Note

The Johnson–Schechtman space has the 6-bounded approximation property ✩

Indrek Zolk

Faculty of Mathematics and Computer Science, Tartu University, J. Liivi 2, 50409 Tartu, Estonia

A R T I C L E I N F O

Article history:
Received 17 December 2008
Available online 13 May 2009
Submitted by Richard M. Aron

Keywords:
Banach spaces
Finite dimensional decompositions
Johnson–Schechtman space

A B S T R A C T

In 2001 G. Godefroy proved that a subspace X_{JS} of c_0 constructed by W.B. Johnson and G. Schechtman in 1996 has the λ-bounded approximation property with $\lambda \leq 8$. This paper slightly improves Godefroy’s proof establishing that $\lambda \leq 6$.

© 2009 Elsevier Inc. All rights reserved.

1. Let X be a Banach space (over $K = \mathbb{R}$ or \mathbb{C}). If for every compact set K and every $\epsilon > 0$ there is a bounded linear finite rank operator T on X such that $\|Tx - x\| \leq \epsilon$ for every $x \in K$, then X is said to have the approximation property. If the norms of such operators are uniformly bounded by λ, then X is said to have the λ-bounded approximation property. The 1-bounded approximation property is called the metric approximation property.

A sequence of bounded linear finite rank operators (P_m) on X such that $P_mP_n = P_{\min(m,n)}$, $m, n \in \mathbb{N}$, and $\lim_m P_m x = x$ for every $x \in X$, is called a finite dimensional decomposition of X. The number $\sup_m \|P_m\|$ is called the decomposition constant of (P_m). A Banach space having a finite dimensional decomposition with the decomposition constant λ also enjoys the λ-bounded approximation property (for more about these properties see, e.g., [1]).

It is a well-known result of Grothendieck [4, Chapter I, “Proposition” 37] that if there exists a Banach space which fails the approximation property, then there also exists a subspace of c_0 that fails the approximation property (see, e.g., [9, p. 37]). Hence, relying on Enflo’s theorem [2], let $Y = \bigcup_n Y_n$ be a subspace of c_0 failing the approximation property, where (Y_n) is an increasing sequence of finite dimensional subspaces of Y. We denote by $c(Y_n)$ the Banach space of norm-convergent sequences $(y_n) \subset Y$, where $y_n \in Y_n$, $n \in \mathbb{N}$, with respect to the supremum norm.

The Johnson–Schechtman space X_{JS} (constructed by W.B. Johnson and G. Schechtman in 1996 and published in [6]) is an isomorphic copy of $c(Y_n)$ in c_0. The key of the construction is [7, p. 51, observation of J. Lindenstrauss]: if a Banach space X has a subspace so that both the subspace and the quotient space with respect to it embed into c_0, then so does X itself.

G. Godefroy has proven in [3, Theorem VI.3] that X_{JS} has a finite dimensional decomposition with the decomposition constant not exceeding 8. He wrote in [3, Ch. VII, §VI] that no effort had been made in the proof to tighten the constant and it is unlikely that 8 were the critical value. The main aim of this paper is to tighten the constant to 6.

2. The following—the main result of this paper—is a slight improvement of [3, Theorem VI.3].

Theorem 1. The Johnson–Schechtman space X_{JS} has a finite dimensional decomposition with the decomposition constant not greater than 6, but X_{JS} fails the metric approximation property.

✩ This research was partially supported by Estonian Science Foundation Grant 7308.
E-mail address: indrek.zolk@ut.ee.
The proof in [3] goes in two parts: first the construction of X_{JS} and the finite dimensional decomposition, and second, showing that X_{JS} fails the metric approximation property. We need to go through only the first part. For the second part, we refer the reader to [3, p. 21].

Proof. Let $Y = \bigcup Y_n$ be a subspace of c_0 failing the approximation property, $\dim Y_n < \infty$, $n \in \mathbb{N}$, and $Y_1 \subset Y_2 \subset \cdots$. Define a quotient map $L: c(Y_n) \rightarrow Y$ by $L(y_n) = \lim_n y_n$, thus ker $L = c_0(Y_n)$ (the subspace of $c(Y_n)$ consisting of norm-decaying sequences). Define an isometric embedding $T: c_0(Y_n) \rightarrow c_0$ (for instance, having $(y_n) \in c_0(Y_n)$, where $y_n = (\xi_k^n)_{k \in \mathbb{N}}$, one can define $T(y_n) = (\xi_1^n, \xi_2^n, \xi_3^n, \xi_4^n, \xi_5^n, \xi_6^n, \xi_7^n, \ldots)$.

Extend T to an operator $\tilde{T}: c(Y_n) \rightarrow c_0$ using Sobczyk’s theorem [12]: we have $\|\tilde{T}\|_{c(Y_n)} = \|T\| + \|\tilde{T}\|_{\leq 2\|T\|}$. Let the coordinate functions on c_0 be $e_k^n, k \in \mathbb{N}$; we need the expression of $\tilde{T}(y_n) = (x_k^n - t_k^n(y_n))_k$, where x_k^n are Hahn–Banach extensions of functionals $y_k^n = T^*(e_k^n) \in c_0(Y_n)^*$. Also, $x_k^n, t_k^n \in \|T\|B_{c_0(Y_n)}$ and t_k^n is null on $c_0(Y_n)$ for all k (see, e.g., [3, proof of Theorem II.1]). It can be easily verified that $V : c(Y_n) \rightarrow c_0 \oplus_{\infty} c_0 \cong c_0, V(y_n) = (\tilde{T}(y_n), L(y_n))$, is an isomorphism into c_0 with $\|V\| \leq 2$. The next step in [3, proof of Theorem VI.3] now yields $\|V^{-1}|_{\text{ran} V} \leq 4$; we shall present an argument that gives $\|V^{-1}|_{\text{ran} V} \leq 3$.

