the Borel group \mathcal{B} defined by the linear transformation

$$
g\left(x_{i}\right)= \begin{cases}x_{i} & \text { if } j_{i}=i, \\ x_{i}+x_{j_{i}} & \text { if } j_{i} \neq i .\end{cases}
$$

Then x^{B} is a monomial of $g\left(x^{A}\right)$. Since $g(I)=I$, this implies $x^{B} \in I$.
Let $d=\operatorname{dim} R / I$. If I is a Borel-fixed ideal, every associated prime ideal of I has the form $\left(x_{1}, \ldots, x_{i}\right)$ for $i \geqslant n-d$ (see, e.g., [8, Corollary 15.25]). From this it follows that s variables of R generate an s-reduction of R / I if and only if they are of the form $x_{i_{1}}, \ldots, x_{i_{s-d}}, x_{n-d+1}, \ldots, x_{n}$ with $1 \leqslant i_{1}<\cdots<i_{s-d} \leqslant n-d$. It is clear that $r_{\left(x_{i_{1}}, \ldots, x_{i_{s-d}}, x_{n-d+1}, \ldots, x_{n}\right)}(R / I)$ is the least integer r such that all monomials of degree $r+1$ in the remaining variables are contained in I. The following result shows that the computation of the reduction numbers of all s-reductions of R / I can be reduced to the above class of s-reductions.

Theorem 1.2. Let I be a Borel-fixed ideal and $s \geqslant d=\operatorname{dim} R / I$. Then
(i) For every s-reduction \mathfrak{q} of R / I, there exist variables $x_{i_{1}}, \ldots, x_{i_{s-d}}$ with $1 \leqslant i_{1}<\cdots<$ $i_{s-d} \leqslant n-d$ such that

$$
r_{\mathfrak{q}}(R / I)=r_{\left(x_{i_{1}}, \ldots, x_{i_{s-d}}, x_{n-d+1}, \ldots, x_{n}\right)}(R / I) .
$$

(ii) $r_{s}(R / I)=r_{\left(x_{n-s+1}, \ldots, x_{n}\right)}(R / I)$.

Proof. Let y_{1}, \ldots, y_{s} be linear forms of R which generates \mathfrak{q} in R / I. Without restriction we may assume that

$$
y_{i}=a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i t_{i}} x_{t_{i}} \quad(i=1, \ldots, s)
$$

with $a_{i t_{i}} \neq 0$ for different indices t_{1}, \ldots, t_{s}. Let g be the element of the Borel group \mathcal{B} defined by the linear transformation

$$
g\left(x_{j}\right)= \begin{cases}x_{j} & \text { if } j \notin\left\{t_{1}, \ldots, t_{s}\right\} \\ y_{i} & \text { if } j=t_{i}, 1 \leqslant i \leqslant s\end{cases}
$$

Then $g\left(\left(x_{t_{1}}, \ldots, x_{t_{s}}\right)\right)=g\left(\left(y_{1}, \ldots, y_{s}\right)\right)$. Since $g(I)=I$, this implies that $x_{t_{1}}, \ldots, x_{t_{s}}$ generate an s-reduction of R / I with

$$
r_{\mathfrak{q}}(R / I)=r_{\left(x_{t_{1}}, \ldots, x_{t s}\right)}(R / I) .
$$

As observed before, $x_{t_{1}}, \ldots, x_{t_{s}}$ must be of the form $x_{i_{1}}, \ldots, x_{i_{s-d}}, x_{n-d+1}, \ldots, x_{n}$ with $1 \leqslant i_{1}<\cdots<i_{s-d} \leqslant n-d$. This proves (i).

