

Journal of Algebra 270 (2003) 335-346

www.elsevier.com/locate/jalgebra

Borel-fixed ideals and reduction number $\stackrel{\text{\tiny{theter}}}{\longrightarrow}$

Lê Tuân Hoa and Ngô Viêt Trung*

Institute of Mathematics, Box 631, Bò Hô, 10000 Hanoi, Viet Nam

Received 8 October 2002

Communicated by Craig Huneke

Abstract

The aim of this paper is to study the relationship between the reduction number and Borel-fixed ideals in all characteristics. Especially it is shown that $r(R/I) \leq r(R/I^{\text{lex}})$, where I^{lex} denotes the unique lex-segment ideal whose Hilbert function is equal to that of *I*. This solves a recent question by Conca.

© 2003 Elsevier Inc. All rights reserved.

Keywords: Reduction number; Borel-fixed ideal; Hilbert function

Introduction

Let *A* be a standard graded algebra over an infinite field *k*. An ideal $q = (z_1, ..., z_s)$, where $z_1, ..., z_s$ are linear forms of *A*, is called an *s*-reduction of *A* if $q_t = A_t$ for *t* large enough (cf. [10]). The reduction number of *A* with respect to q, written as $r_q(A)$, is the minimum number *r* such that $q_{r+1} = A_{r+1}$. The *s*-reduction number of *A* is defined as

 $r_s(A) := \min \{ r_{\mathfrak{q}}(A) \mid \mathfrak{q} = (z_1, \dots, z_s) \text{ is a reduction of } A \}.$

Let $d = \dim A$. It is well-known that a reduction \mathfrak{q} of A is minimal with respect to inclusion if and only if \mathfrak{q} can be generated by d elements. In this case, $k[z_1, \ldots, z_d] \hookrightarrow A$ is a Noether normalization of A and the reduction number $r_{\mathfrak{q}}(A)$ is the maximum degree of the generators of A as a graded $k[z_1, \ldots, z_d]$ -module [16]. For short, we set $r(A) = r_d(A)$. The reduction number r(A) can be used as a measure for the complexity of A. For instance,

^{*} The authors are partially supported by the National Basic Research Program of Vietnam.

^{*} Corresponding author.

E-mail addresses: lthoa@thevinh.ncst.ac.vn (L.T. Hoa), nvtrung@thevinh.ncst.ac.vn (N.V. Trung).

^{0021-8693/\$ -} see front matter © 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0021-8693(03)00367-3

we can relate r(A) to other important invariants of A such that the degree, the arithmetic degree and the Castelnuovo–Mumford regularity (see [13,16,17]).

Let *I* be an arbitrary homogeneous ideal in a polynomial ring $R = k[x_1, ..., x_n]$. It is shown recently in [5] and [15] (see also [3]) that $r(R/I) \leq r(R/\operatorname{in}(I))$, where in(*I*) denotes the initial ideal of *I* with respect to a given term order. In particular, we have $r(R/I) = r(R/\operatorname{gin}(I))$, where $\operatorname{gin}(I)$ denotes the generic initial ideal of *I* with respect to the reverse lexicographic term order [14]. Since generic initial ideals are Borel-fixed (see the definition in Section 1), we may restrict the study on the reduction number to that of Borel-fixed ideals. If $\operatorname{char}(k) = 0$, Borel-fixed ideals are characterized by the so-called strong stability which gives information on their monomials [1]. Similar characterizations can be established for the positive characteristic cases [11]. But these characterizations are not good enough for certain problems. For instance, Conca [5] has raised the question whether $r(R/I) \leq r(R/I^{\text{lex}})$, where I^{lex} denotes the unique lex-segment ideal whose Hilbert function is equal to that of *I*. He solved this question for $\operatorname{char}(k) = 0$ by using the strong stability, but his proof does not work for the positive characteristic cases.

