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Abstract

The transplantation of neural stem cells (NSCs) offers

a new potential therapeutic approach as a cell-based

delivery system for gene therapy in brain tumors. This

is based on the unique capacity of NSCs to migrate

throughout the brain and to target invading tumor

cells. However, the signals controlling the targeted

migration of transplanted NSCs are poorly defined. We

analyzed the in vitro and in vivo effects of angiogenic

growth factors and protein extracts from surgical

specimens of brain tumor patients on NSC migration.

Here, we demonstrate that vascular endothelial

growth factor (VEGF) is able to induce a long-range

attraction of transplanted human NSCs from distant

sites in the adult brain. Our results indicate that tumor-

upregulated VEGF and angiogenic-activated micro-

vasculature are relevant guidance signals for NSC

tropism toward brain tumors.
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Introduction

More than 17,000 patients are diagnosed yearly with ma-

lignant primary brain tumors and more than 170,000 are

diagnosed with tumor metastasis to the brain [1]. Despite

extensive technical improvements of conventional thera-

peutic regimens such as surgery, radiation, and chemo-

therapy, malignant brain tumors remain largely incurable.

The highly invasive nature of gliomas or the disseminated

presence of brain metastasis limits complete surgical re-

moval, and is one of the major reasons for their dismal prog-

nosis. Direct targeting and eradication of disseminated

tumor cells, before they give rise to a recurrent tumor, may

be a valuable therapeutic strategy. Neural stem cells (NSCs)

have been demonstrated to be effective for directly deliver-

ing therapeutic molecules to areas of glioma cell invasion

and to increase survival time in experimental glioma models

[2–5]. This is based on the enormous capacity of NSCs to

migrate throughout the brain and to target single or multifocal

areas of pathologic changes while stably expressing a thera-

peutic transgene. Whether transplanted directly in the paren-

chyma of the central nervous system (CNS), even at distant

sites of a brain tumor or injected intrathecally or intravenously,

enrichment of NSCs within the tumor and ‘‘tracking’’ of single

glioma cells migrating away from the main tumor mass have

been reported [2,6]. Little is known about the mechanisms

underlying the brain tumor tropism of NSCs. However, it is

essential for future clinical realization of NSC-based thera-

peutic strategies to find out the relevant signals responsible

for directing the migration and fate of transplanted NSCs.

During the embryonic development of the CNS, NSC mi-

gration is known to be guided over long distances by gradients

of chemotactic and repulsive molecules [7]. It seems reason-

able to speculate that soluble factors overexpressed by tumor

cells or by cells of the surrounding reactive parenchyma may,

in part, be responsible for the brain tumor tropism of NSCs.

Active angiogenesis is a major hallmark of malignant brain

tumors [8] and is a frequent feature of other neurologic

disorders in which NSC tropism has been observed [9,10]. In

the present study, we explored the hypothesis that angiogenic

growth factors expressed during the malignant progression of

different types of brain tumors are able to induce and guide the

targeted migration of NSCs.

Abbreviations: NSC, neural stem cell; VEGF, vascular endothelial growth factor; SF/HGF,

scatter factor/hepatocyte growth factor; PlGF, placenta growth factor

Address all correspondence to: Rona S. Carroll, PhD, Department of Neurosurgery, Brigham

and Women’s Hospital, 221 Longwood Avenue, LMRC Room 121, Boston, MA 02115.

E-mail: rcarroll@rics.bwh.harvard.edu
1This work was supported by Layton BioSciences, Inc., the NIH/NCI, and by a grant from the

German Research Foundation (DFG) to N.O.S.

*This article refers to supplementary material, which is designated by W (ie, Table W1, Figure

W1) and is available online at www.bcdecker.com.

Received 12 December 2004; Accepted 14 February 2005.