To prove (ii) choose \mathfrak{q} such that $r_{s}(R / I)=r_{\mathfrak{q}}(R / I)$. By (i) there exist variables $x_{t_{1}}, \ldots, x_{t_{s}}$ such that $r_{\mathfrak{q}}(R / I)=r_{\left(x_{t_{1}}, \ldots, x_{t_{s}}\right)}(R / I)$. Note that $r_{\left(x_{t_{1}}, \ldots, x_{t_{s}}\right)}(R / I)$ is the least integer r such that all monomials of degree $r+1$ in the remaining variables are contained in I and that all monomials of degree $r+1$ in x_{1}, \ldots, x_{n-s} are their Borel specializations. By Lemma 1.1, the latter monomials are contained in I, too. This implies

$$
r_{\left(x_{t_{1}}, \ldots, x_{t_{s}}\right)}(R / I) \geqslant r_{\left(x_{n-s+1}, \ldots, x_{n}\right)}(R / I) \geqslant r_{s}(R / I)
$$

So we conclude that $r_{s}(R / I)=r_{\left(x_{n-s+1}, \ldots, x_{n}\right)}(R / I)$.
The case $s=d$ of Theorem 1.2 was already proved by Bresinsky and Hoa [3, Theorem 11]. They showed that all minimal reductions of R / I have the same reduction number. But their arguments can not be extended to the general case. By Theorem 1.2(i), there are at most $\binom{n-d}{s-d}$ different reduction numbers for the s-reductions. This number $\binom{n-d}{s-d}$ can be attained if $\operatorname{char}(k)>0$. This displays a different behaviour than in the case $s=d$.

Example 1.3. Assume that $\operatorname{char}(k)=p$. Let $d \leqslant s<n$ and $1<a_{1}<\cdots<a_{n-d}$ be integers. Then

$$
I=\left(x_{1}^{p^{a_{1}}}, \ldots, x_{n-s}^{p_{n-s}^{a_{n}}}\right) \subseteq R=k\left[x_{1}, \ldots, x_{n}\right]
$$

is a Borel-fixed ideal. For the s-reduction $Q=\left(x_{i_{1}}, \ldots, x_{i_{s-d}}, x_{n-d+1}, \ldots, x_{n}\right)$ of R / I with $1 \leqslant i_{1}<\cdots<i_{s-d} \leqslant n-d$ we have

$$
r_{Q}(R / I)=p^{a_{j_{1}}}+\cdots+p^{a_{j_{n-s}}}-n+s
$$

where $\left\{j_{1}, \ldots, j_{n-s}\right\}=\{1, \ldots, n-d\} \backslash\left\{i_{1}, \ldots, i_{s-d}\right\}$. Hence the s-reductions of R / I have exactly $\binom{n-d}{s-d}$ different reduction numbers. Moreover, we have

$$
r_{s}(R / I)=p^{a_{1}}+\cdots+p^{a_{n-s}}-n+s
$$

If $\operatorname{char}(k)=0$, Borel-fixed ideals are characterized by a closure property stronger than that of Borel specialization. Recall that a monomial ideal I is called strongly stable if whenever $x^{A} \in I$ and x^{A} is divided by x_{i}, then $x^{A} x_{j} / x_{i} \in I$ for all $j \leqslant i$. Any strongly stable monomial ideal is Borel-fixed. The converse holds if $\operatorname{char}(k)=0$ [1, Proposition 2.7]. In this case we can easily compute the reduction number of R / I by the following result.

Corollary 1.4. Let I be a strongly stable monomial ideal. For any $s \geqslant \operatorname{dim} R / I$ we have

$$
r_{s}(R / I)=\min \left\{t \mid x_{n-s}^{t+1} \in I\right\} .
$$

Proof. By Theorem 1.2(ii) we have to prove that

$$
r_{\left(x_{n-s+1}, \ldots, x_{n}\right)}(R / I)=\min \left\{t \mid x_{n-s}^{t+1} \in I\right\} .
$$

Hence, it is sufficient to show that if $x_{n-s}^{t+1} \in I$ then all monomials of degree $t+1$ in x_{1}, \ldots, x_{n-s} are contained in I. But this follows from the strong stability of I.