The aim of this paper is to study the relationship between the s-reduction number and Borel-fixed ideals in all characteristics. By definition, Borel-fixed ideals are closed under certain specializations which is similar to the strong stability. Using this property we show that the reduction numbers of s-reductions of the quotient ring of a Borel-fixed ideal are attained by s-reductions generated by variables (Theorem 1.2). This gives a practical way to compute the s-reduction number. We will also estimate the number of monomials which can be specialized to a given monomial in the above sense (Theorem 1.7). As a consequence, we obtain a combinatorial version of the well-known Eakin–Sathaye's theorem which estimates the s-reduction number by means of the Hilbert function (Corollary 1.9 and Theorem 2.1). Furthermore, we show that the bound of Eakin–Sathaye's theorem is attained by the s-reduction number when I is a lex-segment monomial ideal (Theorem 2.4). These results help solve Conca's question for all characteristics in a more general setting, namely, that $r_s(R/I) \leq r_s(R/I^{\text{lex}})$. Finally, since $r(R/I^{\text{lex}})$ is extremal in the class of ideals with a given Hilbert function, we will estimate $r(R/I^{\text{lex}})$ in terms of some standard invariants of I. We shall see that $r(R/I^{lex})$ is bounded by a polynomial of r(R/I) (Theorem 2.7).

Throughout this paper, if $Q \subset R$ is an ideal which generates a reduction of R/I, then we will denote its reduction number by $r_Q(R/I)$.

1. Borel-fixed ideals

Let *I* be a monomial ideal of the polynomial ring $R = k[x_1, ..., x_n]$. Let \mathcal{B} denote the Borel subgroup of GL(n, k) which consists of the upper triangular invertible matrices. Then *I* is called a *Borel-fixed* ideal if for all $g \in \mathcal{B}$, g(I) = I. We say that a monomial x^B is a *Borel specialization* of a monomial x^A if x^B can be obtained from x^A by replacing every variable x_i of x^A by a variable x_{j_i} with $j_i \leq i$. The name comes from the simple fact that any Borel-fixed monomial ideal is closed under Borel specialization. **Lemma 1.1.** Let I be a Borel-fixed monomial ideal. If I contains x^A then I contains any Borel specialization of x^A .

Proof. Let x^B be a monomial obtained from x^A by replacing each variable x_i by a variable x_{j_i} with $j_i \leq i, i = 1, ..., n$. Let g be the element of the Borel group \mathcal{B} defined by the linear transformation

$$g(x_i) = \begin{cases} x_i & \text{if } j_i = i, \\ x_i + x_{j_i} & \text{if } j_i \neq i. \end{cases}$$

Then x^B is a monomial of $g(x^A)$. Since g(I) = I, this implies $x^B \in I$. \Box

Let $d = \dim R/I$. If *I* is a Borel-fixed ideal, every associated prime ideal of *I* has the form (x_1, \ldots, x_i) for $i \ge n - d$ (see, e.g., [8, Corollary 15.25]). From this it follows that *s* variables of *R* generate an *s*-reduction of R/I if and only if they are of the form $x_{i_1}, \ldots, x_{i_{s-d}}, x_{n-d+1}, \ldots, x_n$ with $1 \le i_1 < \cdots < i_{s-d} \le n - d$. It is clear that $r_{(x_{i_1}, \ldots, x_{i_{s-d}}, x_{n-d+1}, \ldots, x_n)}(R/I)$ is the least integer *r* such that all monomials of degree r + 1 in the remaining variables are contained in *I*. The following result shows that the computation of the reduction numbers of all *s*-reductions of R/I can be reduced to the above class of *s*-reductions.

Theorem 1.2. Let I be a Borel-fixed ideal and $s \ge d = \dim R/I$. Then

(i) For every s-reduction q of R/I, there exist variables $x_{i_1}, \ldots, x_{i_{s-d}}$ with $1 \le i_1 < \cdots < i_{s-d} \le n-d$ such that

$$r_{\mathfrak{q}}(R/I) = r_{(x_{i_1}, \dots, x_{i_n-d}, x_{n-d+1}, \dots, x_n)}(R/I).$$

(ii) $r_s(R/I) = r_{(x_{n-s+1},...,x_n)}(R/I)$.

