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In this article we obtain the characteristic functions (c.f.'s) for L1 -spherical dis-
tributions and simplify that of the L1-norm symmetric distributions to an expres-
sion of a finite sum. These forms of c.f.'s can be used to derive the probability den-
sity functions (p.d.f.'s) of linear combinations of variables. We shall show that this
gives a unified approach to the treatment of the linear function of i.i.d. random
variables and their order statistics associated with double-exponential (i.e.,
Laplace), exponential, and uniform distributions. Some applications in reliability
prediction, random weighting, and serial correlation are also shown. � 2001
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1. INTRODUCTION

Osiewalski and Steel (1993) introduced the class of multivariate
Lp -spherical distributions, where the symmetry is imposed through the
density function. An important special class of Lp -spherical distributions is
generated by independent sampling from exponential power distribution
(Box and Tiao, 1973, Chap. 3). For p=1 the sample comes from double-
exponential distribution, for p=2 it corresponds to sampling from a
normal, and for p=+� it is from a uniform distribution. An n-variate
random vector x is said to have and Lp -spherical distribution, denoted by
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xtS(n, p; G), if x =d R* } w, where w has the uniform distribution on the
surface of the Lp -sphere in Rn,

Fn, p={x=(x1 , ..., xn)T : &�<xj<+�, :
n

j=1

|x j |
p=1= , (1.1)

and R*, being independent of w, is univariate nonnegative random variable
with c.d.f. G. Based on the symmetry of a stochastic representation, Gupta
and Song (1997a, b) recently studied the properties of the L-spherical dis-
tribution. The c.f. of the Lp -spherical distribution has not been available.

Yue and Ma (1995) developed a family of the multivariate versions of
the Weibull distributions, called the multivariate Lp -norm symmetric dis-
tributions, which are extensions of the family of multivariate L1 -norm sym-
metric distributions studied by Fang and Fang (1988). An n-dimensional
random vector z is said to have an Lp -norm symmetric distribution,
denoted by ztL(n, p; G), if z =d R* } u, where u is uniformly distributed on
the Lp-norm closed simplex in Rn

+ ,

Tn, p={x=(x1 , ..., xn)T : x j�0, :
n

j=1

x p
j =1= , (1.2)

and R*, being independent of u, is univariate nonnegative random variable
with c.d.f. G. When p=1, we denote Fn, 1 and Tn, 1 by Fn and Tn respec-
tively. The c.f. of the uniform distribution on Tn , i.e., utU(Tn), is given by
Fang et al. (1990, p. 116) as follows:

E(ei tT u)=1(n) eitn :
�

j=0

i j

1(n+ j)
:

r1+ } } } +rn&1=j

`
n&1

k=1

(tk&tn)rk. (1.3)

Note that the right side of (1.3) is a summation with infinite terms.
In this paper we shall employ the partial-fraction expansion, the CKS

(Cambanis, Keener, and Simons) formula and the HG (Hermite�
Genocchi) formula to obtain for the first time the c.f. for L1 -spherical
distributions in Theorem 1 of Section 3. Our second contribution is to
simplify (1.3) as finite summations for three different situations (see
Theorem 2). Analogous results are developed for the c.f.'s of ztL(n, 1; G)
and ytU(Vn), where Vn �Vn (1) is a special case of the open simplex in
Rn

+ ,

Vn (c)={x=(x1 , ..., xn)T : x j�0, :
n

j=1

xj�c= , (1.4)

where c is a positive constant. In Section 4, we use the c.f. to obtain the
p.d.f. of the linear combinations of variables for three kinds of cases. This
leads to a unified approach to the treatment of the linear function of i.i.d.
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random variables and their order statistics associated with exponential and
uniform distributions. The formula (5.5.4) of David (1981, p. 103) is a
direct consequence of our (4.13). The applications in reliability prediction,
random weighting and serial correlation are shown in Section 5.

2. PRELIMINARIES

In order to derive the characteristic functions in the next section, we
shall collect some useful formulae about the partial-fraction expansion and
other multi-fold integrals on the open simplex Vn (c).

