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Abstract

The aim of this paper is to study the relationship between the reduction number and Borel-fixed
ideals in all characteristics. Especially it is shown th@/I) < r(R/I'eX), where!'®* denotes the
unique lex-segment ideal whose Hilbert function is equal to thdt @his solves a recent question
by Conca.
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Introduction

Let A be a standard graded algebra over an infinite fieldn idealq = (z1, ..., z5),
wherezy, ..., z; are linear forms of4, is called ans-reductionof A if g, = A, for ¢ large
enough (cf. [10]). Theeduction numbeof A with respect tay, written asrq(A), is the
minimum number such thaty,+1 = A,41. Thes-reduction numbeof A is defined as

rs(A) :=min{rq(A) | = (z1. ..., 2) is areduction oA }.

Let d = dimA. It is well-known that a reductiog of A is minimal with respect to
inclusion if and only ifq can be generated kiyelements. In this casé[z1,...,z4] < A
is a Noether normalization of and the reduction numbeg(A) is the maximum degree of
the generators of as a graded|z, .. ., zg]-module [16]. For short, we setA) = ry(A).
The reduction numbet(A) can be used as a measure for the complexity.dfor instance,
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we can relate-(A) to other important invariants of such that the degree, the arithmetic
degree and the Castelnuovo—Mumford regularity (see [13,16,17]).

Let I be an arbitrary homogeneous ideal in a polynomial thhe k[x1, ..., x,]. It
is shown recently in [5] and [15] (see also [3]) thaR/I) < r(R/in(I)), where in(])
denotes the initial ideal of with respect to a given term order. In particular, we have
r(R/I) =r(R/gin(I)), where giri/) denotes the generic initial ideal dfwith respect
to the reverse lexicographic term order [14]. Since generic initial ideals are Borel-fixed
(see the definition in Section 1), we may restrict the study on the reduction number to that
of Borel-fixed ideals. If chak) = 0, Borel-fixed ideals are characterized by the so-called
strong stability which gives information on their monomials [1]. Similar characterizations
can be established for the positive characteristic cases [11]. But these characterizations are
not good enough for certain problems. For instance, Conca [5] has raised the question
whetherr(R/I) < r(R/1'®%), where I'®* denotes the unique lex-segment ideal whose
Hilbert function is equal to that of. He solved this question for ch@) = 0 by using
the strong stability, but his proof does not work for the positive characteristic cases.

The aim of this paper is to study the relationship betweenstheduction number
and Borel-fixed ideals in all characteristics. By definition, Borel-fixed ideals are closed
under certain specializations which is similar to the strong stability. Using this property we
show that the reduction numberssefeductions of the quotient ring of a Borel-fixed ideal
are attained by-reductions generated by variables (Theorem 1.2). This gives a practical
way to compute the-reduction number. We will also estimate the number of monomials
which can be specialized to a given monomial in the above sense (Theorem 1.7). As
a consequence, we obtain a combinatorial version of the well-known Eakin—Sathaye’s
theorem which estimates thereduction number by means of the Hilbert function
(Corollary 1.9 and Theorem 2.1). Furthermore, we show that the bound of Eakin—Sathaye’s
theorem is attained by thereduction number whe# is a lex-segment monomial ideal
(Theorem 2.4). These results help solve Conca’s question for all characteristics in a more
general setting, namely, that(R/I) < rS(R/I'eX). Finally, sincer(R/I'eX) is extremal in
the class of ideals with a given Hilbert function, we will estimat® /') in terms of
some standard invariants 6f We shall see that(R/1'®*) is bounded by a polynomial of
r(R/I) (Theorem 2.7).

Throughout this paper, i C R is an ideal which generates a reduction®f/, then
we will denote its reduction number by (R/1).