Proof. Let y_1, \ldots, y_s be linear forms of *R* which generates q in R/I. Without restriction we may assume that

$$y_i = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{it_i}x_{t_i}$$
 $(i = 1, \dots, s)$

with $a_{it_i} \neq 0$ for different indices t_1, \ldots, t_s . Let g be the element of the Borel group \mathcal{B} defined by the linear transformation

$$g(x_j) = \begin{cases} x_j & \text{if } j \notin \{t_1, \dots, t_s\}, \\ y_i & \text{if } j = t_i, \ 1 \leqslant i \leqslant s \end{cases}$$

Then $g((x_{t_1}, \ldots, x_{t_s})) = g((y_1, \ldots, y_s))$. Since g(I) = I, this implies that x_{t_1}, \ldots, x_{t_s} generate an *s*-reduction of R/I with

$$r_{\mathfrak{q}}(R/I) = r_{(x_{t_1},\ldots,x_{t_s})}(R/I).$$

As observed before, x_{t_1}, \ldots, x_{t_s} must be of the form $x_{i_1}, \ldots, x_{i_{s-d}}, x_{n-d+1}, \ldots, x_n$ with $1 \le i_1 < \cdots < i_{s-d} \le n-d$. This proves (i).

To prove (ii) choose q such that $r_s(R/I) = r_q(R/I)$. By (i) there exist variables x_{t_1}, \ldots, x_{t_s} such that $r_q(R/I) = r_{(x_{t_1}, \ldots, x_{t_s})}(R/I)$. Note that $r_{(x_{t_1}, \ldots, x_{t_s})}(R/I)$ is the least integer *r* such that all monomials of degree r + 1 in the remaining variables are contained in *I* and that all monomials of degree r + 1 in x_1, \ldots, x_{n-s} are their Borel specializations. By Lemma 1.1, the latter monomials are contained in *I*, too. This implies

$$r_{(x_{t_1},...,x_{t_s})}(R/I) \ge r_{(x_{n-s+1},...,x_n)}(R/I) \ge r_s(R/I).$$

So we conclude that $r_s(R/I) = r_{(x_{n-s+1},...,x_n)}(R/I)$. \Box

The case s = d of Theorem 1.2 was already proved by Bresinsky and Hoa [3, Theorem 11]. They showed that all minimal reductions of R/I have the same reduction number. But their arguments can not be extended to the general case. By Theorem 1.2(i), there are at most $\binom{n-d}{s-d}$ different reduction numbers for the *s*-reductions. This number $\binom{n-d}{s-d}$ can be attained if char(k) > 0. This displays a different behaviour than in the case s = d.

Example 1.3. Assume that char(k) = p. Let $d \leq s < n$ and $1 < a_1 < \cdots < a_{n-d}$ be integers. Then

$$I = (x_1^{p^{a_1}}, \dots, x_{n-s}^{p^{a_{n-s}}}) \subseteq R = k[x_1, \dots, x_n]$$

is a Borel-fixed ideal. For the *s*-reduction $Q = (x_{i_1}, \ldots, x_{i_{s-d}}, x_{n-d+1}, \ldots, x_n)$ of R/I with $1 \le i_1 < \cdots < i_{s-d} \le n-d$ we have

$$r_O(R/I) = p^{a_{j_1}} + \dots + p^{a_{j_{n-s}}} - n + s,$$

where $\{j_1, \ldots, j_{n-s}\} = \{1, \ldots, n-d\} \setminus \{i_1, \ldots, i_{s-d}\}$. Hence the *s*-reductions of *R*/*I* have exactly $\binom{n-d}{s-d}$ different reduction numbers. Moreover, we have

$$r_s(R/I) = p^{a_1} + \dots + p^{a_{n-s}} - n + s.$$

If char(k) = 0, Borel-fixed ideals are characterized by a closure property stronger than that of Borel specialization. Recall that a monomial ideal I is called *strongly stable* if whenever $x^A \in I$ and x^A is divided by x_i , then $x^A x_j / x_i \in I$ for all $j \leq i$. Any strongly stable monomial ideal is Borel-fixed. The converse holds if char(k) = 0 [1, Proposition 2.7]. In this case we can easily compute the reduction number of R/I by the following result.

Corollary 1.4. *Let I be a strongly stable monomial ideal. For any* $s \ge \dim R/I$ *we have*

$$r_s(R/I) = \min\{t \mid x_{n-s}^{t+1} \in I\}.$$

Proof. By Theorem 1.2(ii) we have to prove that

$$r_{(x_{n-s+1},...,x_n)}(R/I) = \min\{t \mid x_{n-s}^{t+1} \in I\}.$$

Hence, it is sufficient to show that if $x_{n-s}^{t+1} \in I$ then all monomials of degree t + 1 in x_1, \ldots, x_{n-s} are contained in *I*. But this follows from the strong stability of *I*. \Box

Example 1.3 shows that Lemma 1.4 does not hold if *I* is not strongly stable.