Copyright D 2005 Neoplasia Press, Inc. All rights reserved 1522-8002/05/$25.00

DOI 10.1593/neo.04781

Neoplasia . Vol. 7, No. 6, June 2005, pp. 623 –629 623

www.neoplasia.com

RESEARCH ARTICLE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82615622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Materials and Methods

Cell Culture

The clonal human NSC line HB1.F3 [11,12] was main-

tained as adherent cultures in DMEM supplemented with

10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml

penicillin, and 100 mg/ml streptomycin (Invitrogen, Grand

Island, NY). The same culture medium was used for the

clonal murine NSC line C17.2 with the addition of 5% horse

serum. Porcine aortic endothelial (PAE/KDR) cells stably

transfected with KDR (a gift from Dr. Lena Claesson-Welsh;

Ludwig Institute, Uppsala, Sweden) and the human glioblas-

toma cell lines U87 and U251 were cultured using the

recommended standard conditions. To obtain conditioned

media, the cell lines U87 and U251 were grown on 35-mm

plates to 80% confluency. Cultures were rinsed three times

with serum-free medium and incubated for another 48 hours

in serum-free DMEM supplemented with 2 mM nonessential

amino acids (Invitrogen), 2 mM L-glutamine, 100 U/ml peni-

cillin, and 100 mg/ml streptomycin. Conditioned media were

collected, cleared by centrifugation for 10 minutes at 600g,

and stored at �80jC. Human umbilical vein endothelial

cells (HUVECs; Clonetics, Wakersville, MD) were grown on

1% gelatin-coated plasticware in M199 medium (Invitrogen)

supplemented with 20% FBS, 90 mg/ml endothelial cell

growth supplement (Upstate Biotechnology, Lake Placid,

NY), 40 U/ml heparin (Sigma, St. Louis, MO), 100 U/ml peni-

cillin, and 100 mg/ml streptomycin.

Protein Extracts and ELISAs

Protein extracts were prepared from tumor specimens

from brain tumor patients treated at the Department of

Neurosurgery (Brigham and Women’s Hospital and Chil-

dren’s Hospital, Boston, MA) [13]. Protein concentrations

were determined using the bicinchoninic acid protein assay

(Pierce, Rockford, IL). All brain tumors were histologically

classified by the Department of Neuropathology (Brigham

and Women’s Hospital) according to the current WHO grad-

ing system. Growth factor contents of the protein extracts

were determined by using commercially available ELISA

kits (R&D Systems, Minneapolis, MN) for VEGF (DVE00),

PlGF (DPG00), and SF/HGF (DHG00).

Reverse Transcription Polymerase Chain Reaction

(RT-PCR)

Total RNA from HB1.F3 and KDR/PAE cells was pre-

pared using Qiagen RNeasy protocol (Qiagen, Valencia, CA)

and treated with DNase prior to further manipulation. Single-

stranded cDNA was prepared from 1 mg of total RNA using

oligo-p(dT)15 primers following the 1st Strand cDNA Synthe-

sis Kit for RT-PCR protocol (Roche, Indianapolis, IN).

c-met and actin PCR cDNA from the reverse transcription

reaction was subject to PCR in the presence of 0.25 mM of

each 5V and 3V primers, 1.25 U of Taq polymerase (Roche),

2 mM MgCl2, 0.2 mM deoxynucleotide mix, and 1� PCR

buffer. PCR was performed in a DNA thermal cycler (MJ

Research, Watertown, MA) for 32 cycles, each consisting of

95jC for 1 minute and 55jC for 1 minute, with a 72jC ex-

tension for 1 minute. After 32 cycles, there was a final

extension at 72jC for 10 minutes. PCR products were

visualized by ethidium bromide staining following 1.0% aga-

rose gel electrophoresis. The sense and antisense primers,

respectively, and the predicted sizes of the RT-PCR reaction

products were as follows:

c-met A: 5V-ACAGTGGCATGTCAACATCGCT-3V
c-met B: 5V-GCTCGGTAGTCTACAGATTC-3V (655 bp)

b-actin A: 5 V-GGCCATCTCTTGCTCGAAGT-3 V
b-actin B: 5V-GCCCAGAGCAAGAGAGGCAT-3V(513 bp).

