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Abstract

Let M be a PL 2-manifold andX be a compact subpolyhedron ofM and letE(X,M) denote
the space of embeddings ofX into M with the compact-open topology. In this paper we study
an extension property of embeddings ofX into M and show that the restriction map from the
homeomorphism group ofM to E(X,M) is a principal bundle. As an application we show that if
M is a Euclidean PL 2-manifold and dimX > 1 then the triple(E(X,M), ELIP(X,M), EPL(X,M))

is an(s,Σ,σ )-manifold, whereELIP
K (X,M) andEPL

K (X,M) denote the subspaces of Lipschitz and
PL embeddings. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The investigation of the topology of the homeomorphism groups of compact 2-manifolds
[8,9,11] included the use of conformal mappings in order to develop some extension
properties of embeddings of a circle into an annulus and proper embeddings of an arc into
a disk. In this paper we establish a similar extension property of embeddings of trees into
a disk. Since every graph can be decomposed into ads (cones over finite points) and arcs
connecting them, this implies an extension property of embeddings of compact polyhedra
into 2-manifolds.

SupposeM is a PL 2-manifold andK ⊂ X are compact subpolyhedra ofM. Let
EK(X,M) denote the space of embeddingsf :X ↪→ M with f |K = id, equipped with
the compact-open topology. An embeddingf :X ↪→ M is said to be proper iff (X ∩
∂M) ⊂ ∂M andf (X ∩ IntM) ⊂ IntM. Let EK(X,M)∗ denote the subspace of proper
embeddings inEK(X,M), and letEK(X,M)∗0 denote the connected component of the
inclusioniX :X⊂M in EK(X,M)∗. Our result is summarized in the next statement.
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Theorem 1.1. For everyf ∈ EK(X,M)∗ and every neighborhoodU of f (X) in M, there
exist a neighborhoodU of f in EK(X,M)∗ and a mapϕ :U→HK∪(M\U)(M)0 such that
ϕ(g)f = g for eachg ∈ U andϕ(f )= idM .

Let HX(M) denote the group of homeomorphismsh of M onto itself withh|X = id,
equipped with the compact-open topology. LetH(M)0 denote the identity component of
H(M). In the study of the homotopy type ofHX(M)0 andEK(X,M)0 the restriction map

π :HK(M)0→ EK(X,M)∗0
plays an important role (cf. [3]). The above extension maps yield local sections of this
restriction map.

Corollary 1.1. For any open neighborhoodU ofX in M, the restriction map

π :HK∪(M\U)(M)0→ EK(X,U)∗0, π(f )= f |X,
is a principal bundle with the fiberG ≡HK∪(M\U)(M)0 ∩HX(M), where the subgroupG
acts onHK∪(M\U)(M)0 by right composition.

As an application of Extension Theorem 1.1 we can study the embedding space
EK(X,M) from the viewpoint of infinite dimensional topology (see §4 for basic
terminologies). In [16] Sakai and Wong showed the(s,Σ,σ)-stability property of triples
of spaces of embeddings of compact polyhedra and subspaces of Lipschitz and PL
embeddings, and posed the question whether these triples are(s,Σ,σ)-manifolds. The
1-dimensional case is studied in [15]. In this paper we will consider the 2-dimensional
case and answer the question affirmatively.

Let EPL
K (X,M) denote the subspace of PL-embeddings. WhenM is a Euclidean PL 2-

manifold, letELIP
K (X,M) denote the subspace of Lipschitz embeddings. The Extension

Theorem enables us to reduce the ANR-property and the homotopy negligibility of
embedding spaces to the ones of the homeomorphism groups. Using the characterization
of (s,Σ,σ)-manifold [20] we have the following result.

Theorem 1.2. SupposeM is a EuclideanPL 2-manifold andK ⊂ X are compact sub-
polyhedra ofM. If dim(X \K)> 1, then the triple(EK(X,M), ELIP

K (X,M), EPL
K (X,M))

is an(s,Σ,σ)-manifold.

Further applications of Corollary 1.1 to the study ofHX(M) andEK(X,M)will be given
in a succeeding paper. We conclude this section with some remarks. In Section 2 we study
the extension property of embeddings of a tree into a disk. Section 3 contains the proofs
of Theorem 1.1 and Corollary 1.1. The final Section 4 contains the proof of Theorem 1.2.
Throughout the paper spaces are assumed to be separable and metrizable. A Euclidean PL
n-manifold is a subpolyhedron of some Euclidean spaceRm which is a PL-manifold with
respect to the induced triangulation and is equipped with the metric induced from the stan-
dard metric ofRm. WhenM is an orientable manifold,H+(M) denote the subspace of ori-
entation preserving homeomorphisms ofM. Finally iX :X ⊂ Y denotes the inclusion map.



T. Yagasaki / Topology and its Applications 108 (2000) 107–122 109

2. Extension property of embeddings of trees into disks

In this section we will study some extension properties of embeddings of trees into
disks. The proper embedding case is a consequence of a direct application of the conformal
mapping theorem on simply connected domains (cf. [11]). Thus our interest is in the case
of embeddings into the interior of a disk, where we need to apply the conformal mapping
theorem on a doubly connected domain one boundary circle of which is collapsed to a
tree.

Throughout the section we will work on the planeC (= R2) and use the following
notations: Forz ∈C andr > 0,D(z, r)= {x ∈C: |z−x|6 r},O(z, r)= {x ∈C: |z−x|<
r}, C(z, r)= {x ∈C: |z− x| = r}, andD(r)=D(0, r), O(r)=O(0, r), C(r)= C(0, r).
For 0< r < s, A(r, s) = {x ∈ C: r 6 |x| 6 s}. For A ⊂ C and ε > 0, O(A,ε) = {x ∈
C: |x − y|< ε for somey ∈A} (theε-neighborhood ofA).