If char(k) = 0, the number of possible reduction numbers for the *s*-reductions of R/I is much smaller than in the case char(k) > 0. In fact, for any *s*-reduction $Q = (x_{i_1}, \ldots, x_{i_{s-d}}, x_{n-d+1}, \ldots, x_n)$ with $1 \le i_1 < \cdots < i_{s-d} \le n-d$, we can show similarly as above that

$$r_Q(R/I) = \min\{t \mid x_{j_{n-s}}^{t+1} \in I\},\$$

where j_{n-s} is the largest index outside the set $\{i_1, \ldots, i_{s-d}, n-d+1, \ldots, n\}$. Since there at most s - d + 1 such indices, Theorem 1.2(i) shows that there are at most s - d + 1 different reduction numbers for the *s*-reductions.

Example 1.5. Let *I* be the ideal generated by all monomials bigger or equal a monomial in the list $x_1^{a_1}, \ldots, x_{n-d}^{a_{n-d}}$ with respect to the graded lexicographic order, where $1 < a_1 < \cdots < a_{n-d}$. It is easy to see that this ideal is strongly stable and the *s*-reductions of *R/I* have exactly s - d + 1 different reduction numbers.

The set of all monomials which can be Borel-specialized to x^A will be denoted by $P(x^A)$. If we can estimate the cardinality $|P(x^A)|$ of $P(x^A)$, we can decide when $x^A \in I$, depending on the behavior of the Hilbert function of I.

Lemma 1.6. Let I be a Borel-fixed ideal. Assume that $\dim_k(R/I)_t < |P(x^A)|$ for $t = \deg x^A$. Then $x^A \in I$.

Proof. If $x^A \notin I$, then $P(x^A) \cap I = \emptyset$ by Lemma 1.1. Since $P(x^A)$ consists of monomials of degree *t*, this implies $\dim_k(R/I)_t \ge |P(x^A)|$, a contradiction. \Box

Theorem 1.7. Suppose $x^A = x_{i_1}^{\alpha_{i_1}} \cdots x_{i_s}^{\alpha_{i_s}}$ with $\alpha_{i_1}, \ldots, \alpha_{i_s} > 0, 1 \le i_1 < \cdots < i_s \le n$. Put $i_{s+1} = n + 1$. Then

$$|P(x^{A})| \ge \sum_{t=1}^{s} \binom{\alpha_{i_{1}} + \dots + \alpha_{i_{t}} + i_{t+1} - i_{t} - 1}{i_{t+1} - i_{t} - 1} - s + 1.$$

Proof. The cases n = 0 and deg $x^A = 0$ are trivial because $x^A = 1$. Assume that $n \ge 1$ and deg $x^A > 0$.

If $i_s = n$, we let $x^B = x_{i_1}^{\alpha_{i_1}} \cdots x_{i_{s-1}}^{\alpha_{i_{s-1}}}$ and consider x^B as a monomial in the polynomial ring $S = k[x_1, \dots, x_{n-1}]$. Any monomial of $P(x^A)$ is the product of a monomial of

 $P(x^B) \cap S$ with $x_n^{\alpha_n}$. The converse also holds. Hence $|P(x^A)| = |P(x^B) \cap S|$. Using induction on *n* we may assume that

$$|P(x^B) \cap S| \ge \sum_{t=1}^{s-1} \binom{\alpha_{i_1} + \dots + \alpha_{i_t} + i_{t+1} - i_t - 1}{i_{t+1} - i_t - 1} - (s-1) + 1.$$

Since $i_{s+1} = n + 1 = i_s + 1$, we have

$$\binom{\alpha_{i_1} + \dots + \alpha_{i_s} + i_{s+1} - i_s - 1}{i_{s+1} - i_s - 1} = 1$$

So we get

$$|P(x^{A})| = |P(x^{B}) \cap S| \ge \sum_{t=1}^{s} \binom{\alpha_{i_{1}} + \dots + \alpha_{i_{t}} + i_{t+1} - i_{t} - 1}{i_{t+1} - i_{t} - 1} - s + 1.$$