1. Borel-fixed ideals

Let I be a monomial ideal of the polynomial rinQ = k[x1, ..., x,]. Let 5 denote
the Borel subgroup of Glz, k) which consists of the upper triangular invertible matrices.
Thenl is called aBorel-fixedideal if for all g € B, g(I) = I. We say that a monomiai?
is a Borel specializatiorof a monomialx“ if x? can be obtained from“ by replacing
every variablex; of x by a variablex;, with j; <i. The name comes from the simple fact
that any Borel-fixed monomial ideal is closed under Borel specialization.
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Lemma 1.1. Let I be a Borel-fixed monomial ideal. Ifcontainsx# thenI contains any
Borel specialization of 4.

Proof. Letx® be a monomial obtained frort! by replacing each variable by a variable
xj; with j; <i, i =1,...,n. Letg bethe element of the Borel grolfjdefined by the linear
transformation

NI LY if ji=1i,
8(xi) = xi+xj if ji £

Thenx? is a monomial ofg(x4). Sinceg(1) = I, this impliesx? e I. O

Letd =dimR/I. If I is a Borel-fixed ideal, every associated prime ideall dias
the form(xy, ..., x;) fori > n —d (see, e.g., [8, Corollary 15.25]). From this it follows
that s variables of R generate ary-reduction of R/I if and only if they are of the
form xi, ..., Xy Xn—d+1, -, X With 1 < iy < -+ <is—g < n —d. It is clear that
r(xil,__,,xl.“_d,xn_d+1,__,,xn)(R/I) is the least integer such that all monomials of degree
r + 1 in the remaining variables are contained/inThe following result shows that the
computation of the reduction numbers of alfeductions ofR/I can be reduced to the
above class aof-reductions.

Theorem 1.2. Let I be a Borel-fixed ideal angd>d =dimR/I. Then

(i) Foreverys-reductionq of R/I, there exist variables;,, ..., x;_, with1<ii <--- <
is_q <n—d suchthat

(”) rS(R/I) = r(x,,_.‘_#l,...,x,,)(R/I)'

Proof. Letys, ..., ys be linear forms ofR which generateg in R/I. Without restriction
we may assume that

yi=ajix1+aizxo+ -+ aizx; (G=1...,5)

with a;;, # 0 for different indicesy, ..., . Let g be the element of the Borel group
defined by the linear transformation

.xj ifjé{t].’""tj‘}i

g(x/')={yl. if j=r, 1<i<s.

Then g((xy, ..., x,)) = g((y1, ..., ¥s)). Sinceg(I) = I, this implies thaty,, ..., x;
generate an-reduction ofR /1 with

ra(R/D) = r(a.v) R/ D).
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As observed beforey,, ..., x;,, must be of the form;,, ..., x;_,, Xp—a+1, ..., x, With
1<ig <+ <ig—qg <n—d.This proves (i).

To prove (ii) chooseq such thatr(R/I) = rq(R/I). By (i) there exist variables
Xiq, ..., Xz, such thatrg(R/T) = r(x,l,...,x,s)(R/I). Note thatr(xtl,__,,xts)(R/I) is the least
integerr such that all monomials of degreet 1 in the remaining variables are contained
in I and that all monomials of degreet+ 1 in x1, ..., x,—g are their Borel specializations.
By Lemma 1.1, the latter monomials are contained,itoo. This implies

V(x,l,...,x,l‘)(R/I) Z V(xn,s+1,...,xn)(R/I) > rg(R/1).
So we conclude that (R/1) =r(x,_,1,...x,) (R/I). O

The cases = d of Theorem 1.2 was already proved by Bresinsky and Hoa [3,
Theorem 11]. They showed that all minimal reductionskg have the same reduction
number. But their arguments can not be extended to the general case. By Theorem 1.2(i),
there are at mogt ~¢) different reduction numbers for thereductions. This numbgf ~4)
can be attained if chér) > 0. This displays a different behaviour than in the cased.