2.1. Proper embeddings of trees into a disk

First we recall the conformal mapping theorem on simply connected domains normal-
ized by the three points boundary condition. Consider the familyJ = {(J,w1,w2,w3): J
is a simple closed curve inC andw1,w2,w3 ∈ J are three distinct points lying onJ
in counterclockwise order (with respect to the orientation induced fromC)}. A sequence
{An}n>1 of subsets ofC is said to be uniformly locally connected if for eachε > 0 there
exists aδ > 0 such that for anyn > 1 and anyx, y ∈ An with |x − y|< δ there exists an
arcα in An with connectingx andy and diamα < ε.

Fact 2.1. Let z1, z2, z3 ∈ C(1) be the fixed three points lying onC(1) in counterclockwise
order.

(i) ([14, Corollary 2.7]) For every (J,w1,w2,w3) ∈ J there exists a uniqueϕ =
ϕ(J,w1,w2,w3) ∈ E(D(1),C) such thatϕ mapsO(1) conformally onto the
interior of J , ϕ(C(1))= J andϕ(zi)=wi (i = 1,2,3).

(ii) If a sequence(Jn,w1(n),w2(n),w3(n)) (n > 1) converges to(J,w1,w2,w3)

in the following sense, thenϕ(Jn,w1(n),w2(n),w3(n)) converges uniformly to
ϕ(J,w1,w2,w3):
(∗) Jn converges toJ with respect to the Hausdorff metric,{Jn} is uniformly locally

connected, andwi(n)→wi (i = 1,2,3).

For the statement (ii) we refer to the proof of [14, Theorem 2.1, Proposition 2.3] (also
see the proof of Lemma 2.3).

Lemma 2.1. SupposeD is a disk andC = ∂D.
(i) (cf. [11, Lemma 3])There exists a mapΦ :E(C,C)→ E(D,C) such thatΦ(f )|C =

f (f ∈ E(C,C)).
(ii) (cf. [11, Lemma 5]) SupposeT is a tree embedded into a diskD such that

T ∩ C coincides with the set of terminal vertices ofT . Then there exists a
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mapΨ :ET∩C(T ,D)∗ → H∂ (D) such thatΨ (f )|T = f (f ∈ ET∩C(T ,D)∗) and
Ψ (iT )= idD .

Proof. We may assume thatD =D(1). Let z1, z2, z3 ∈ C(1) be as in Fact 2.1.
(i) Let E± = {f ∈ E(C(1),C): f preserves (reverses) orientation}. If f ∈ E+(C(1),C),

then(f (C(1)), f (z1), f (z2), f (z3)) ∈ J and by Fact 2.1 we obtainϕ(f ) = ϕ(f (C(1)),
f (z1), f (z2), f (z3)) ∈ E(D(1),C). If fn→ f in E+, then(f (C(1)), f (z1), f (z2), f (z3))

converges to(f (C(1)), f (z1), f (z2), f (z3)) in the sense(∗) of Fact 2.1(ii). Hence the map
ϕ :E+ → E(D(1),C) is continuous. Letc :H(C(1))→ H(D(1)) be the cone extension
map and letγ :C→C be the reflectionγ (z)= z. Then the extension mapΦ is defined by
Φ(f )= ϕ(f )c(ϕ(f )−1f ) for f ∈ E+ andΦ(f )= γΦ(γf ) for f ∈ E−.

(ii) The treeT separates the diskD(1) into subdisksDi . By (i) each diskDi admits an
extension mapψi :E(∂Di,C)→ E(Di,C). Everyf ∈ ET∩C(1)(T ,D(1))∗ can be extended
to f ∈ EC(1)(T ∪ C(1),D(1)). The required extension mapΨ is defined byΨ (f )|Di =
ψi(f |∂Di ). To achieveΨ (iT )= idD , replaceΨ (f ) byΨ (f )Ψ (iT )−1. 2

In the proof of Theorem 1.1 we will apply the statement (ii) to the case whereT is an
arc.

2.2. Embeddings of trees into the interior of a disk

SupposeT is a finite tree (6= 1 pt) embedded intoO(2). We will use the following
notation: Fora, b ∈ T , let ET (a, b) denote the unique arc inT connectinga andb. Let
{v1, . . . , vn} be the collection of end vertices ofT . We can choose disjoint arcsα1, . . . , αn

in D(2) such that eachαi connectsvi with a pointai in C(2) and Intαi ⊂O(2) \ T . We
can arrange the ordering ofvi ’s so thata1, . . . , an lie onC(2) in counterclockwise order.
The labeling is unique up to the cyclic permutations. Note thatT does not meet the interior
of the disk surrounded by the simple closed curveαi ∪ET (vi , vi+1)∪αi+1∪aiai+1, where
vn+1= v1 andan+1= a1.

Lemma 2.2 [7, Ch. V, §1, Theorems 1.1, 1.2].There exists a unique real numberr, 0<
r < 2, and a unique maph :A(r,2)→ D(2) such thath : IntA(r,2)→ O(2) \ T is a
conformal map andh(2)= 2. Furthermore, the maph satisfies the following conditions:

(i) h mapsC(2) homeomorphically ontoC(2),
(ii) h(C(r)) = T and there exists a unique collection of points{u1, . . . , un} lying

on C(r) in counterclockwise order such thath maps each circular arcuiui+1

homeomorphically onto the arcET (vi, vi+1), whereun+1= u1.

We refer to [14, Ch. 2, Theorem 2.1] for the extension to boundary and [14, Ch. 2,
§1 Prime End Theorem, §§4, 5] and [7, p. 40] for the correspondence between prime
ends and boundary points. LetE = E(T ,O(2)). For eachf ∈ E the imagef (T ) is a
tree inO(2). Hence by Lemma 2.2 there exists a unique real numberrf , 0< rf < 2,
and a unique maphf :A(rf ,2)→ D(2) such thathf : IntA(rf ,2)→ O(2) \ f (T ) is a
conformal map andhf (2)= 2. For 0< r < 2 let ϕr :A(1,2)→ A(r,2) denote the radial
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map defined byϕr(x)= ((2− r)(|x| − 1)+ r)x/|x|, and letC(A(1,2),D(2)) denote the
space of continuous maps fromA(1,2) toD(2), with the compact-open topology. We have
hf ϕrf ∈ C(A(1,2),D(2)).