Example 1.3 shows that Lemma 1.4 does not hold if I is not strongly stable.
If char $(k)=0$, the number of possible reduction numbers for the s-reductions of R / I is much smaller than in the case $\operatorname{char}(k)>0$. In fact, for any s-reduction $Q=\left(x_{i_{1}}, \ldots, x_{i_{s-d}}\right.$, $\left.x_{n-d+1}, \ldots, x_{n}\right)$ with $1 \leqslant i_{1}<\cdots<i_{s-d} \leqslant n-d$, we can show similarly as above that

$$
r_{Q}(R / I)=\min \left\{t \mid x_{j_{n-s}}^{t+1} \in I\right\}
$$

where j_{n-s} is the largest index outside the set $\left\{i_{1}, \ldots, i_{s-d}, n-d+1, \ldots, n\right\}$. Since there at most $s-d+1$ such indices, Theorem 1.2(i) shows that there are at most $s-d+1$ different reduction numbers for the s-reductions.

Example 1.5. Let I be the ideal generated by all monomials bigger or equal a monomial in the list $x_{1}^{a_{1}}, \ldots, x_{n-d}^{a_{n-d}}$ with respect to the graded lexicographic order, where $1<a_{1}<$ $\cdots<a_{n-d}$. It is easy to see that this ideal is strongly stable and the s-reductions of R / I have exactly $s-d+1$ different reduction numbers.

The set of all monomials which can be Borel-specialized to x^{A} will be denoted by $P\left(x^{A}\right)$. If we can estimate the cardinality $\left|P\left(x^{A}\right)\right|$ of $P\left(x^{A}\right)$, we can decide when $x^{A} \in I$, depending on the behavior of the Hilbert function of I.

Lemma 1.6. Let I be a Borel-fixed ideal. Assume that $\operatorname{dim}_{k}(R / I)_{t}<\left|P\left(x^{A}\right)\right|$ for $t=$ $\operatorname{deg} x^{A}$. Then $x^{A} \in I$.

Proof. If $x^{A} \notin I$, then $P\left(x^{A}\right) \cap I=\emptyset$ by Lemma 1.1. Since $P\left(x^{A}\right)$ consists of monomials of degree t, this implies $\operatorname{dim}_{k}(R / I)_{t} \geqslant\left|P\left(x^{A}\right)\right|$, a contradiction.

Theorem 1.7. Suppose $x^{A}=x_{i_{1}}^{\alpha_{i_{1}}} \cdots x_{i_{s}}^{\alpha_{i_{s}}}$ with $\alpha_{i_{1}}, \ldots, \alpha_{i_{s}}>0,1 \leqslant i_{1}<\cdots<i_{s} \leqslant n$. Put $i_{s+1}=n+1$. Then

$$
\left|P\left(x^{A}\right)\right| \geqslant \sum_{t=1}^{s}\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{t}}+i_{t+1}-i_{t}-1}{i_{t+1}-i_{t}-1}-s+1
$$

Proof. The cases $n=0$ and $\operatorname{deg} x^{A}=0$ are trivial because $x^{A}=1$. Assume that $n \geqslant 1$ and $\operatorname{deg} x^{A}>0$.

If $i_{s}=n$, we let $x^{B}=x_{i_{1}}^{\alpha_{i_{1}}} \cdots x_{i_{s-1}}^{\alpha_{i_{s-1}}}$ and consider x^{B} as a monomial in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n-1}\right]$. Any monomial of $P\left(x^{A}\right)$ is the product of a monomial of
$P\left(x^{B}\right) \cap S$ with $x_{n}^{\alpha_{n}}$. The converse also holds. Hence $\left|P\left(x^{A}\right)\right|=\left|P\left(x^{B}\right) \cap S\right|$. Using induction on n we may assume that

$$
\left|P\left(x^{B}\right) \cap S\right| \geqslant \sum_{t=1}^{s-1}\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{t}}+i_{t+1}-i_{t}-1}{i_{t+1}-i_{t}-1}-(s-1)+1 .
$$

Since $i_{s+1}=n+1=i_{s}+1$, we have

$$
\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{s}}+i_{s+1}-i_{s}-1}{i_{s+1}-i_{s}-1}=1 .
$$