Example 1.3. Assume that ch&) = p. Letd <s <n and 1l<aj < --- < a,_q be
integers. Then

=" ) S R=klxy, .

is a Borel-fixed ideal. For the-reductionQ = (xj;, ..., Xi,_,, Xn—d+1, - - - » X») Of R/I with
1<i1<---<isg_qg<n—dwehave

ro(R/1) = p“1 + ...+ pYn-s —n +s,

where{j1, ..., ju—s} ={1,...,n—d}\{i1, ..., is—q}. Hence the-reductions ofR /I have
exactly(’;:j) different reduction numbers. Moreover, we have

Vs(R/I):pa1+...+pan—.\ —n4+s.

If char(k) = 0, Borel-fixed ideals are characterized by a closure property stronger than
that of Borel specialization. Recall that a monomial idéails called strongly stable
if wheneverx e I and x* is divided by x;, thenx4x;/x; € I for all j <i. Any
strongly stable monomial ideal is Borel-fixed. The converse holds if(ghas O [1,
Proposition 2.7]. In this case we can easily compute the reduction numtzet/dby the
following result.

Corollary 1.4. Let I be a strongly stable monomial ideal. For ang: dimR /I we have

re(R/I) =min{r | x/TT e I}.
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Proof. By Theorem 1.2(ii) we have to prove that

Fetn_sinnen (R/D =min{z | xI T e 1),

Hence, it is sufficient to show that '™ < I then all monomials of degree+ 1 in
x1,...,X,—g are contained id. But this follows from the strong stability df. O

Example 1.3 shows that Lemma 1.4 does not holdif not strongly stable.

If char(k) = 0, the number of possible reduction numbers forstneductions ofR /1 is
much smaller than in the case cligr> 0. In fact, for any-reductionQ = (x;,, ..., xi,_,.
Xp—d+1, -, Xp) With 1 <ip < -+ - <is—g < n —d, we can show similarly as above that

ro(R/I) =min{t | x;.j'_ls el},
wherej,_; is the largest index outside the $ét, ..., is_qg,n —d + 1, ..., n}. Since there
at mosts — d + 1 such indices, Theorem 1.2(i) shows that there are at mest/ + 1
different reduction numbers for thereductions.

Example 1.5. Let I be the ideal generated by all monomials bigger or equal a monomial
in the listxy*, ..., x."~ with respect to the graded lexicographic order, wheredy <
.- < ay—q. Itis easy to see that this ideal is strongly stable andstheductions ofR /1

have exactly — d + 1 different reduction numbers.

The set of all monomials which can be Borel-specialized fowill be denoted by
P(x*). If we can estimate the cardinalify (x*)| of P(x4), we can decide when? € I,
depending on the behavior of the Hilbert function/of

Lemma 1.6. Let I be a Borel-fixed ideal. Assume thditn (R/I); < |P(x*)| for ¢ =
degx4. Thenx4 e 1.

Proof. If x4 ¢ I, thenP(x*) NI =@ by Lemma 1.1. Sinc® (x*) consists of monomials
of degree, this implies dim(R/I); > |P(x*4)|, a contradiction. O

Theorem 1.7. Suppose” =xZ’1 cxs
is+1=n+ 1. Then

i\ with o, ..., 5, > 0,1<i1 < -+ < iy <n. Put

N

A oy + oy i — i — 1 B
|P(x )|>;( bt iy 1 ) s+ 1.

Proof. The cases =0 and deg? = 0 are trivial because” = 1. Assume that > 1 and
degx4 > 0.