Lemma 2.3. The mapΨ :E(T ,O(2))→ R× C(A(1,2),D(2)), Ψ (f ) = (rf , hf ϕrf ), is
continuous.

This continuity property can be verified using the length distortion under conformal
mapping [14, Proposition 2.2]. WhenL is a rectifiable (possibly open) curve inR2, we
denote the length ofL byΛ(L).

Proof. Supposefn → f in E . It suffices to show that the sequence(rn, hnϕrn) ≡
(rfn, hfnϕrfn ) has a subsequence(rnk , hnkϕrnk ) such thatrnk → rf andhnkϕrnk converges
uniformly tohf ϕrf .

LetR0> 2 (= the radius ofD(2)) andε(ρ)= 2πR0/
√

log(1/ρ) (0< ρ < 1).
(i) Passing to a subsequence we may assumern → r0 for somer0,06 r0 6 2. First

we will show that 0< r0 < 2. (a) Supposer0 = 2. Takeρ, 0< ρ < 1, such thatε(ρ) <
d(f (T ),C(2)). Choosen > 1 such thatε(ρ) < d(fn(T ),C(2)) and |rn − r0| < ρ. We
can apply [14, Proposition 2.2] for any pointc ∈ C(2) (with R = 2) to find ρ0, ρ <

ρ0 <
√
ρ, such thatΛ(hn(L)) < ε(ρ), whereL is one of the two arc components of

C(c,ρ0)∩A(rn,2) which connectsC(rn) andC(2). This impliesd(fn(T ),C(2)) < ε(ρ),
a contradiction. (b) Supposer0 = 0. Takeρ, 0< ρ < 1, such thatε(ρ) < diamf (T ).
Choosen > 1 such thatε(ρ) < diamfn(T ) and rn < ρ. By [14, Proposition 2.2] there
existsρ0, ρ < ρ0 <

√
ρ such thatΛ(hn(C(ρ0))) < ε(ρ). Sincefn(T ) is contained in the

interior of the circlehn(C(ρ0)), we have diamfn(T ) < ε(ρ), a contradiction.
(ii) Next we will show that the sequencehn :A(rn,2)→D(2) (n> 1) is equicontinuous,

that is, for everyε > 0 there exists aρ > 0 such that|hn(z) − hn(w)| < ε for any
n > 1 andz, w ∈ A(rn,2) with |z − w| < ρ. Let ε > 0 be given. We may assume that
ε < d(C(2), fn(T )) for eachn> 1. Since the sequenceC(2), fn(T ) (n> 1) is uniformly
locally connected, there exists aδ, 0< δ < ε/2, such that ifz, w ∈ fn(T ) (respectively
C(2)) and|z−w|< δ, then there exists an arcA in fn(T ) (respectivelyC(2)) connecting
z andw and with diamA< ε/2. Chooseρ, 0< ρ < 1, such thatε(ρ) < δ and 2

√
ρ < 2−

maxn>0 rn. Supposez,w ∈A(rn,2) and|z−w|< ρ. By [14, Proposition 2.2] (withc= z)
we haveρ0, ρ < ρ0 <

√
ρ, such thatΛ(hn(L)) < ε(ρ), whereL = C(z,ρ0) ∩ A(rn,2).

Sincez, w ∈ D ≡ D(z,ρ0) ∩ A(rn,2), it suffices to show that diamhn(D) < ε. By the
choice of ρ, D(z,ρ0) meets at most one ofC(2) and C(rn). If D(z,ρ0) ⊂ A(rn,2)
or D(z,ρ0) ⊃ D(0, rn), thenL = C(z,ρ0) andhn(D) is a disk bounded byhn(L), so
diamhn(D) < ε(ρ). Otherwise,L is an arc connecting two pointsP , Q with either (a)
P,Q ∈ C(2) or (b)P,Q ∈ C(rn). In both cases|hn(P )− hn(Q)|6Λ(hn(L)) < δ, hence
by the choice ofδ, we have an arcA in C(2) (respectivelyfn(T )) connectinghn(P ) and
hn(Q) and diamA < ε/2. In the case (a)hn(L) separatesD(2) into the subdiskhn(D)
and another subdisk. Sincehn(D) ∩ fn(T )= ∅ andd(C(2), fn(T )) > ε, the Jordan curve
hn(L) ∪ A bounds the diskhn(D), so diamhn(D) < ε. In the case (b) the Jordan curve
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hn(L) ∪ A bounds a diskE in D(2) with diamE < ε. Sincehn(A(rn,2) \ (D ∪ C(rn)))
is contained in the exterior ofE and hn(IntD) ∩ ∂E = ∅, it follows that hn(IntD) =
IntE \ fn(T ) sohn(D)=E.

(iii) Since the sup-metricd(ϕrn, ϕr0) = |rn − r0| → 0 (n→∞), the sequencehnϕrn
(n> 1) is also equicontinuous. By the Ascoli-Arzelà theorem, passing to a subsequence,
we may assume thathnϕrn converges to a maph′0 :A(1,2)→ D(2). Seth0 = h′0ϕ−1

r0
.

Thenh0(A(r0,2))=D(2), h0(C(2))= C(2), h0(C(r0))= f (T ) andh0(2)= 2. Since the
sequence of univalent analytic mapshn : IntA(rn,2)→ C converges weakly uniformly to
the maph0 : IntA(r0,2)→ C (i.e., for each compact subsetK of IntA(r0,2), hn|K (n
large) converges uniformly toh0|K ) andh0 is not constant,h0 : IntA(r0,2)→ C is also a
univalent analytic map [19, Ch. 3, Theorem 3.3]. It follows thath0(IntA(r0,2))=O(2) \
f (T ) andh0 : IntA(r0,2)→ O(2) \ f (T ) is a conformal map, so(r0, h0) = (rf , hf ) by
the uniqueness in Lemma 2.2. This completes the proof.2

Let i :T ↪→O(2) denote the inclusion and set

E+ ≡ E+
(
T ,O(2)

)= {f ∈ E : there exists anh ∈H+(D(2)) with hi = f },
which is an open neighborhood ofi in E .