If $i_s < n$, we divide P(A) into two disjunct parts P_1 and P_2 . The first part P_1 consists of monomials divided by x_{i_1} , and the second part P_2 consists of monomials not divided by x_{i_1} . Set $x^C = x_{i_1}^{\alpha_1-1} x_{i_2}^{\alpha_2} \cdots x_{i_s}^{\alpha_s}$. Every monomial of P_1 is the product of x_{i_1} with a monomial of $P(x^C)$. The converse also holds. Hence $|P_1| = |P(x^C)|$. Using induction on deg (x^A) we may assume that

$$|P(x^{C})| \ge \sum_{t=1}^{s} \binom{\alpha_{i_{1}} + \dots + \alpha_{i_{t}} + i_{t+1} - i_{t} - 2}{i_{t+1} - i_{t} - 1} - s + 1$$
$$\ge \binom{\alpha_{i_{1}} + \dots + \alpha_{i_{s}} + i_{s+1} - i_{s} - 2}{i_{s+1} - i_{s} - 1}.$$

Note that the sum should starts from t = 2 to *s* if $a_{i_1} = 1$. In this case, the above formula holds because $\binom{\alpha_{i_1}-2}{\alpha_{i_1}+i_2-i_1-1} = \binom{i_2-i_1-1}{0} = 1$. To estimate $|P_2|$ let $x^D = x_{i_1+1}^{\alpha_{i_1}} \cdots x_{i_s+1}^{\alpha_{i_s}}$. It is obvious that every monomial of $P(x^D)$ does not contain x_{i_1} and can be Borel-specialized to x^A . Therefore, $P(x^D)$ is contained in P_2 . Using induction on i_s we may assume that

$$|P(x^{D})| \ge \sum_{t=1}^{s-1} \binom{\alpha_{i_1} + \dots + \alpha_{i_t} + i_{t+1} - i_t - 1}{i_{t+1} - i_t - 1} + \binom{\alpha_{i_1} + \dots + \alpha_{i_s} + i_{s+1} - i_s - 2}{i_{s+1} - i_s - 2} - s + 1.$$

Summing up we obtain

$$\begin{split} |P| &= |P_1| + |P_2| \ge \left| P(x^C) \right| + \left| P(x^D) \right| \\ &\ge \binom{\alpha_{i_1} + \dots + \alpha_{i_s} + i_{s+1} - i_s - 2}{i_{s+1} - i_s - 1} + \sum_{t=1}^{s-1} \binom{\alpha_{i_1} + \dots + \alpha_{i_t} + i_{t+1} - i_t - 1}{i_{t+1} - i_t - 1} \\ &+ \binom{\alpha_{i_1} + \dots + \alpha_{i_s} + i_{s+1} - i_s - 2}{i_{s+1} - i_s - 2} - s + 1 \\ &= \sum_{t=1}^{s} \binom{\alpha_{i_1} + \dots + \alpha_{i_t} + i_{t+1} - i_t - 1}{i_{t+1} - i_t - 1} - s + 1. \quad \Box \end{split}$$

The bound of Theorem 1.7 is far from being the best possible as one can realize from the proof. However, it is sharp in many cases.

Example 1.8. If $R = k[x_1, x_2, x_3]$ we have $P(x_1x_3) = \{x_1x_3, x_2x_3\}$. Hence

$$|P(x_1x_3)| = 2 = {\binom{3-1+1-1}{1}} + {\binom{4-3+1-1}{1}} - 2 + 1.$$

An interesting application of Theorem 1.7 is the following bound for the reduction number.

Corollary 1.9. Let I be a Borel-fixed monomial ideal. Assume that

$$\dim_k (R/I)_t < \binom{s+t}{t}$$

for some integers $s, t \ge 1$. Then x_{n-s+1}, \ldots, x_n generate a reduction of R/I with

$$r_{(x_{n-s+1},...,x_n)}(R/I) \leq t-1.$$

Proof. We have to show that the ideal $(I, x_{n-s+1}, ..., x_n)$ contains every monomial x^A of degree *t* in $x_1, ..., x_{n-s}$. If we write $x^A = x_{i_1}^{\alpha_{i_1}} \cdots x_{i_s}^{\alpha_{i_s}}$ with $1 \le i_1 < \cdots < i_s \le n-s$ and $\alpha_{i_1} + \cdots + \alpha_{i_s} = t$, then Theorem 1.7 gives

$$|P(x^{A})| \ge {n-i_{s}+t \choose t} \ge {s+t \choose t} > |P(x^{A})|.$$

By Lemma 1.6, this implies $x^A \in I$. \Box

2. Eakin–Sathaye's theorem

Let $R = k[x_1, ..., x_n]$ be a polynomial ring over an *infinite* field k of arbitrary characteristic. In this section we will deal with the reduction number of R/I for an arbitrary homogeneous ideal I. Let us first recall the following theorem of Eakin and Sathaye.