VEGFR-2 PCR cDNA were amplified using VEGFR-2–

specific primers A and B for 30 cycles (95jC for 1 minute,

55jC for 1 minute, 72jC for 1 minute, with a final extension at

72jC for 10 minutes). A second round of PCR was carried

out using nested VEGFR-2–specific primers C and D for

30 cycles (95jC for 1 minute, 60jC for 1 minute, 72jC for

1 minute, with a final extension at 72jC for 10 minutes).

Primers and the predicted sizes of the RT-PCR reaction

products were as follows:

VEGFR-2 A: 5V-ACGCTGACATGTACGGTCTAT-3V
VEGFR-2 B: 5V-TTCCCATTTGCTGGCATCATA-3V
(1163 bp)

VEGFR-2 C: 5V-CATCACATCCACTGGTATTGG-3V
VEGFR-2 D: 5V-GCCAAGCTTGTACCATGTGAG-3V
(404 bp).

VEGFR-1 PCR cDNA were amplified using VEGFR-1–

specific primers A and B for 30 cycles (95jC for 1 minute,

55jC for 1 minute, 72jC for 1 minute with a final extension

at 72jC for 10 minutes). A second round of PCR was carried

out using nested VEGFR-1–specific primers C and D for

five cycles at (95jC for 1 minute, 48jC for 1 minute, 72jC for

1minute), five cycles at (95jC for 1minute, 47jC for 1minute,

72jC for 1 minute), five cycles at (95jC for 1 minute, 46jC
for 1 minute, 72jC for 1 minute), five cycles at (95jC for

1 minute, 45jC for 1 minute, 72jC for 1 minute), five cycles at

(95jC for 1minute, 44jC for 1minute, 72jC for 1minute), and

20 cycles at (95jC for 1 minute, 62jC for 1 minute, 72jC for

1minute, with a final extension at 72jC for 10 minutes).

Primers and the predicted sizes of the RT-PCR reaction

products were as follows:

VEGFR-1 A: 5V-GCAGGTGTGACTTTTGTTC-3V
VEGFR-1 B: 5V-AGGATTTCTTCCCCTGTGTA-3V (511 bp)

VEGFR-1 C: 5V-GAGAGCATCACTCAG-3V
VEGFR-1 D: 5V-CCCGCAGTAAAATCCA-3V (272 bp).

In Vitro Migration of NSC

NSC migration—in response to recombinant human

growth factors VEGF165, PlGF, and SF/HGF (R&D Systems),

protein extracts, and glioblastoma cell line–conditioned

media was assessed using a modified Boyden chamber

assay as previously described [6,13]. Values from at least

two independent experiments were expressed as the mean ±

standard error (SE) in percentage of the control migration

(=100%). The control migration was assessed in response

to serum-free DMEM containing 0.1% bovine serum albumin
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only and reflects the basal migration rate of NSCs in this assay.

Tissue extracts, each at a fixed concentration of 400 mg/ml

protein, were tested alone and in the presence of neutralizing

monoclonal antibodies against VEGF (MAB293; R&D Sys-

tems) and SF/HGF (MAB294; R&D Systems) at 20 mg/ml.

Tumor Tropism of NSCs

Tropism of the human NSC HB1.F3 toward orthotopic

human glioblastoma xenografts was demonstrated by

implantation of tumor cells (U251 or U87) into the brains

of 6-week-old nude mice. Animals were anesthetized

(100 mg/kg ketamine and 5 mg/kg xylazine) and received

stereotactically guided injections of 1�105 tumor cells in 2 ml
of PBS through a 30-gauge Hamilton syringe into the right

forebrain (f2 mm lateral and 1 mm anterior to bregma, at

a 3-mm depth from the skull surface). Ten days after tumor

cell injection, DiI-labeled human NSCs HB1.F3 (5�104 in

2 ml of PBS) were stereotactically injected in the opposite

hemisphere using the same coordinates. NSC labeling

using the lipophilic tracer DiI (D-282; Molecular Probes,

Eugene, OR) was performed immediately prior injection

for 30 minutes according to the manufacturer’s protocol.