Proposition 2.1.
(i) There exists a canonical mapΦ =ΦT :E+ →H+(D(2)) such thatΦ(f )i = f (f ∈
E+) andΦ(i)= id.

(ii) There exists a neighborhoodU of i in E and a mapϕ :U → H∂ (D(2)) such that
ϕ(f )i = f (f ∈ U) andϕ(i)= idD .

Proof. (i) Let f ∈ E+. Comparing two mapshf ϕrf , fhiϕri :C(1)→ f (T ), we obtain
a unique mapΘ0(f ) ∈ H+(C(1)) such thathf ϕrf Θ0(f ) = f hiϕri . ExtendΘ0(f )

radially toΘ(f ) ∈H+(A(1,2)) by Θ(f )(rz) = rΘ0(f )(z) (z ∈ C(1), 16 r 6 2). The
required mapΦ(f ) is defined as the unique mapΦ(f ) ∈H+(D(2)) with hf ϕrf Θ(f )=
Φ(f )hiϕri . In claim below we will show that the mapΘ0 is continuous. This implies the
continuity of the mapΦ.

(ii) SinceΦ(i)= id, if we take a sufficiently small neighborhoodU of i, thenΦ(f )|C(2)
is close toidC(2) for f ∈ U , and we can use a collar ofC(2) inD(2) and a local contraction
of a neighborhood ofidC(2) in H(C(2)) to modify the mapΦ|U to obtain the desired
mapϕ. 2
Claim. The mapΘ0 :E+→H+(C(1)) is continuous.

Proof. Under the notations of Lemma 2.2, letgf = hf ϕrf andxj (f )= ϕ−1
rf
(uj ). For the

inclusion i :T ⊂ D(2), we abbreviate asg = gi and xj = xj (i). Let Lj = xjxj+1 (the
circular arc inC(1)). Also let f̃ =Θ0(f ). Note thatgf is continuous inf (Lemma 2.3),
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gf f̃ = gf , f̃ (xj ) = xj (f ) = g−1
f (f (vj )) and thatgf mapsf̃ (Lj ) homeomorphically

ontof (ET (vj , vj+1)).
(1) First we will show the following statement:

(∗) Supposef ∈ E+,U is any open neighborhood ofxj (f ) in C andAj is a small
compact neighborhood ofxj in C(1) such thatgf (f̃ (Aj ))∩gf (A(1,2) \U)=
∅ (hencef̃ (Aj ) ⊂ U ). If f ′ is sufficiently close tof , then f̃ ′(Aj) ⊂ U . In
particular,xj (f ) ∈ C(1) is continuous inf .

In fact, there exists anε > 0 such thatO(fg(Aj ), ε) ∩O(gf (A(1,2) \ U), ε) = ∅. If
f ′ is sufficiently close tof then the sup-metricd(f ′, f ) < ε andd(gf ′, gf ) < ε. Hence,
f ′g(Aj )= gf ′ f̃ ′(Aj ) does not meetgf ′(A(1,2) \U), sogf ′ f̃ ′(Aj )⊂U .

(2) To show thatf̃ is continuous inf , let f ∈ E+ andε > 0 be given. It suffices to show
that for eachj = 1, . . . , n there exists a small neighborhoodU of f in E+ such thatf̃ and
f̃ ′ areε-close onLj for everyf ′ ∈ U .

SetUj =O(xj (f ), ε/2) andUj+1 =O(xj+1(f ), ε/2), and letAj andAj+1 be small
circular arc neighborhoods ofxj andxj+1 in C(1) as in (1) with respect toUj andUj+1,
respectively. SetKj = cl(Lj \ (Aj ∪Aj+1)) and choose small circular arc neighborhoods
Cj andCj+1 of xj (f ) andxj+1(f ) in C(1) such thatgf f̃ (Kj ) meets neithergf (Cj )
norgf (Cj+1). Chooseδ1> 0 such thatO(gf f̃ (Kj ), δ1)meets neitherO(gf (Cj ), δ1) nor
O(gf (Cj+1), δ1). By the compactness argument there existsδ, 0< δ < δ1, such that for
anyx ∈Lj , gf (f̃ (Lj ) \O(f̃ (x), ε))∩O(gf f̃ (x),2δ)= ∅.

By (1) there exists a neighborhoodU of f in E+ such that iff ′ ∈ U , thenf̃ ′(Aj)⊂Uj ,
f̃ ′(Aj+1) ⊂ Uj+1, f̃ ′(xj ) ∈ Cj , f̃ ′(xj+1) ∈ Cj+1 and d(f,f ′) < δ, d(gf ′ , gf ) < δ.
Since f̃ ′ is orientation preserving,̃f ′(xj ) ∈ Cj and f̃ ′(xj+1) ∈ Cj+1, it follows that
f̃ ′(Lj )⊂ f̃ (Lj )∪Cj ∪Cj+1. If x ∈Aj , thenf̃ ′(x), f̃ (x) ∈ Uj so thatd(f̃ ′(x), f̃ (x)) <
ε. For eachx ∈ Aj+1 we have the same conclusion. Supposex ∈ Kj . Sincegf ′ f̃ ′(x) =
f ′g(x) is δ-close tofg(x) = gf f̃ (x) ∈ gf f̃ (Kj ) andgf ′(Cj )⊂O(gf (Cj ), δ), we have
f̃ ′(x) /∈ Cj . Similarly f̃ ′(x) /∈ Cj+1, and sof̃ ′(x) ∈ f̃ (Lj ). Since gf f̃ (x) = fg(x)
is δ-close to f ′g(x) = gf ′ f̃ ′(x) and the latter is alsoδ-close to gf f̃ ′(x), we have
gf f̃ ′(x) ∈O(gf f̃ (x),2δ). Hence by the choice ofδ, f̃ ′(x) ∈O(f̃ (x), ε). This completes
the proof. 2

Finally we will see a symmetry property of the mapΦT in Proposition 2.1(i). For
z ∈ C(1) let θz :C→ C denote the rotationθz(w) = z · w and letγ :R2→ R2 be the
reflection,γ (x, y)= (x,−y).