So we get

$$
\left|P\left(x^{A}\right)\right|=\left|P\left(x^{B}\right) \cap S\right| \geqslant \sum_{t=1}^{s}\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{t}}+i_{t+1}-i_{t}-1}{i_{t+1}-i_{t}-1}-s+1
$$

If $i_{s}<n$, we divide $P(A)$ into two disjunct parts P_{1} and P_{2}. The first part P_{1} consists of monomials divided by $x_{i_{1}}$, and the second part P_{2} consists of monomials not divided by $x_{i_{1}}$. Set $x^{C}=x_{i_{1}}^{\alpha_{1}-1} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{s}}^{\alpha_{s}}$. Every monomial of P_{1} is the product of $x_{i_{1}}$ with a monomial of $P\left(x^{C}\right)$. The converse also holds. Hence $\left|P_{1}\right|=\left|P\left(x^{C}\right)\right|$. Using induction on $\operatorname{deg}\left(x^{A}\right)$ we may assume that

$$
\begin{gathered}
\left|P\left(x^{C}\right)\right| \geqslant \sum_{t=1}^{s}\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{t}}+i_{t+1}-i_{t}-2}{i_{t+1}-i_{t}-1}-s+1 \\
\geqslant\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{s}}+i_{s+1}-i_{s}-2}{i_{s+1}-i_{s}-1}
\end{gathered}
$$

Note that the sum should starts from $t=2$ to s if $a_{i_{1}}=1$. In this case, the above formula holds because $\binom{\alpha_{i_{1}}-2}{\alpha_{i_{1}}+i_{2}-i_{1}-1}=\binom{i_{2}-i_{1}-1}{0}=1$. To estimate $\left|P_{2}\right|$ let $x^{D}=x_{i_{1}+1}^{\alpha_{i_{1}}} \cdots x_{i_{s}+1}^{\alpha_{i_{s}}}$. It is obvious that every monomial of $P\left(x^{D}\right)$ does not contain $x_{i_{1}}$ and can be Borel-specialized to x^{A}. Therefore, $P\left(x^{D}\right)$ is contained in P_{2}. Using induction on i_{s} we may assume that

$$
\begin{aligned}
\left|P\left(x^{D}\right)\right| \geqslant & \sum_{t=1}^{s-1}\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{t}}+i_{t+1}-i_{t}-1}{i_{t+1}-i_{t}-1} \\
& +\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{s}}+i_{s+1}-i_{s}-2}{i_{s+1}-i_{s}-2}-s+1
\end{aligned}
$$

Summing up we obtain

$$
\begin{aligned}
|P|= & \left|P_{1}\right|+\left|P_{2}\right| \geqslant\left|P\left(x^{C}\right)\right|+\left|P\left(x^{D}\right)\right| \\
\geqslant & \binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{s}}+i_{s+1}-i_{s}-2}{i_{s+1}-i_{s}-1}+\sum_{t=1}^{s-1}\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{t}}+i_{t+1}-i_{t}-1}{i_{t+1}-i_{t}-1} \\
& +\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{s}}+i_{s+1}-i_{s}-2}{i_{s+1}-i_{s}-2}-s+1 \\
= & \sum_{t=1}^{s}\binom{\alpha_{i_{1}}+\cdots+\alpha_{i_{t}}+i_{t+1}-i_{t}-1}{i_{t+1}-i_{t}-1}-s+1 .
\end{aligned}
$$

The bound of Theorem 1.7 is far from being the best possible as one can realize from the proof. However, it is sharp in many cases.

Example 1.8. If $R=k\left[x_{1}, x_{2}, x_{3}\right]$ we have $P\left(x_{1} x_{3}\right)=\left\{x_{1} x_{3}, x_{2} x_{3}\right\}$. Hence

$$
\left|P\left(x_{1} x_{3}\right)\right|=2=\binom{3-1+1-1}{1}+\binom{4-3+1-1}{1}-2+1
$$

An interesting application of Theorem 1.7 is the following bound for the reduction number.