After an additional 8 days, animals were perfused with 4%

paraformaldehyde, and the brains were removed and cryo-

sectioned coronally at 10-mm intervals. All animal works

were carried out in the animal facility at Brigham and

Women’s Hospital in accordance with federal, local, and

institutional guidelines.

In Vivo Migration of NSCs

The in vivomigration of transplanted human NSC HB1.F3

in response to constant intraparenchymal infusions of re-

combinant human VEGF165 (0.25 ng/h), SF/HGF (0.25 ng/h),

or PBS alone was assessed by left frontal implantation of a

brain infusion cannula (f2 mm lateral and 1 mm anterior to

bregma, at a 3-mm depth from the skull surface) connected

to an osmotic minipump designed to deliver 0.25 ml/hr (Model

2004; Alzet, Cupertino, CA) [14]. To establish a constant

flow prior to implantation, the filled pumps were incubated

overnight in sterile PBS at 37jC. The pump with sufficient

catheter tubing was placed subcutaneously on the back

of the anaesthetized mice; the anterior end of the catheter

connected to the infusion cannula was tunneled subcutane-

ously to the site of the burr hole and fixed on the skull with

surgical glue. The wounds were carefully sutured. Two days

after the pump implantation, Dil-labeled HB1.F3 or HUVECs

used as control (5 � 104 in 2 ml of PBS) were stereotactically

transplanted in the right hemisphere using the described

coordinates. The animals were perfused with 4% para-

formaldehyde 5 or 9 days following cell transplantation, and

the brainswere removed and stored at�80jCuntil processed

for histologic analysis. The correct pump infusion rates during

the experiments were confirmed by checking the filling status

of the pump reservoirs at the day of animal sacrifice.

Histologic Analysis

Frozen sections were counterstained with DAPI or hema-

toxylin and eosin for histologic evaluation. Blood vessel stain-

ing was carried out using standard immunofluorescence

techniques with anti-CD31 (1:50; BD Biosciences Pharmin-

gen1, San Jose, CA) as the primary antibody and FITC anti-

rat IgG (1:50; Jackson ImmunoResearch,West Grove, PA) as

the secondary antibody. Antibodies for assessing the cellular

receptor expression included the primary antibodies anti–

VEGFR-2 (1:100; Santa Cruz Biotechnology, Santa Cruz,

CA) and anti-cMET (1:100; Santa Cruz Biotechnology) and

the secondary antibody FITC anti-rabbit IgG (1:40; DAKO,

Carpinteria, CA). Detection of humanNSCsby themonoclonal

antibody to the nuclear antigen NuMA (Ab-2) (Oncogene

NA09L) was carried out using standard techniques with the

VectastainEliteABCkit (Vector Laboratories,Burlingame,CA).

Statistical Analysis

Correlations between the growth factor content of the

protein extracts and their ability to induce NSC migration

were assessed by a nonlinear regression analysis. Because

the values were not normally distributed we performed

a regression on the ranks of the values which is a non

parametric regression [15]. Only P < .05 were considered

statistically significant.

Results and Discussion

To investigate the signals that are involved in the brain

tumor tropism of NSCs, we used the human NSC line

HB1.F3 [11,12], which was derived from the ventricular

zone of a 14-week-old human fetal brain and the well-

characterized murine NSC line C17.2 [2,6,9]. Tumor tro-

pism of the human NSC line HB1.F3 was demonstrated by

establishing human U87 or U251 glioblastoma xenografts

in the left forebrain of adult nude mice. Ten days later,

5�104 NSCs labeled with the lipophilic cell tracer Dil were

stereotactically injected in the forebrain of the contralat-

eral hemisphere. Within 1 week, the NSCs crossed the cor-

pus callosum and enriched in the tumor mass (Figure 1A).