Lemma 2.4.
(i) ΦT (θzf )= θzΦT (f ) (f ∈ E+, z ∈ C(1)).
(ii) Φγ(T )(γf γ ) = γΦT (f )γ (f ∈ E+). In particular, if T is a segment in thex-axis,

thenΦT (γf )= γΦT (f )γ (f ∈ E).

Proof. (i) Let f ∈ E+, z ∈ C(1) and let w0 ∈ C(2) be the unique point such that
θzhf θ

−1
z (w0) = 2. Under Lemma 2.2,(rf , θzhf θ−1

z θw) corresponds toθzf , wherew =
w0/2. ThusΘ(θzf )= θ−1

w θzΘ(f ) and the conclusion follows from
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Φ(θzf )hiϕri =
(
θzhf θ

−1
z θw

)
ϕrf Θ(θzf )

= (θzhf θ−1
z θw

)
ϕrf θ

−1
w θzΘ(f )

= θzhf ϕrf Θ(f )= θzΦ(f )hiϕri .
(ii) Since (ri , γ hiγ ) corresponds toγ (T ) and (rf , γ hf γ ) corresponds toγf (T ), it

follows thatΘγ(T )(γf γ )= γΘT (f )γ . The conclusion follows from(
γΦ(f )γ

)(
γ hiγ ϕri

)= γ (Φ(f )hiϕri)γ
= γ (hf ϕrf Θ(f ))γ
= (γ hf γ ϕrf )(γΘ(f )γ ). 2

3. Extension property of embeddings of compact polyhedra into 2-manifolds

In this section we prove Theorem 1.1 and Corollary 1.1. First we consider the case where
M is compact.

Lemma 3.1. SupposeM is a compactPL 2-manifold andK ⊂ X are compact
subpolyhedra ofM. Then there exists an open neighborhoodU of iX in EK(X,M)∗ and a
mapϕ :U→HK(M) such thatϕ(f )|X = f (f ∈ U) andϕ(iX)= idM .

Proof. We may assume thatK = ∅, since ifϕ satisfies the above condition in the case
whereK = ∅ then we haveϕ(U ∩ EK(X,M)∗)⊂HK(M) for anyK ⊂X.

(1) The case when∂ M = ∅: We fix a triangulation ofX and letSk (k = 0,1,2) denote
the set ofk-simplices of this triangulation andX(1) denote the 1-skeleton ofX. For
eachσ ∈ S1 with endsv, w we choose two disjoint subarcsσv , σw of σ with v ∈ σv ,
w ∈ σw and a subarceσ of Intσ with Inteσ ⊃ cl(σ \ (σv ∪ σw)). For eachv ∈ S0 set
Tv = {v}∪ (⋃v∈σ∈S1

σv), which is an ad or a single point. We choose two disjoint families
of closed disks{Dv}v∈S0 and {Eσ }σ∈S1 in M such that (i)Tv ⊂ IntDv (v ∈ S0) and
(ii) X(1) ∩Eσ = eσ and Inteσ ⊂ IntEσ (i.e.,eσ is a proper arc ofEσ ).

Fig. 1(a).
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By Proposition 2.1(ii) for eachv ∈ S0 there exists a neighborhoodVv of iTv in
E(Tv, IntDv) and an extension mapαv :Vv→H∂ (Dv). In turn, by Lemma 2.1(ii) for each
σ ∈ S1 there exists a neighborhoodWσ of ieσ in E∂eσ (eσ ,Eσ )∗ and an extension map
βσ :Wσ →H∂ (Eσ ). If U is a sufficiently small neighborhood ofiX in E(X,M), then for
anyf ∈ U we havef |Tv ∈ Vv for everyv ∈ S0 and we can define a mapλ :U→H(M) by

λ(f )=
{
αv(f |Tv ) onDv,
id onM \⋃v Dv .

Sinceλ(iX) = idM andλ(f )−1f |Tv = iTv (v ∈ S0), if U is small enough, thenλ(f )−1f

is sufficiently close toiX so thatλ(f )−1f |eσ ∈Wσ . Hence we can define a mapµ :U→
H(M) by

µ(f )=
{
βσ (λ(f )

−1f |eσ ) onEσ ,
id onM \⋃σ Eσ .

Thenµ(iX)= idM andf̂ ≡ µ(f )−1λ(f )−1f is equal to the identity map onX(1) for each
f ∈ U . Sincef̂ (σ ) = σ (σ ∈ S2), we can define a mapν :U → H(M) by ν(f )|X = f̂
and ν(f )|M\X = id. Since ν(iX) = idM and ν(f )−1µ(f )−1λ(f )−1f = iX, the map
ϕ :U→H(M), ϕ(f )= λ(f )µ(f )ν(f ) (f ∈ U) satisfies the desired conditions.

Fig. 1(b). Fig. 1(c).

(2) The case when∂M 6= ∅: We can use the doubleN = M ∪∂M M. SinceX is a
subpolyhedron ofM, Y =X ∩ ∂M is also a subpolyhedron of∂M.

(i) By (1) (whereK 6= ∅) we have a neighborhoodV0 of iX∪∂M in E∂M(X∪ ∂M,N) and
an extension mapψ0 :V0→ H∂M(N). We can extend everyf ∈ EY (X,M)∗ to anf0 ∈
E∂M(X∪∂M,N) by the identity on∂M. If V is a small neighborhood ofiX in EY (X,M)∗,
then for everyf ∈ V we havef0 ∈ V0, soψ(f0) is defined andψ0(f0)(M)=M. Thus we
have an extension mapψ :V→H∂M(M), ψ(f )=ψ0(f0)|M .
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(ii) SinceH(∂M) is locally contractible, using a collar of∂M inM, we have a neighbor-
hoodW of id∂M in H(∂M) and a mapF :W→H(M) such thatF(g)|∂M = g (g ∈W)
andF(id∂M)= idM . We can easily verify a 1-dimensional version of Lemma 3.1 and find
a neighborhoodW0 of iY in E(Y, ∂M) and an extension mapλ0 :W0→H(∂M). We may
assume thatλ0(W0) ⊂W . Hence ifU is a small neighborhood ofiX in E(X,M)∗, then
we have a mapλ :U → H(M), λ(f ) = F(λ0(f |Y )). Thenλ(f )|Y = f |Y (f ∈ U) and
λ(idX)= idM . If U is small, then we haveλ(f )−1f ∈ V and the required extension map
ϕ :U→H(M) is defined byϕ(f )= λ(f )ψ(λ(f )−1f ). 2
Lemma 3.2. If M is a compactPL 2-manifold andX is a compact subpolyhedron ofM,
thenHX(M) is an ANR.