Corollary 1.9. Let I be a Borel-fixed monomial ideal. Assume that

$$
\operatorname{dim}_{k}(R / I)_{t}<\binom{s+t}{t}
$$

for some integers $s, t \geqslant 1$. Then x_{n-s+1}, \ldots, x_{n} generate a reduction of R / I with

$$
r_{\left(x_{n-s+1}, \ldots, x_{n}\right)}(R / I) \leqslant t-1 .
$$

Proof. We have to show that the ideal $\left(I, x_{n-s+1}, \ldots, x_{n}\right)$ contains every monomial x^{A} of degree t in x_{1}, \ldots, x_{n-s}. If we write $x^{A}=x_{i_{1}}^{\alpha_{i_{1}}} \cdots x_{i_{s}}^{\alpha_{i_{s}}}$ with $1 \leqslant i_{1}<\cdots<i_{s} \leqslant n-s$ and $\alpha_{i_{1}}+\cdots+\alpha_{i_{s}}=t$, then Theorem 1.7 gives

$$
\left|P\left(x^{A}\right)\right| \geqslant\binom{ n-i_{s}+t}{t} \geqslant\binom{ s+t}{t}>\left|P\left(x^{A}\right)\right| .
$$

By Lemma 1.6, this implies $x^{A} \in I$.

2. Eakin-Sathaye's theorem

Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over an infinite field k of arbitrary characteristic. In this section we will deal with the reduction number of R / I for an arbitrary homogeneous ideal I. Let us first recall the following theorem of Eakin and Sathaye.

Theorem 2.1 [7, Theorem 1]. Let I be an arbitrary homogeneous ideal in R. Assume that

$$
\operatorname{dim}_{k}(R / I)_{t}<\binom{s+t}{t}
$$

for some integers $s, t \geqslant 1$. Choose s generic linear forms y_{1}, \ldots, y_{s}, that is in a non-empty open subset of the parameter space of s linear forms of R. Then y_{1}, \ldots, y_{s} generate a reduction of R / I with

$$
r_{\left(y_{1}, \ldots, y_{s}\right)}(R / I) \leqslant t-1
$$

Eakin-Sathaye's theorem provides an efficient way to estimate the reduction number (see, e.g., [17, Corollary 3.4 and Theorem 4.2]). We shall see that Corollary 1.9 (though formulated for Borel-fixed ideals and a fixed reduction) is equivalent to Eakin-Sathaye's theorem. For that we need the following observations.

First, the reduction number of a reduction generated by generic elements is the smallest one among reductions generated by the same number of generators.

Lemma 2.2. For every integer $s \geqslant \operatorname{dim} R / I$ choose s generic linear forms y_{1}, \ldots, y_{s} in R. Then y_{1}, \ldots, y_{s} generate a reduction of R / I with

$$
r_{\left(y_{1}, \ldots, y_{s}\right)}(R / I)=r_{s}(R / I)
$$

Proof. The statement was already proved for the case $s=\operatorname{dim} R$ in [14, Lemma 4.2]. The proof for arbitrary $s \geqslant \operatorname{dim} R$ is similar, hence we omit it.

Secondly, the smallest reduction number does not change when passing to any generic initial ideal.

Theorem 2.3. Let $\operatorname{gin}(I)$ denote the generic initial ideal of I with respect to the reverse lexicographic term order. For every integer $s \geqslant \operatorname{dim} R / I$ we have

$$
r_{s}(S / I)=r_{s}(S / \operatorname{gin}(I))
$$

Proof. The statement was already proved for the case $s=\operatorname{dim} R$ in [14, Theorem 4.3]. The case of arbitrary $s \geqslant \operatorname{dim} R / I$ can be proved in the same manner (though not trivial).

Now we are able to show that Eakin-Sathaye's theorem can be deduced from Corollary 1.9. Since the proof relies only on properties of Gröbner basis and Borel-fixed ideals, it can be viewed as a combinatorial proof.