If iy =n, we letx? = xffl o -xz':l and considex? as a monomial in the polynomial
rng S = k[x1,...,x,_1]. Any monomial of P(x4) is the product of a monomial of
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P(xB) N S with xy". The converse also holds. HengR(x4)| = |P(x?) N S|. Using
induction onn we may assume that

s—1

B S Oli1+"'+ai,+il+l_it_1)_ _
|P(x )ﬂS\/;< AN =1 +1

Sinceizy1 =n+1=i;+ 1, we have

(Oli1+"'+ai5+is+l_is_l>_1
i1 —ig—1 '

So we get

N

A B aip +ooo ot —i =1\
P(x )|_|P(x)ﬂS|>;( et ) )

If iy <n,we divideP (A) into two disjunct parts; and P,. The first partP; consists of
monomials divided by;, , and the second paP consists of monomials not divided by, .
SetxC = xl?‘il’lef . xf‘ Every monomial ofP; is the product of;, with a monomial of
P(x%). The converse also holds. Henda | = | P(x)|. Using induction on deg*) we
may assume that

N . .
c dip oo, i1 — i — 2
P(x )|>z( i Cet1
=1
S Olil""""'()[is"'is+1_is_2
- fg41—is—1 '

Note that the sum should starts fram- 2 to s if a;; = 1. In this case, the above formula

o, —2 _ (i—i1—1y __ H D__ % Uig H
holds becaus(aailJrl.lZ_[l_l) = ("¢ ) =1.ToestimateP,| letx” =x; 1, ---x; ;. Itis
obvious that every monomial @t (x?) does not contain;, and can be Borel-specialized
to x4. Therefore P (x?) is contained inP,. Using induction ori; we may assume that

s—1

LCTED o (AN

=1 it
+(ai1+"'.+aif—i._iSJrl_is_z)_s+l.
ls+1_ls_2

Summing up we obtain
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|P| =Pl +|P2| > |P(x)| +|P(xP)]

. . s—1 . .
> <0li1+"'.+0li3 '|.'ls+1—ls_2)+Z(di1+“'+“i,+lt+1—lt—1)
isy1—is—1 Py

i1 —ir—1
+(“i1+---+ai5+is+1—is—2>_s+1

i.s+l_is -2
:i(ailer-Jmi’J.rml_it_l)_S+1. O
=1 lt_l,_l—l[—l

The bound of Theorem 1.7 is far from being the best possible as one can realize from
the proof. However, it is sharp in many cases.

Example 1.8. If R = k[x1, x2, x3] we haveP (x1x3) = {x1x3, x2x3}. Hence

3—-1+1-1 4-34+1-1
\P(x1X3)\=2=( 1 >+< 1 )—2+1.

An interesting application of Theorem 1.7 is the following bound for the reduction
number.

Corollary 1.9. Let I be a Borel-fixed monomial ideal. Assume that

. t
dime(R/I); < <S;’ )
for some integers, ¢t > 1. Thenx, 41, ..., x, generate a reduction a® /I with
r(x,,_s_,_l,...,x,,)(R/I) <r—1

Proof. We have to show that the idedl, x,,_ 11, . .., x,) contains every monomial* of
o

degree in x1, ..., x,_s. If we write x4 =x,.1l mxff"s withl<ii<---<ig<n-—sand
o, +---+ai, =t, then Theorem 1.7 gives

2e= (") = () = e

By Lemma 1.6, this implies4 € I. O

2. Eakin—-Sathaye'stheorem

Let R = k[x1,...,x,] be a polynomial ring over ainfinite field £ of arbitrary
characteristic. In this section we will deal with the reduction numbét/affor an arbitrary
homogeneous idedl Let us first recall the following theorem of Eakin and Sathaye.
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Theorem 2.1[7, Theorem 1]Let I be an arbitrary homogeneous ideal ln Assume that

dimg (R/ 1), < <S Jt’t)

for some integers, r > 1. Choose generic linear formsg, .. ., ys, thatis in a non-empty
open subset of the parameter space dihear forms ofR. Thenys, ..., y; generate a
reduction ofR/I with

I’()yl,._.’}vs)(R/I) <t— 1.