Proof. Let π :H(M)→ E(X,M)∗, π(h) = h|X , denote the restriction map. By Lem-
ma 3.1 (withK = ∅) there exists an open neighborhoodU of iX in E(X,M)∗ and a map
ϕ :U→H(M) such thatϕ(f )|X = f . ThenΦ :U×HX(M)∼= π−1(U),Φ(f,h)= ϕ(f )h,
is a homeomorphism with the inverseΦ−1(k) = (k|X,ϕ(k|X)−1k). SinceH(M) is an
ANR [11] andπ−1(U) is open inH(M),HX(M) is also an ANR. 2
Proof of Theorem 1.1. Theorem 1.1 can be reduced to Lemma 3.1 by the following
observations:

(i) Since there exists anh ∈HK∪(M\U)(M)0 such thathf is a PL embedding (cf. [3,
Appendix]) we may assume thatf is a PL-embedding. ReplacingX by f (X), we
may assume thatf = iX :X⊂M.

(ii) Taking a compact PL-submanifold neighborhoodN of X in U and replacing
(M,X,K) by (N,X ∪ FrM N,K ∪ FrM N), we may assume thatM is compact
andU =M.

(iii) If M is compact thenHK(M)0 is open inHK(M) by Lemma 3.2. Hence we can
take a smallerU to attainϕ(U)⊂HK(M)0. 2

Proof of Corollary 1.1. Let f ∈ EK(X,U)∗0 and letUf , ϕf be as in Theorem 1.1. If
Uf ∩ Imπ 6= ∅ thenUf ⊂ Imπ . In fact, if h ∈HK∪(M\U)(M)0 andπ(h)= h|X ∈ Uf , then
for anyg ∈ Uf we haveg = π(ϕf (g)ϕf (h|X)−1h). Hence Imπ is clopen inEK(X,U)∗0, so
Imπ = EK(X,U)∗0 andUf ⊂ EK(X,U)∗0. Choose anhf ∈HK∪(M\U)(M)0 with hf |X =
f and define a local trivializationΦ : Uf × G ∼= π−1(Uf ) byΦ(g,h)= ϕf (g)hf h. 2

By a similar argument we can also show the following statements.

Corollary 3.1. SupposeK ⊂ Y ⊂X are compact subpolyhedra of aPL 2-manifoldM.
(i) For any open neighborhoodU ofX in M the restriction mapπ :HK∪(M\U)(M)→

Imπ ⊂ EK(X,U)∗ is a principal bundle with the fiberHX∪(M\U)(M) and Imπ is
clopen inEK(X,U)∗.

(ii) The restriction mapp :EK(X,M)∗ → Imp ⊂ EK(Y,M)∗ is locally trivial andImp

is clopen inEK(Y,M)∗.
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4. The spaces of embeddings into 2-manifolds

In this final section we will prove Theorem 1.2.

4.1. Basic facts on infinite-dimensional manifolds

First we recall some basic facts on infinite-dimensional manifolds. As for the model
spaces we follow the standard convention:

s = (−∞,∞)∞ (∼= `2),

Σ = {(xn) ∈ s: sup
n
|xn|<∞

}
,

σ = {(xn) ∈ s: xn = 0 (almost alln)
}
.

A triple (X,X1,X2) means a triple of a spaceX and subspacesX1 ⊃ X2. A triple
(X,X1,X2) is said to be a(s,Σ,σ)-manifold if each point ofX admits an open
neighborhoodU in X and an open setV in s such that(U,U ∩X1,U ∩X2) ∼= (V ,V ∩
Σ,V ∩ σ) (a homeomorphism of triples). In [20] we have obtained a characterization
of (s,Σ,σ)-manifolds in terms of some class conditions, a stability condition and the
homotopy negligible complement condition. A space isσ -(fd-)compact if it is a countable
union of (finite-dimensional) compact subsets. A triple(X,X1,X2) is said to be(s,Σ,σ)-
stable if (X × s,X1 × Σ,X2 × σ) ∼= (X,X1,X2). We say that a subsetY of X has the
homotopy negligible (h.n.) complement inX if there exists a homotopyϕt :X→X (06
t 6 1) such thatϕ0 = idX and ϕt(X) ⊂ Y (0< t 6 1). The homotopyϕt is called an
absorbing homotopy ofX into Y .

Fact 4.1.
(i) Y has the h.n. complement inX iff each pointx ∈ X has an open neighborhood

U and a homotopyϕ :U × [0,1] → X such thatϕ0 = iU : U ⊂ X and ϕt(U) ⊂
Y (0< t 6 1).

(ii) If Y has the h.n. complement inX, thenX is an ANR iffY is an ANR by[10].
(iii) ([17]) SupposeX is an ANR. ThenY has the h.n. complement inX iff for any open

setU ofX the inclusionU ∩Y ⊂U is a weak homotopy equivalence. Hence if both
Y ⊂X andZ ⊂ Y have the h.n. complement, then so doesZ ⊂X.

In (i) U ∩ Y has the h.n. complement inU and local absorbing homotopies can be
uniformized to a global one [13].

We will apply the following characterization of(s,Σ,σ)-manifolds [20].

Proposition 4.1. A triple (X,X1,X2) is an(s,Σ,σ)-manifold iff
(i) X is a separable completely metrizable ANR,X1 is σ -compact andX2 is σ -fd-

compact,
(ii) X2 has the h.n. complement inX,
(iii) (X,X1,X2) is (s,Σ,σ)-stable.
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We refer to [18] for related topics in infinite-dimensional topology.