Theorem 2.1 [7, Theorem 1]. Let I be an arbitrary homogeneous ideal in R. Assume that

$$\dim_k (R/I)_t < \binom{s+t}{t}$$

for some integers $s, t \ge 1$. Choose s generic linear forms y_1, \ldots, y_s , that is in a non-empty open subset of the parameter space of s linear forms of R. Then y_1, \ldots, y_s generate a reduction of R/I with

$$r_{(y_1,\ldots,y_s)}(R/I) \leqslant t - 1.$$

Eakin–Sathaye's theorem provides an efficient way to estimate the reduction number (see, e.g., [17, Corollary 3.4 and Theorem 4.2]). We shall see that Corollary 1.9 (though formulated for Borel-fixed ideals and a fixed reduction) is equivalent to Eakin–Sathaye's theorem. For that we need the following observations.

First, the reduction number of a reduction generated by generic elements is the smallest one among reductions generated by the same number of generators.

Lemma 2.2. For every integer $s \ge \dim R/I$ choose s generic linear forms y_1, \ldots, y_s in R. Then y_1, \ldots, y_s generate a reduction of R/I with

$$r_{(y_1,...,y_s)}(R/I) = r_s(R/I).$$

Proof. The statement was already proved for the case $s = \dim R$ in [14, Lemma 4.2]. The proof for arbitrary $s \ge \dim R$ is similar, hence we omit it. \Box

Secondly, the smallest reduction number does not change when passing to any generic initial ideal.

Theorem 2.3. Let gin(I) denote the generic initial ideal of I with respect to the reverse lexicographic term order. For every integer $s \ge \dim R/I$ we have

$$r_s(S/I) = r_s(S/\operatorname{gin}(I)).$$

Proof. The statement was already proved for the case $s = \dim R$ in [14, Theorem 4.3]. The case of arbitrary $s \ge \dim R/I$ can be proved in the same manner (though not trivial). \Box

Now we are able to show that Eakin–Sathaye's theorem can be deduced from Corollary 1.9. Since the proof relies only on properties of Gröbner basis and Borel-fixed ideals, it can be viewed as a combinatorial proof.

Combinatorial proof of Theorem 2.1. By Lemma 2.2, we have to show that $r_s(R/I) \le t - 1$. Let gin(*I*) denote the generic initial ideal of *I* with respect to the reverse

lexicographic term order. From the theory of Gröbner bases we know that gin(I) is a Borelfixed monomial ideal with $dim_k(R/gin(I))_t = dim_k(R/I)_t$ (see, e.g., [8, Theorem 15.3]). By Corollary 1.9, the assumption $dim_k(R/I)_t < {s+t \choose t}$ implies

$$r_s(R/\operatorname{gin}(I)) \leqslant r_{(x_{n-s+1},\ldots,x_n)}(R/\operatorname{gin}(I)) \leqslant t-1.$$

Now, we only need to apply Theorem 2.3 to get back to $r_s(R/I)$. \Box

On the other hand, Corollary 1.9 can be deduced from Eakin–Sathaye's theorem because according to Theorem 1.2(ii) and Lemma 2.2 we have

$$r_{(x_{n-s+1},...,x_n)}(R/I) = r_s(R/I) = r_{(y_1,...,y_s)}(R/I)$$

for any Borel-fixed ideal I.

We shall see that the bound of Eakin–Sathaye's theorem is attained exactly by lexsegment ideals. Recall that a *lex-segment* ideal is a monomial ideal I such that if $x^A \in I$ then $x^B \in I$ for any monomial $x^B \ge x^A$ with respect to the lexicographic term order. It is easy to see that lex-segment ideals are strongly stable.