Combinatorial proof of Theorem 2.1. By Lemma 2.2, we have to show that $r_{s}(R / I) \leqslant$ $t-1$. Let $\operatorname{gin}(I)$ denote the generic initial ideal of I with respect to the reverse
lexicographic term order. From the theory of Gröbner bases we know that $\operatorname{gin}(I)$ is a Borelfixed monomial ideal with $\operatorname{dim}_{k}(R / \operatorname{gin}(I))_{t}=\operatorname{dim}_{k}(R / I)_{t}$ (see, e.g., [8, Theorem 15.3]). By Corollary 1.9, the assumption $\operatorname{dim}_{k}(R / I)_{t}<\binom{s+t}{t}$ implies

$$
r_{s}(R / \operatorname{gin}(I)) \leqslant r_{\left(x_{n-s+1}, \ldots, x_{n}\right)}(R / \operatorname{gin}(I)) \leqslant t-1
$$

Now, we only need to apply Theorem 2.3 to get back to $r_{s}(R / I)$.
On the other hand, Corollary 1.9 can be deduced from Eakin-Sathaye's theorem because according to Theorem 1.2(ii) and Lemma 2.2 we have

$$
r_{\left(x_{n-s+1}, \ldots, x_{n}\right)}(R / I)=r_{s}(R / I)=r_{\left(y_{1}, \ldots, y_{s}\right)}(R / I)
$$

for any Borel-fixed ideal I.
We shall see that the bound of Eakin-Sathaye's theorem is attained exactly by lexsegment ideals. Recall that a lex-segment ideal is a monomial ideal I such that if $x^{A} \in I$ then $x^{B} \in I$ for any monomial $x^{B} \geqslant x^{A}$ with respect to the lexicographic term order. It is easy to see that lex-segment ideals are strongly stable.

Theorem 2.4. Let I be a lex-segment ideal. Then

$$
r_{s}(R / I)=\min \left\{t \left\lvert\, \operatorname{dim}_{k}(R / I)_{t}<\binom{s+t}{t}\right.\right\}-1 .
$$

Proof. By Theorem 2.1 and Lemma 2.2 we have $r_{s}(R / I) \leqslant r-1$, where

$$
r:=\min \left\{t \left\lvert\, \operatorname{dim}_{k}(R / I)_{t}<\binom{s+t}{t}\right.\right\} .
$$

It remains to show that $r_{s}(R / I) \geqslant r-1$. Assume to the contrary that $r_{s}(R / I)<r-1$. By Theorem 1.2(ii) we have $r_{\left(x_{n-s+1}, \ldots, x_{n}\right)}(R / I)=r_{s}(R / I)<r-1$. Using Corollary 1.4 we can deduce that $x_{n-s}^{r-1} \in I$. By the definition of a lex-segment ideal, this implies that every monomial of degree $r-1$ which involves one of the variables x_{1}, \ldots, x_{n-s-1} is contained in I. Equivalently, the monomials of degree $r-1$ not contained in I involve only the $s+1$ variables x_{n-s}, \ldots, x_{n}. Since $x_{n-s}^{r-1} \in I$, this implies

$$
\operatorname{dim}_{k}(R / I)_{r-1}<\binom{s+r-1}{r-1}
$$

This contradicts to the definition of r.
Given a homogeneous ideal I in R, we denote by $I^{\text {lex }}$ the unique lex-segment ideal whose Hilbert function is equal to that of I. It is well-known that the Betti numbers of $R / I^{\text {lex }}$ are extremal in the class of ideals with a given Hilbert function [2,9,11]. If $\operatorname{char}(k)=0$, Conca showed that the reduction number $r\left(R / I^{\text {lex }}\right)$ is extremal in
this sense [5, Proposition 10]. He raised the question whether this result holds for all characteristics. The following result will settle Conca's question in the affirmative.