4.2. The spaces of embeddings into 2-manifolds

First we summarize the stability property and the class property of embedding spaces.
Suppose(X,d) and(Y,ρ) are metric spaces. An embeddingf :X→ Y is said to beL-
Lipschitz (L> 1) if 1

L
d(x, y)6 ρ(f (x), f (y))6 Ld(x, y) for anyx, y ∈X.

Lemma 4.1 [16, Theorems 1.2].SupposeM is a EuclideanPL 2-manifold andK ⊂X are
compact subpolyhedra ofM. If dim(X \K)> 1, then the triples(EK(X,M),ELIP

K (X,M),

EPL
K (X,M)) and(EK(X,M)∗,ELIP

K (X,M)∗,EPL
K (X,M)∗) are (s,Σ,σ)-stable.

Lemma 4.2.
(1) SupposeX is a compact metric space,K is a closed subset ofX and Y is a

locally compact, separable metric space. Then(i) EK(X,Y ) is separable, completely
metrizable, and(ii) ELIP

K (X,Y ) is σ -compact.
(2) ([5]) If X is a compact polyhedron,K is a subpolyhedron ofX, andY is a locally

compact polyhedron, thenEPL
K (X,Y ) is σ -fd-compact.

Proof. (1) (i) C(X,Y ) is completely metrizable by the sup-metric, andE(X,Y ) is Gδ in
C(X,Y ).

(ii) For L > 1 let ELIP(L)(X,Y ) denote the subspace ofL-Lipschitz embeddings. If
we write Y = ⋃∞n=1Yn (Yn is compact andYn ⊂ IntYn+1, n > 1), thenELIP(X,Y ) =⋃∞
n=1ELIP(n)(X,Yn). SinceELIP(n)(X,Yn) is equicontinuous and closed inC(X,Yn), it

is compact by Arzela–Ascoli Theorem [2, Ch. XII, Theorem 6.4]. HenceELIP(X,Y ) is
σ -compact. 2

For the proper PL-embedding case we need some basic facts:

Fact 4.2.
(1) SupposeA is a PL disk (or a PL arc) and a ∈ IntA. Then there exists a map

ϕ : IntA→HPL
∂A(A) such thatϕx(a)= x (x ∈ IntA) andϕa = idA.

(2) SupposeN is aPL 1-manifold with∂N = ∅, Y is a compact subpolyhedron ofN ,U
is an open neighborhood ofY inN . Then there exists an open neighborhoodU of iY
in EPL(Y,N) and a mapϕ :U→HPL

N\U(N) such thatϕ(f )|Y = f andϕ(iY )= idN .
(3) SupposeM is a PL 2-manifold,N is a compact1-submanifold of∂M andU is

an open neighborhood ofN in M. Then there exists an open neighborhoodU of
id∂M in HPL

∂M\N(∂M) and a mapϕ :U →HPL
M\U(M) such thatϕ(f )|∂M = f and

ϕ(id∂M)= idM .
(4) SupposeM is a PL 2-manifold,Y is a compact subpolyhedron of∂M andU is an

open neighborhood ofY in M. Then there exists an open neighborhoodV of iY in
EPL(Y, ∂M) and a mapϕ :V→HPL

M\U(M) such thatϕ(g)|Y = g andϕ(iY )= idM .
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Comment.
(3) Using a PL-collar of∂M in M, the assertion follows from the following remarks:

(3-i) If A is a PL arc (or a PL open arc), then there exists a mapϕ :HPL+ (A)→
HPL(A×[0,1]) such thatϕ(f ) is an isotopy fromf to idA (i.e.,ϕ(f )(x, t)=
(∗, t), ϕ(f )(x,0)= f (x) andϕ(f )(x,1)= (x,1)) for eachf ∈HPL+ (A) and
ϕ(idA)= idA×[0,1].

(3-ii) SupposeS is a PL circle. Then there exists an open neighborhoodU of idS
in HPL(S) and a mapϕ :U→HPL(S × [0,1]) such thatϕ(f ) is an isotopy
from f to idS for eachf ∈ U andϕ(idS)= idS×[0,1].

In (3-i) we may assume thatA= [0,1] (or A= R). Thenϕ(f ) is defined as the linear
isotopyϕ(f )(x, t)= ((1− t)f (x)+ tx, t).

(4) This follows from (2) and (3).

Lemma 4.3. If M is a PL 2-manifold andK ⊂ X are compact subpolyhedra ofM, then
(i) EK(X,M)∗ is completely metrizable and(ii) EPL

K (X,M)∗ is σ -fd-compact.

Proof. (i) EK(X,M)∗ isGδ in EK(X,M).
(ii) We may assume thatK = ∅. It suffices to show that eachf ∈ EPL(X,M)∗ has a

σ -fd-compact neighborhood. SinceEPL
K (X,M)∗ ∼= EPL

K (f (X),M)∗, we may assume that
f = iX. Choose a sequence of small collarsCn of ∂M in M pinched atY =X ∩ ∂M such
thatCn becomes thinner and thinner and also the angle between FrM Cn and∂M at Fr∂M Y
becomes smaller and smaller asn→∞. Let Mn = cl(M \ Cn). ThenEPL

Y (X,M)∗ =⋃
n EPL

Y (X,Mn) andEPL(Y, ∂M) areσ -fd-compact by [5].
By Fact 4.2(4) there exists an open neighborhoodV of iY in EPL(Y, ∂M) and a

mapϕ :V → HPL(M) such thatϕ(g)|Y = g and ϕ(iY ) = idM . Let ψ :EPL(X,M)∗ →
EPL(Y, ∂M) be the restriction map,ψ(f ) = f |Y and letU = ψ−1(V). ThenΦ :V ×
EPL
Y (X,M)∗ → U , Φ(g,h) = ϕ(g)h, is a homeomorphism with the inverseΦ−1(f ) =
(f |Y ,ϕ(f |Y )−1f ). HenceU is alsoσ -fd-compact. This implies the conclusion.2

Next we verify the ANR-condition and the h.n. complement condition.