Even small tumor satellites distant from the main tumor

mass were targeted by NSCs (Figure 1B). In vitro, the con-

ditioned media of U87 and U251 glioblastoma cells stimu-

lated a directed NSC migration in the modified Boyden

chamber assay up to two-fold (207 ± 18%, P < .01) and up

to three-fold (316 ± 19%, P < .01) compared to the con-

trol, respectively. This suggests that soluble chemotactic

factors produced by glioma cells may, in part, be respon-

sible for inducing and guiding NSC migration. In vivo, we

frequently observed a colocalization of glioma-targeting

NSCs with the tumor vasculature (Figure 1C), suggesting

that tumor blood vessels provide a vascular niche, possibly

allowing survival of the NSCs within the metabolic-

deprived tumor environment. Recent reports indicated that

the recruitment and differentiation of neural precursors in

the adult brain are linked to active angiogenesis [16–18].

Given that angiogenic activity is a frequent feature of many

pathologic processes especially of malignant brain tumors,

we hypothesized that tumor-expressed angiogenic fac-

tors may serve as chemoattractive signals for NSCs in

the adult brain.
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To explore this hypothesis, we tested 56 human protein

extracts prepared from surgical specimens of gliomas of

different histologic grades, brain metastases, meningiomas,

and nontumoral brain tissues for their effects on NSC migra-

tion. Extracts normalized for their total protein content from

high-grade gliomas WHO III– IV, brain metastases, and

meningiomas induced a significant higher HB1.F3 and

C17.2 migration in vitro when compared to protein extracts

from low-grade gliomas and nontumoral brain tissues de-

rived from patients without any sign of tumor (Figure 1D and

Table 1). Whereas the microvasculature of low-grade glio-

mas resembles that of normal brain, the more malignant

variants of brain tumors are highly vascularized and known

for the upregulation of positive regulators of angiogenesis

including vascular endothelial growth factor (VEGF), pla-

centa growth factor (PlGF), and scatter factor/hepatocyte

Figure 1. Brain tumor tropism of the human neural stem cell line, HB1.F3. (A) Distribution of migrated NSCs (red) within the tumor mass of a U87 human

glioblastoma xenograft (arrows = tumor border; blue = cell nuclei; bar = 150 �m). (B) Invaded tumor cells distant from the main tumor mass of a U251 human

glioblastoma xenograft coopting a blood vessel were surrounded by human NSCs (* = blood vessel; bar = 100 �m). (C) Colocalization of an NSC (red) with a CD31-

positive tumor blood vessel (green) within a U87 human glioblastoma. (D) Effects of protein extracts from different human brain tumor specimens normalized to

400 �g/ml protein on human NSC migration in the modified Boyden chamber assay. Values shown are mean ± SE and are expressed as percentage of the

unstimulated basal migratory rate (control = 100%) (*P < .01, Mann–Whitney U test). (E) Recombinant human VEGF165, PlGF, and SF/HGF were tested in a

modified 96-well Boyden chamber assay. SF/HGF induced a higher chemotactic response than VEGF. No significant effects were seen for PlGF. (F) Human NSCs

expressed the receptor mRNA of VEGFR-2 and VEGFR-1 for VEGF and PlGF, and cMET for SF/HGF. Endothelial cells (PAE/KDR) known to express all three

different receptors were used as a positive control.

Table 1. Summary of Human Protein Extract – Induced Human Neural Stem Cell (HB1.F3) and Murine NSC (C17.2) Migration in the Modified Boyden Chamber

Assay and Growth Factor Content of Protein Extracts as Assessed by ELISA Technique.

Tissue Type (n) HB1.F3 Migration C17.2 Migration (n) VEGF PIGF (pg/mg protein) SF/HGF

Brain tissue (no tumor) (7) 86.3 ± 23.6 97.2 ± 24.3 (3) 1.6 ± 1.2 1.1 ± 0.5 555.1 ± 102.1

Astrocytoma WHO II (11) 121.3 ± 20.3 144.6 ± 7.2 (4) 314.6 ± 214.5 28.0 ± 9.6 546.1 ± 111.1

Astrocytoma WHO III – IV (16) 183.8 ± 20.8 199.8 ± 25.7 (5) 663.5 ± 193.3 30.6 ± 8.0 1006.4 ± 170.4

Brain metastasis from

Lung adenocarcinoma (8) 377.6 ± 105.3 374.4 ± 142.4 (2) 935.8 ± 448.5 24.4 ± 11.8 803.5 ± 202.8