Theorem 2.4. Let I be a lex-segment ideal. Then

$$r_s(R/I) = \min\left\{t \mid \dim_k(R/I)_t < \binom{s+t}{t}\right\} - 1.$$

Proof. By Theorem 2.1 and Lemma 2.2 we have $r_s(R/I) \leq r - 1$, where

$$r := \min\left\{t \mid \dim_k(R/I)_t < \binom{s+t}{t}\right\}.$$

It remains to show that $r_s(R/I) \ge r - 1$. Assume to the contrary that $r_s(R/I) < r - 1$. By Theorem 1.2(ii) we have $r_{(x_{n-s+1},...,x_n)}(R/I) = r_s(R/I) < r - 1$. Using Corollary 1.4 we can deduce that $x_{n-s}^{r-1} \in I$. By the definition of a lex-segment ideal, this implies that every monomial of degree r - 1 which involves one of the variables x_1, \ldots, x_{n-s-1} is contained in *I*. Equivalently, the monomials of degree r - 1 not contained in *I* involve only the s + 1variables x_{n-s}, \ldots, x_n . Since $x_{n-s}^{r-1} \in I$, this implies

$$\dim_k (R/I)_{r-1} < \binom{s+r-1}{r-1}.$$

This contradicts to the definition of r. \Box

Given a homogeneous ideal I in R, we denote by I^{lex} the unique lex-segment ideal whose Hilbert function is equal to that of I. It is well-known that the Betti numbers of R/I^{lex} are extremal in the class of ideals with a given Hilbert function [2,9,11]. If char(k) = 0, Conca showed that the reduction number $r(R/I^{\text{lex}})$ is extremal in

this sense [5, Proposition 10]. He raised the question whether this result holds for all characteristics. The following result will settle Conca's question in the affirmative.

Corollary 2.5. Let I be an arbitrary homogeneous ideal in R and $s \ge \dim R/I$. Then

$$r_s(R/I) \leqslant r_s(R/I^{\text{lex}}).$$

Proof. According to Theorem 2.4 we have

$$r_s(R/I^{\text{lex}}) = \min\left\{t \mid \dim_k(R/I)_t < {s+t \choose t}\right\} - 1.$$

By Theorem 2.1, this implies $r_s(R/I) \leq r_s(R/I^{\text{lex}})$. \Box

By Corollary 2.5, $r(R/I^{\text{lex}})$ is extremal in the class of ideals with a given Hilbert function. So it is of interest to estimate $r(R/I^{\text{lex}})$ in terms of other invariants of *I*.

Lemma 2.6. Let I be an arbitrary homogeneous ideal in R and $d = \dim R/I \ge 1$. Let Q be an ideal generated by d linear forms of R which forms a reduction in R/I. Put $e = \ell(R/Q + I)$. Then

$$r(R/I^{\text{lex}}) \leq d(e-2) + 1.$$

Proof. By [12, Theorem 2.2] we know that

$$\dim_k(R/I)_t \leqslant (e-1)\binom{t+d-2}{d-1} + \binom{t+d-1}{d-1}.$$

For t = d(e - 2) + 2 we have

$$(e-1)\binom{de-d}{d-1} + \binom{de-d+1}{d-1} < \binom{de-d+2}{d}.$$

Hence the conclusion follows from Theorem 2.4. \Box

We would like to point out that a bound for r(R/I) in terms of *e* should be smaller. In fact, we always have

$$r(R/I) \leq r_Q(R/I) \leq \ell(R/Q+I) - 1 = e - 1.$$

If R/I is a Cohen–Macaulay ring, e is equal to the degree (multiplicity) of I. If R/I is not a Cohen–Macaulay ring, we may replace e by the extended (cohomological) degree of I introduced in [6].

Theorem 2.7. Let I be an arbitrary homogeneous ideal in R and $d = \dim R/I \ge 1$. Let $a_1 \ge a_2 \ge \cdots \ge a_s$ be the degrees of the minimal homogeneous generators of I. Then

344

(i) $r(R/I^{\text{lex}}) \leq d[\binom{r(R/I)+n-d}{n-d} - 2] + 1,$ (ii) $r(R/I^{\text{lex}}) \leq d(a_1 \cdots a_{n-d} - 2) + 1.$