Eakin—Sathaye’s theorem provides an efficient way to estimate the reduction number
(see, e.g., [17, Corollary 3.4 and Theorem 4.2]). We shall see that Corollary 1.9 (though
formulated for Borel-fixed ideals and a fixed reduction) is equivalent to Eakin—Sathaye’s
theorem. For that we need the following observations.

First, the reduction number of a reduction generated by generic elements is the smallest
one among reductions generated by the same number of generators.

Lemma 2.2. For every integes > dim R/I chooses generic linear formg, ..., ys in R.
Thenys, ..., y; generate a reduction a® /I with

F(ypenys) (R/D) = r5(R/T).

Proof. The statement was already proved for the casedimR in [14, Lemma 4.2]. The
proof for arbitrarys > dim R is similar, hence we omit it. O

Secondly, the smallest reduction number does not change when passing to any generic
initial ideal.

Theorem 2.3. Let gin(/) denote the generic initial ideal df with respect to the reverse
lexicographic term order. For every integet> dimR/1 we have

rs(S/1) =rs(S/ gin(l)).

Proof. The statement was already proved for the casalim R in [14, Theorem 4.3]. The
case of arbitrary > dimR/I can be proved in the same manner (though not triviat).

Now we are able to show that Eakin—Sathaye's theorem can be deduced from
Corollary 1.9. Since the proof relies only on properties of Grobner basis and Borel-fixed
ideals, it can be viewed as a combinatorial proof.

Combinatorial proof of Theorem 2.1. By Lemma 2.2, we have to show thg{R/I) <
t — 1. Let ginl) denote the generic initial ideal of with respect to the reverse
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lexicographic term order. From the theory of Grobner bases we know th@dj ggra Borel-
fixed monomial ideal with din(R/ gin(1)); = dimi(R/I); (see, e.g., [8, Theorem 15.3]).
By Corollary 1.9, the assumption djtR /1), < (*T") implies

rs(R/9IN(D) < ree, gy, (R/GINCKD) <7 -1
Now, we only need to apply Theorem 2.3 to get backta@/1). O

Onthe other hand, Corollary 1.9 can be deduced from Eakin—Sathaye’s theorem because
according to Theorem 1.2(ii) and Lemma 2.2 we have

Ftpyiteentn) (RID) =15 (R/D) =7y, .y (R/T)

for any Borel-fixed ideal .

We shall see that the bound of Eakin—Sathaye’s theorem is attained exactly by lex-
segment ideals. Recall thatex-segmenideal is a monomial ideal such that ifx* € 1
thenx? e I for any monomiak # > x4 with respect to the lexicographic term order. It is
easy to see that lex-segment ideals are strongly stable.

Theorem 2.4. Let I be a lex-segment ideal. Then
rs(R/1) = min{t | dimg(R/I); < <S ;H)} -1

Proof. By Theorem 2.1 and Lemma 2.2 we hay€éRr/I) <r — 1, where

7= min{t | dimg(R/I); < <S;H)}

It remains to show that(R/I) > r — 1. Assume to the contrary that(R/I) <r — 1. By
Theorem 1.2(ii) we havey, _.,...x,)(R/I) =rs(R/I) <r — 1. Using Corollary 1.4 we
can deduce that;:;L € I. By the definition of a lex-segment ideal, this implies that every
monomial of degree — 1 which involves one of the variables, .. ., x,_s—1 iS contained

in 1. Equivalently, the monomials of degree- 1 not contained i involve only thes 4+ 1
variablesy,_s, ..., Xn. Sincex,’,:s1 € 1, this implies

dimy (R/1),_1 < (s tre 1).
r—1

This contradicts to the definition of 0O

Given a homogeneous idealin R, we denote by/'®* the unique lex-segment ideal
whose Hilbert function is equal to that df It is well-known that the Betti numbers
of R/I'®* are extremal in the class of ideals with a given Hilbert function [2,9,11].
If char(k) = 0, Conca showed that the reduction numbér/I'®¥) is extremal in
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this sense [5, Proposition 10]. He raised the question whether this result holds for all
characteristics. The following result will settle Conca’s question in the affirmative.