Fact 4.3 [4,6].SupposeM is a compactPL 2-manifold andX is a compact subpolyhedron
ofM. ThenHPL

X (M) has the h.n. complement inHX(M).

Comment. By [4, p. 10] (a comment on a relative version)HPL
X (M) is (uniformly) locally

contractible. SinceHX(M) is an ANR, by [6]HPL
X (M) has the h.n. complement in

HX(M). Note that in dimension 2, the local contractibility ofHPL
X (M) at idM simply

reduces to the case whereX = ∅ by the following splitting argument:
(1) We may assume thatX has no isolated points in IntM. If X has the isolated points

xi (i = 1, . . . , n) in IntM, then we can choose mutually disjoint PL disk neighborhood
Di of xi in IntM \ X0, whereX0 = X \ {x1, . . . , xn}. By Fact 4.2(1) there exists a map
ϕ :
∏n
i=1 IntDi → HPL

X0
(M) such thatϕ(y1, . . . , yn)(xi) = yi and ϕ(x1, . . . , xn) = idM .
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ThenU = {f ∈HPL
X0
(M): f (xi) ∈ IntDi (i = 1, . . . , n)} is an open neighborhood ofidM

in HPL
X0
(M) and

Φ :
(∏

IntDi
)
×HPL

X (M)→ U, Φ(y1, . . . , yn, g)= ϕ(y1, . . . , yn)g,

is a homeomorphism with the inverse

Φ−1(f )= (f (x1), . . . , f (xn),ϕ(f (x1), . . . , f (xn))
−1f

)
.

Hence ifHPL
X0
(M) is locally contractible, thenHPL

X (M) is also locally contractible.
(2) CuttingM along FrM X we may assume thatX ⊂ ∂M.
(3) By Fact 4.2(4) there exists an open neighborhoodV of iX in EPL(X, ∂M) and a map

ϕ :V→HPL(M) such thatϕ(g)|X = g andϕ(iX)= idM . Letψ :HPL(M)→ EPL(X, ∂M)

be the restriction map,ψ(f )= f |X and letU =ψ−1(V). ThenU is an open neighborhood
of idM in HPL(M) andΦ :V ×HPL

X (M)→ U , Φ(g,h) = ϕ(g)h, is a homeomorphism
with the inverseΦ−1(f )= (f |X,ϕ(f |X)−1f ). SinceHPL(M) is locally contractible [4],
HPL
X (M) is also locally contractible.

SupposeM is a PL 2-manifold andK ⊂X are compact subpolyhedra ofM.

Lemma 4.4.
(1) (i) EK(X,M)∗ is an ANR and(ii) EPL

K (X,M)∗ has the h.n. complement in
EK(X,M)∗.

(2) (i) EK(X,M) is an ANR and(ii) EPL
K (X,M) has the h.n. complement inEK(X,M).

Proof. (1) (i) For everyf ∈ EK(X,M)∗, take a compact PL 2-submanifold neighborhood
N of f (X) in M and consider the mapπ :HK∪(M\IntM N)(M)→ EK(X,M)∗, π(h)= hf .
By Theorem 1.1 there exists an open neighborhoodU of f in EK(X,M)∗ and a map
ϕ :U → HK∪(M\IntM N)(M) such thatπϕ(g) = g (g ∈ U). SinceHK∪(M\IntM N)(M)

∼=
HK∪FrM N(N) is an ANR by Lemma 3.2, so isU . HenceEK(X,M)∗ is an ANR.

(ii) By Fact 4.1(i) it suffices to show that everyf ∈ EK(X,M)∗ admits a neighborhood
U and a homotopyFt :U→ EK(X,M)∗ such thatF0= iU andFt (U)⊂ EPL

K (X,M)∗ (0<
t 6 1). Take a compact PL 2-submanifoldN ofM with f (X)⊂U ≡ IntM N . Letϕ :U→
HK∪(M\U)(M) be given by Theorem 1.1. Since(HK∪(M\U)(M),HPL

K∪(M\U)(M)) ∼=
(HK∪(N\U)(N),HPL

K∪(N\U)(N)), by Fact 4.2 we have an absorbing homotopyχt of

HK∪(M\U)(M) into HPL
K∪(M\U)(M). There exists ah ∈ HK∪(M\U)(M) such thathf ∈

EPL
K (X,M)∗. DefineFt by Ft (g)= χt(ϕ(g)h−1)hf (g ∈ U).
(2) There exists anf ∈ EPL

K (X,M) with f (X \ K) ⊂ IntM. It induces a homeomor-
phism (EK(f (X),M), EPL

K (f (X),M)) ∼= (EK(X,M),EPL
K (X,M)) :g 7→ gf . Hence we

may assume thatX \ K ⊂ IntM. Pushing towards IntM using a collar of∂M pinched
on ∂M ∩ K, it follows that EK(X,M)∗ has the h.n. complement inEK(X,M). Thus
(i) follows from (1)(i) and Fact 4.1(ii), and (ii) follows from (1)(ii), Fact 4.1(iii) and
EPL
K (X,M)∗ ⊂ EPL

K (X,M). 2
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Fig. 2.

Theorem 1.2 follows from Proposition 4.1 and the above lemmas. For the proper
embeddings we have a pair version.

Proposition 4.2. If dim(X \ K)> 1, then(EK(X,M)∗,EPL
K (X,M)∗) is an (s, σ )-mani-

fold.

Remark 4.1. In general,ELIP
K (X,M)∗ is not σ -compact. For example, supposeX is a

proper arc inM andK = ∂X. If ELIP
K (X,M)∗ = ⋃i>1Fi , Fi is compact, thenFi =

{f (x) | f ∈Fi , x ∈X} is a compact subset ofM with Fi ∩∂M =K. By a simple diagonal
argument we can define anf ∈ ELIP

K (X,M)∗ such thatf (X) 6⊂ Fi for eachi > 1. Fig. 2
indicates how to define such anf near an end point ofX.
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