Corollary 2.5. Let I be an arbitrary homogeneous ideal in R and $s \geqslant \operatorname{dim} R / I$. Then

$$
r_{s}(R / I) \leqslant r_{s}\left(R / I^{\mathrm{lex}}\right)
$$

Proof. According to Theorem 2.4 we have

$$
r_{s}\left(R / I^{\mathrm{lex}}\right)=\min \left\{t \left\lvert\, \operatorname{dim}_{k}(R / I)_{t}<\binom{s+t}{t}\right.\right\}-1 .
$$

By Theorem 2.1, this implies $r_{s}(R / I) \leqslant r_{s}\left(R / I^{\text {lex }}\right)$.
By Corollary 2.5, $r\left(R / I^{\mathrm{lex}}\right)$ is extremal in the class of ideals with a given Hilbert function. So it is of interest to estimate $r\left(R / I^{\text {lex }}\right)$ in terms of other invariants of I.

Lemma 2.6. Let I be an arbitrary homogeneous ideal in R and $d=\operatorname{dim} R / I \geqslant 1$. Let Q be an ideal generated by d linear forms of R which forms a reduction in R / I. Put $e=\ell(R / Q+I)$. Then

$$
r\left(R / I^{\mathrm{lex}}\right) \leqslant d(e-2)+1 .
$$

Proof. By [12, Theorem 2.2] we know that

$$
\operatorname{dim}_{k}(R / I)_{t} \leqslant(e-1)\binom{t+d-2}{d-1}+\binom{t+d-1}{d-1} .
$$

For $t=d(e-2)+2$ we have

$$
(e-1)\binom{d e-d}{d-1}+\binom{d e-d+1}{d-1}<\binom{d e-d+2}{d}
$$

Hence the conclusion follows from Theorem 2.4.
We would like to point out that a bound for $r(R / I)$ in terms of e should be smaller. In fact, we always have

$$
r(R / I) \leqslant r_{Q}(R / I) \leqslant \ell(R / Q+I)-1=e-1 .
$$

If R / I is a Cohen-Macaulay ring, e is equal to the degree (multiplicity) of I. If R / I is not a Cohen-Macaulay ring, we may replace e by the extended (cohomological) degree of I introduced in [6].

Theorem 2.7. Let I be an arbitrary homogeneous ideal in R and $d=\operatorname{dim} R / I \geqslant 1$. Let $a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{s}$ be the degrees of the minimal homogeneous generators of I. Then
(i) $r\left(R / I^{\text {lex }}\right) \leqslant d\left[\binom{r(R / I)+n-d}{n-d}-2\right]+1$,
(ii) $r\left(R / I^{\mathrm{lex}}\right) \leqslant d\left(a_{1} \cdots a_{n-d}-2\right)+1$.

Proof. Without loss of generality we may assume that $Q=\left(x_{n-d+1}, \ldots, x_{n}\right)$ forms a minimal reduction of R / I with $r_{Q}(R / I)=r(R / I)$. Since $R_{t}=(Q+I)_{t}$ for $t \geqslant$ $r(R / I)+1$, we have

$$
\begin{aligned}
\ell(R / Q+I) & \leqslant \sum_{t=0}^{r(R / I)} \operatorname{dim}_{k}(R / Q+I)_{t} \\
& \leqslant \sum_{t=0}^{r(R / I)} \operatorname{dim}_{k}(R / Q)_{t}=\binom{r(R / I)+n-d}{n-d}
\end{aligned}
$$

Hence (i) follows from Lemma 2.6. To prove (ii) we put $R^{\prime}=k\left[x_{1}, \ldots, x_{n-d}\right]$ and $I^{\prime}=(I+Q) \cap R^{\prime}$. Then I^{\prime} is generated by forms of degrees $a_{1}^{\prime} \leqslant a_{1}, a_{2}^{\prime} \leqslant a_{2}, \ldots$ and $\ell(R / Q+I)=\ell\left(R^{\prime} / I^{\prime}\right)$. By [4] we can choose a regular sequence f_{1}, \ldots, f_{n-d} in I^{\prime} such that $\operatorname{deg}\left(f_{i}\right)=a_{i}^{\prime}, \quad i=1, \ldots, n-d$. It is well-known that $\ell\left(R^{\prime} /\left(f_{1}, \ldots, f_{n-d}\right)\right)=$ $a_{1} \cdots a_{n-d}$. Hence

$$
\ell(R / Q+I) \leqslant a_{1}^{\prime} \cdots a_{n-d}^{\prime} \leqslant a_{1} \cdots a_{n-d}
$$