Corollary 2.5. Let I be an arbitrary homogeneous idealfhands > dimR/I. Then
re(R/T) <ry(R/T').

Proof. According to Theorem 2.4 we have
rs(R/1'®) = min{t | dimy (R/1); < (s J; t)} ~1

By Theorem 2.1, this implies (R/I) < ry(R/1'®). O

By Corollary 2.5,r(R/I'®) is extremal in the class of ideals with a given Hilbert
function. So itis of interest to estima;teR/I'eX) in terms of other invariants af.

Lemma 2.6. Let I be an arbitrary homogeneous ideal th andd = dimR/I > 1. Let
QO be an ideal generated by linear forms of R which forms a reduction iR/I. Put
e=4€(R/Q+1).Then

r(R/I'™) <d(e—2)+1.

Proof. By [12, Theorem 2.2] we know that

d—-2 d—-1
dimk(R/I),«e—l)(tZ_l >+(t2_1 )

Fort =d(e — 2) + 2 we have
de —d de—d+1 de —d+?2
(e—1) + < .
d—1 d—1 d
Hence the conclusion follows from Theorem 2.43

We would like to point out that a bound fetR/I) in terms ofe should be smaller. In
fact, we always have

r(R/I) <ro(R/I)<ER/Q+1)—1=e—1
If R/I is a Cohen—Macaulay ring,is equal to the degree (multiplicity) @f If R/I is not

a Cohen—Macaulay ring, we may replacby the extended (cohomological) degreel of
introduced in [6].

Theorem 2.7. Let I be an arbitrary homogeneous ideal landd = dimR/I > 1. Let
a1 > ap > --- > a,; be the degrees of the minimal homogeneous generatdrsidfen
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: R/D)+n—d
(i) r(R/1'™) <a[("FH) = 2] + 1,
(i) r(R/I'"™) <d(ay--an—a —2) +1.

Proof. Without loss of generality we may assume that= (x,—g+1,...,x,) forms
a minimal reduction ofR/I with ro(R/I) = r(R/I). SinceR; = (Q + I); for ¢t >
r(R/I) + 1, we have

r(R/1)
UR/Q+ D)< Y dimi(R/Q + 1)

t=0

r(R/1)
. R/I —d
<X d'mk(R/Q)tZ(r( oy )

t=0
Hence (i) follows from Lemma 2.6. To prove (ii)) we pwR = k[x1,...,x,—q] and
I'=( + Q)N R Thenl'is generated by forms of degrees< a1, a;, < az, ... and
L(R/Q + I) = £(R'/I'). By [4] we can choose a regular sequenge..., f,—qg in I’
such that de¢fi) =q;, i =1,...,n —d. It is well-known thaté(R'/(f1,..., fu—a)) =
ai---an—q. Hence
LR/Q+1)<ay--a,_y<ai-apq.

Thus, (ii) follows from Lemma 2.6. O

Finally we give some examples which show that the bounds of Theorem 2.7 are sharp.

Example2.8. Let I = (xq, ..., xn—a)?. Itis easy to see thai{ R/I) = 1 and

. d+t-1 d+t—-2
amecr/n = (7 ) ra-ao (130

forall ¢t > 1. By Theorem 2.4 we have
. d+rt—-1 d+t—-2 d+t
R/I'®) = . _ -1
r(R/1'%) mm{t,( g1 >+(n d)( g1 )<< J )}
=dn—d-1)+1
This is exactly the bound (i) of Theorem 2.7.

Example 2.9. Consider the one-dimensional idda= (x{) C R = k[x1,x2], a > 1. We
have dim(R/I); =a forallt > a — 1. Hence Theorem 2.4 gives

r(R/I'eX) =min{t|la<t+1)—1=a—1

This shows that the bound (ii) of Theorem 2.7 is sharp.
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