Breast carcinoma (5) 352.6 ± 109.2 204.2 (1) 283.4 ± 210.9 58.7 ± 42.2 862.3 ± 224.4

Melanoma (4) 227.9 ± 46.1 ND 306.6 ± 173.9 75.1 ± 9.6 885.0 ± 284.0

Meningioma WHO I– III (5) 281.4 ± 53.3 173.3 ± 19.4 (3) 11.5 ± 5.3 92.4 ± 35.4 281.7 ± 55.0

We found a highly significant positive correlation between the NSC migration– inducing effects of the protein extracts in vitro and their VEGF content (HB1.F3,

P < .0001; C17.2, P < .003) but not for PlGF or SF/HGF. There was no significant difference between human and murine NSC migration in response to the protein

extracts. However, due to the limited amount of protein extracts available, not all extracts could be tested for their effects on C17.2. migration. All values are

expressed as mean ± SE (n = number of specimen; ND = not determined).
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growth factor (SF/HGF) [8,13,19]. Protein extracts were

next determined for their content of VEGF, PlGF, and SF/

HGF by ELISA (Table 1). Nonlinear regression analysis re-

vealed a highly significant positive correlation between NSC

migration-inducing effects of the protein extracts in vitro and

their VEGF content (HB1.F3, P < .0001; C17.2, P < .003) but

not for PlGF or SF/HGF. Adding specific neutralizing anti-

bodies against VEGF and SF/HGF to the tumor protein

extracts derived from three astrocytomas and three brain

metastases inhibited NSC migration up to 80% and 65%, re-

spectively (Figure W1). This demonstrates that the growth

factors retained their biologic activity within the complex

environment of brain tumors represented by the protein

extracts. However, incomplete blocking of NSC migration

may point to the presence of other factors influencing NSC

migration. This is in agreement with a previous study dem-

onstrating that SDF-1 present in the conditioned media of

glioma cell lines induces in vitro migration of NSCs [20].

Recombinant VEGF and SF/HGF were able to stimulate

NSC migration in vitro in a dose-dependent manner, thus

supporting the functional relevance of VEGF and SF/HGF for

NSCmigration (Figure 1E ). Themigratory response to VEGF

resembled a typical biphasic dose–response curve most

likely due to the downregulation of the respective cellular

receptor at higher VEGF concentrations. The cellular ex-

pression of VEGFR-2 and cMET was additionally confirmed

by immunohistochemistry (data not shown). However, PlGF

did not influence NSCmigration despite mRNA expression of

the corresponding receptor, VEGFR-1 (Figure 1F ). Even in

combination with VEGF, no effect of PlGF on NSC migration

was observed (data not shown), although synergistic effects

with VEGF on endothelial cells have been described [19].

To investigate the relevance of our in vitro findings,

studies in vivo were conducted in which a constant local

source of growth factors (mimicking the conditions found in

brain tumors) was established by local intracerebral infu-

sions of VEGF, SF/HGF, or PBS. A total of 5�104 DiI-labeled

NSCs were injected in the contralateral hemisphere and

Figure 2. Representative sections of VEGF-induced migration of human NSCs HB1.F3 in the brain of adult nude mice (see diagram). (A) Long-range attraction

of NSCs (red) from the right hemisphere (R) across the corpus callosum (cc) in response to a local microinfusion of VEGF (0.25 ng/hr) in the left hemisphere (L)

(day 9; blue = cell nuclei). (B) Colocalization of NSCs with dilated CD31-positive (green) blood vessels near the VEGF infusion cannula (bar = 50 �m). (C) Already

after 5 days, transhemispheric migrated NSCs pool in the area of VEGF infusion (bar = 100 �m). (D) Migrating NSCs (brown) in the corpus callosum as

demonstrated by immunohistochemistry using a human-specific antibody (bar = 25 �m). (E) Local microinfusion of SF/HGF (0.25 ng/hr) was not able to induce a

long-range attraction. Only directly at the injury site of the cannula (arrowhead) were some NSCs observed.
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histologic analysis 5 and 9 days later demonstrated an

extensive directed migration of the NSCs through the corpus

callosum toward the VEGF-infused area where large di-

lated blood vesselswere observed (Figure 2,A–D). This phe-

nomenon is similar as seen in tumors where migrated NSCs

were frequently associated with blood vessels (Figure 2B).