Thus, (ii) follows from Lemma 2.6.
Finally we give some examples which show that the bounds of Theorem 2.7 are sharp.
Example 2.8. Let $I=\left(x_{1}, \ldots, x_{n-d}\right)^{2}$. It is easy to see that $r(R / I)=1$ and

$$
\operatorname{dim}_{k}(R / I)_{t}=\binom{d+t-1}{d-1}+(n-d)\binom{d+t-2}{d-1}
$$

for all $t \geqslant 1$. By Theorem 2.4 we have

$$
\begin{aligned}
r\left(R / I^{\mathrm{lex}}\right) & =\min \left\{t ;\binom{d+t-1}{d-1}+(n-d)\binom{d+t-2}{d-1}<\binom{d+t}{d}\right\}-1 \\
& =d(n-d-1)+1
\end{aligned}
$$

This is exactly the bound (i) of Theorem 2.7.
Example 2.9. Consider the one-dimensional ideal $I=\left(x_{1}^{a}\right) \subset R=k\left[x_{1}, x_{2}\right], a \geqslant 1$. We have $\operatorname{dim}_{k}(R / I)_{t}=a$ for all $t \geqslant a-1$. Hence Theorem 2.4 gives

$$
r\left(R / I^{\text {lex }}\right)=\min \{t \mid a<t+1\}-1=a-1
$$

This shows that the bound (ii) of Theorem 2.7 is sharp.

References

[1] D. Bayer, M. Stillman, A criterion for detecting m-regularity, Invent. Math. 87 (1987) 1-11.
[2] A. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. Algebra 21 (1993) 2317-2334.
[3] H. Bresinsky, L.T. Hoa, On the reduction number of some graded algebras, Proc. Amer. Math. Soc. 127 (1999) 1257-1263.
[4] J. Briançon, Sur le degré des relations entre polynômes, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983) 553-556.
[5] A. Conca, Reduction numbers and initial ideals, Proc. Amer. Math. Soc., in press.
[6] L.R. Doering, T. Gunston, W. Vasconcelos, Cohomological degrees and Hilbert functions of graded modules, Amer. J. Math. 120 (1998) 493-504.
[7] P. Eakin, A. Sathaye, Prestable ideals, J. Algebra 41 (1976) 439-454.
[8] D. Eisenbud, Commutative Algebra with a Viewpoint toward Algebraic Geometry, Springer, 1994.
[9] H. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. Algebra 21 (1993) 2335-2350.
[10] D.G. Northcott, D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954) 145158.
[11] K. Pardue, Maximal minimal resolutions, Illinois J. Math. 40 (1996) 564-585.
[12] M.E. Rossi, G. Valla, W. Vasconcelos, Maximal Hilbert functions, Results in Math. 39 (2001) 99-114.
[13] N.V. Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987) 229-236.
[14] N.V. Trung, Gröbner bases, local cohomology and reduction number, Proc. Amer. Math. Soc. 129 (2001) 9-18.
[15] N.V. Trung, Constructive characterization of the reduction numbers, Compositio Math., in press.
[16] W. Vasconcelos, The reduction number of an algebra, Compositio Math. 106 (1996) 189-197.
[17] W. Vasconcelos, Reduction numbers of ideals, J. Algebra 216 (1999) 652-664.

[^0]: The authors are partially supported by the National Basic Research Program of Vietnam.

 * Corresponding author.

 E-mail addresses: 1thoa@thevinh.ncst.ac.vn (L.T. Hoa), nvtrung@thevinh.ncst.ac.vn (N.V. Trung).
 0021-8693/\$ - see front matter © 2003 Elsevier Inc. All rights reserved.
 doi:10.1016/S0021-8693(03)00367-3