Proof. Without loss of generality we may assume that $Q = (x_{n-d+1}, ..., x_n)$ forms a minimal reduction of R/I with $r_Q(R/I) = r(R/I)$. Since $R_t = (Q + I)_t$ for $t \ge r(R/I) + 1$, we have

$$\ell(R/Q+I) \leqslant \sum_{t=0}^{r(R/I)} \dim_k (R/Q+I)_t$$
$$\leqslant \sum_{t=0}^{r(R/I)} \dim_k (R/Q)_t = \binom{r(R/I) + n - d}{n - d}$$

Hence (i) follows from Lemma 2.6. To prove (ii) we put $R' = k[x_1, \ldots, x_{n-d}]$ and $I' = (I + Q) \cap R'$. Then I' is generated by forms of degrees $a'_1 \leq a_1, a'_2 \leq a_2, \ldots$ and $\ell(R/Q + I) = \ell(R'/I')$. By [4] we can choose a regular sequence f_1, \ldots, f_{n-d} in I' such that deg $(f_i) = a'_i, i = 1, \ldots, n - d$. It is well-known that $\ell(R'/(f_1, \ldots, f_{n-d})) = a_1 \cdots a_{n-d}$. Hence

$$\ell(R/Q+I) \leqslant a'_1 \cdots a'_{n-d} \leqslant a_1 \cdots a_{n-d}.$$

Thus, (ii) follows from Lemma 2.6. \Box

Finally we give some examples which show that the bounds of Theorem 2.7 are sharp.

Example 2.8. Let $I = (x_1, \ldots, x_{n-d})^2$. It is easy to see that r(R/I) = 1 and

$$\dim_k (R/I)_t = \binom{d+t-1}{d-1} + (n-d)\binom{d+t-2}{d-1}$$

for all $t \ge 1$. By Theorem 2.4 we have

$$r(R/I^{\text{lex}}) = \min\left\{t; \binom{d+t-1}{d-1} + (n-d)\binom{d+t-2}{d-1} < \binom{d+t}{d}\right\} - 1$$

= $d(n-d-1) + 1.$

This is exactly the bound (i) of Theorem 2.7.

Example 2.9. Consider the one-dimensional ideal $I = (x_1^a) \subset R = k[x_1, x_2], a \ge 1$. We have dim_k $(R/I)_t = a$ for all $t \ge a - 1$. Hence Theorem 2.4 gives

$$r(R/I^{\text{lex}}) = \min\{t \mid a < t+1\} - 1 = a - 1.$$

This shows that the bound (ii) of Theorem 2.7 is sharp.

References

- [1] D. Bayer, M. Stillman, A criterion for detecting *m*-regularity, Invent. Math. 87 (1987) 1–11.
- [2] A. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. Algebra 21 (1993) 2317–2334.
- [3] H. Bresinsky, L.T. Hoa, On the reduction number of some graded algebras, Proc. Amer. Math. Soc. 127 (1999) 1257–1263.
- [4] J. Briançon, Sur le degré des relations entre polynômes, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983) 553–556.
- [5] A. Conca, Reduction numbers and initial ideals, Proc. Amer. Math. Soc., in press.
- [6] L.R. Doering, T. Gunston, W. Vasconcelos, Cohomological degrees and Hilbert functions of graded modules, Amer. J. Math. 120 (1998) 493–504.
- [7] P. Eakin, A. Sathaye, Prestable ideals, J. Algebra 41 (1976) 439-454.
- [8] D. Eisenbud, Commutative Algebra with a Viewpoint toward Algebraic Geometry, Springer, 1994.
- [9] H. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. Algebra 21 (1993) 2335–2350.
- [10] D.G. Northcott, D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954) 145– 158.
- [11] K. Pardue, Maximal minimal resolutions, Illinois J. Math. 40 (1996) 564–585.
- [12] M.E. Rossi, G. Valla, W. Vasconcelos, Maximal Hilbert functions, Results in Math. 39 (2001) 99-114.
- [13] N.V. Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987) 229–236.
- [14] N.V. Trung, Gröbner bases, local cohomology and reduction number, Proc. Amer. Math. Soc. 129 (2001) 9–18.
- [15] N.V. Trung, Constructive characterization of the reduction numbers, Compositio Math., in press.
- [16] W. Vasconcelos, The reduction number of an algebra, Compositio Math. 106 (1996) 189–197.
- [17] W. Vasconcelos, Reduction numbers of ideals, J. Algebra 216 (1999) 652-664.