SF/HGF at the low dosage of 0.25 ng/hr or PBS infusions did

not induce a marked change in vascularization near the

cannula site, and did not induce a distinct NSC migration

(Figures 2E and 3, A–D). However, some NSCs were found

locally at the injury site of the brain cannula, indicating that

the reaction to the trauma induced by the cannula triggers

minor NSC migration. In the absence of a trauma or brain

tumor, we never observed any NSC migration toward the

contralateral hemisphere (data not shown). Interestingly, the

endothelial cells that are known to be highly responsive to

VEGF did not display a transhemispheric migration toward

the VEGF infused area, but rather stayed at the injection site

(Figure 3E ). The lack of endothelial cell migration in response

to the VEGF infusion and the failure of SF/HGF to induce

NSC migration in vivo despite its relevant effects in vitro

suggest that VEGF may additionally trigger other signals

[10,19] that are possibly relevant for allowing a directed

NSC migration.

Figure 3. (A–C) Representative coronal brain sections of different nude mice receiving a constant intraparenchymal PBS infusion in the left hemisphere. (A) No

extensive migration toward the PBS-infused left hemisphere was observed 9 days after injection of DiI-labeled human NSCs HB1.F3 (red) in the right forebrain

(arrow). (B) However, some NSCs (arrowheads) were found at the lesion site of the brain cannula (arrow) and (C) occasionally single NSCs (arrow) migrating to the

opposite infused hemisphere could be detected. This indicates that already the injury induced by the infusion cannula triggers mechanisms causing minor NSC

migration (bar = 50 �m). (D) SF/HGF, although known to display angiogenic properties, did not cause a stimulation of angiogenesis near the cannula when infused

at the dosage of 0.25 ng/hr (CD31 immunoreactivity = green) (bar = 100 �m). (E) In control experiments, DiI-labeled endothelial cells (red) stayed at the site of

injection and did not migrate toward the VEGF infusion site.
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In summary, this is the first report directly demonstrating

that VEGF is a strong signal for guiding the in vivomigration of

NSCs from distant sites in the adult brain. We found a highly

significant correlation between the brain tumor–produced

VEGF and the induction of NSC attraction in vitro. PlGF

was not relevant for NSC migration and low doses of SF/

HGF were not able to induce a long-range attraction of

transplanted NSCs in vivo. We conclude that upregulated

VEGF in brain tumors may serve as a signal for NSC tropism

to pathologic sites. Taking into account the expression of

factors involved in the survival and guidance of transplanted

NSCs during a disease process may allow the optimization of

therapeutic transplantation efficiency and the development of

rational therapeutic strategies in the future.
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Figure W1. Biologic activity of SF/HGF and VEGF in the protein extracts. (a) Tumor protein extracts (TE) derived from the surgical specimen of human

astrocytoma and brain metastasis were assayed at a fixed protein concentration of 400 mg/ml in the modified Boyden chamber assay. Neutralizing antibodies (Ab)

to HGF/SF and VEGF at 20 mg/ml were added individually to the extracts in the same experiment (TE 3, 5, 10: astrocytoma; TE 18, 17, 14: brain metastasis). The

inhibitory effects of the neutralizing antibodies demonstrated that the growth factors retained their biologic activity within the complex environment of brain tumors

represented by the protein extracts. However, incomplete blocking of NSC migration in some cases may point to the presence and/or interactions of other factors

influencing NSC migration. Due to the limited amount of protein extracts, not every extract could be tested. (b) In control experiments, we determined the

neutralizing capacity of the individual antibodies on human NSC migration when stimulated by VEGF (5 and 10 ng/ml) and (SF/HGF (10 ng/ml) in the absence or

presence of neutralizing Ab. All antibodies were used at 20 mg/ml. Values shown are mean ± SE of quadruplicate determinations.
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