Assume that $\|V^{-1}|_{\text{ran} V} \geq 3$. As there exists a sequence $(y_n) \in c(Y_n)$ such that $\|y_n\| > 3$, $\lim_n \|y_n\| < 1$ and $\|\tilde{T}(y_n)\| < 1$. Let $N \in \mathbb{N}$ be an index such that $\sup_{n \geq N} \|y_n\| < 1$. Split (y_n) into two parts: $(y_0^n) = (y_1, \ldots, y_{N-1}, 0, 0, \ldots)$ and $(y_N^n) = (y_N - y_0^n)$. Of course $\|y_0^n\| > 3, (y_N^n) \in c_0(Y_n)$ and $\|y_N^n\| < 1$.

Due to the inequality $\sup_n \|y_1^n(y_N^n)\| = \|T(y_N^n)\| = \|y_N^n\| > 3$, we find an index $m \in \mathbb{N}$ for which $\|y_m^n(y_N^n)\| > 3$. As $\sup_n \|x_m^n(y_N^n)\| = \|\tilde{T}(y_N^n)\| < 1$, we also have the inequality $\|y_m^n(y_N^n)\| < 3$. Bearing in mind that $t_m^n(y_N^n) = t_m^n(y_N^n)$, we have

\[
|x_m^n(y_N^n)| + 1 \leq |x_m^n(y_0^n) - t_m^n(y_N^n)| + |x_m^n(y_0^n)| + 1 + 2 + \|t_m^n\| \leq \|y_m^n(y_0^n)\| = |x_m^n(y_0^n)| < 1,
\]

a contradiction. Therefore $\|V^{-1}|_{\text{ran} V} \leq 3$.

Denote $|X_5| = \text{ran} V$ and $P_m = V Q_m V^{-1}$, where $Q_m(y_n) = (y_1, \ldots, y_{m-1}, y_m, y_{m+1}, \ldots), m \in \mathbb{N}$. It is straightforward to verify that (P_m) is a finite dimensional decomposition of X_{JS} and $\sup_m \|P_m\| \leq 6$. □

Remark 2. By [10, Corollary 2.5 and Remark 2.4], X_{JS} fails the metric A-approximation property for any operator ideal A which is contained in the union of weakly compact, strictly singular, and completely continuous operators. By [11, Corollary 3.8], there exist a separable reflexive Banach space Z and a compact linear operator $T : X_{JS} \rightarrow Z$ such that for every net (T_a) of finite rank operators from X_{JS} to Z converging strongly to T, there holds $\sup_a \|T_a\| > \|T\|$; in particular, X_{JS} fails the weak metric approximation property (see [8]).

The following corollary is immediate.

Corollary 3. The Johnson–Schechtman space X_{JS} has the λ-bounded approximation property with $\lambda \leq 6$.

Note that the proof of Theorem 1 is useful for any subspace of c_0 as a starting point, yielding a finite dimensional decomposition with the decomposition constant not greater than 6 on the constructed space. Also note that every Banach space constructed in this manner has the commuting bounded approximation property; hence this construction cannot provide any information on a well-known open problem whether every Banach space with the bounded approximation property has the commuting bounded approximation property.

3. One says that a Banach space X is M-embedded if the canonical projection π_X from X^{***} onto X^* satisfies the inequality

\[
\|X^{***} - \pi_X X^{***}\| + \|\pi_X X^{***}\| \leq \|X^{***}\|, \quad X^{***} \in X^{***}.
\]

M-embeddedness inherits to subspaces and quotient spaces (see, e.g., [5, p. 111]). A well-known example of an M-embedded Banach space is c_0.

The Banach–Mazur distance between Banach spaces X and Y is defined as $d_{BM}(X, Y) = \inf\{\|T\|\|T^{-1}\| : T : X \rightarrow Y$ is an isomorphism\}. (If X and Y are not isomorphic, one defines $d_{BM}(X, Y) = \infty$.)
Theorem 4. (See [3, Corollary VI.2].) Let X be a separable M-embedded space. If there exists a Banach space Y with the metric approximation property such that $d_{BM}(X, Y) < 2$, then X has the metric approximation property.

Merging the last result (note that it also applies to subspaces and quotient spaces of c_0) with Theorem 1, we have:

Corollary 5. For every Banach space Y with the metric approximation property, there holds $d_{BM}(X_{JS}, Y) \geq 2$. On the other hand, there exists a Banach space Y with the metric approximation property for which $d_{BM}(X_{JS}, Y) \leq 6$.

The question which is the greatest value of λ that would guarantee the metric approximation property to pass over from a Banach space Y to any separable M-embedded space X with $d_{BM}(X, Y) < \lambda$, is yet open.

Acknowledgments

This note is a part of a PhD thesis which is being prepared by the author at Tartu University under the supervision of Professor Eve Oja. The author wishes to thank Professor Oja for her valuable help. The author is very grateful to the referee for suggestions.

References