2.1. Partial-Fraction Expansion. A lot of useful formulae can be
obtained by combining the surface integral formula with the partial-
fraction identity (Hazewinkel, 1990, p. 311)

N(x)
(x&b1) } } } (x&bn)

= :
n

k=1

N(bk) 2(b1 , ..., bn)
x&bk

, (2.1)

where 2k (b1 , ..., bn)=>n
j{k, j=1 (bk&b j)

&1, N(x) is a polynomial of degree
r, 0�r�n&1, and bj {bk for j, k=1, ..., n, j{k. Especially, taking
N(x)=&x in (2.1) and setting x=0, we have

0= :
n

k=1

2k (b1 , ..., bn). (2.2)

2.2. CKS Formula. Let h( } ) and g( } ) be measurable functions on R1
+

and R1 respectively, and further let g( } ) have the (n&1)th absolutely con-
tinuous derivatives. It can be shown by induction and through the use of
(2.2) that (Cambanis et al. 1983, p. 225)

|
Rn

+

h \ :
n

j=1

xj+ g (n&1) \ :
n

j=1

sjx j+ dx

= :
n

k=1

2k (s1 , ..., sn) |
�

0
h(u) g(usk) du. (2.3)

From the proof of Theorem 3.1 in Cambanis et al. (1983, pp. 225�226), we
know that (2.3) can derive the integral

|
R n

+

h \ :
n

j=1

x j+ `
n

j=1

cos(sjxj) dx= :
n

k=1

2k (s2
1 , ..., s2

n) } Bn (s2
k), (2.4)
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where

Bn (t)={
(&1) (n&1)�2 t(n&1)�2 |

�

0
cos(u - t) h(u) du,

(&1) (n&2)�2 t (n&1)�2 |
�

0
sin(u - t) h(u) du,

n odd,

n even.

We shall call (2.4) the CKS formula in the following. An alternative version
of (2.3) is given by

|
Vn(c)

h \ :
n

j=1

xj+ g(n&1) \ :
n

j=1

sjxj+ dx

= :
n

k=1

2k (s1 , ..., sn) |
c

0
h(u) g(usk) du. (2.5)

Another important formula is

|
Vn(c)

h \ :
n

j=1

x j+ dx=
1

(n&1)! |
c

0
h(u) un&1 du, (2.6)

which can be obtained by using (5.10) of Fang et al. (1990, p. 115).

2.3. HG Formula. The classical Hermite�Genocchi (HG) formula
(Karlin et al., 1986, p. 71) can be stated as

|
Tn

g(n&1) \ :
n

j=1

sjxj + dx=- n :
n

k=1

g(sk) 2k (s1 , ..., sn), (2.7)

where dx denotes the volume element of Tn and g( } ) has the same meaning
as in (2.3).

The following three lemmas will be used in the sequel and their proofs
are omitted.

Lemma 1. Assume that t # R1
+ , b # R1, and b{0. Let !n=!n (t; b)

�� t
0 ebx } nxn&1 dx, then

!n (t; b)=n !(&b)&n&n ! tnebt :
n

k=1

(&bt)&k�(n&k)!. (2.8)

Lemma 2. Assume that t # R1
+ , a, b # R1, and b{0. Let 'n='n (t; a, b)

�� t
0 cos(a+x�b) } xn&1 dx and `n=`n (t; a, b) ��t

0 sin(a+x�b) } xn&1 dx.
Denote the largest integer not exceeding x by [x]. Then
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'n =sin(a+t�b) :
[(n+1)�2]&2

k=0

(&1)k (n&1)! b2k+1tn&2k&1

(n&2k&1)!

+cos(a+t�b) :
[(n+1)�2]&2

k=0

(&1)k (n&1)! b2k+2tn&2k&2

(n&2k&2)!

+(&1)[(n+1)�2]&1 (n&1)! bn } Cn (t; a, b), (2.9)

`n=&cos(a+t�b) :
[(n+1)�2]&2

k=0

(&1)k (n&1)! b2k+1tn&2k&1

(n&2k&1)!

+sin(a+t�b) :
[(n+1)�2]&2

k=0

(&1)k (n&1)! b2k+2tn&2k&2

(n&2k&2)!

+(&1)[(n+1)�2]&1 (n&1)! bn } Dn (t; a, b), (2.10)

where

Cn (t; a, b)={sin(a+t�b)&sin(a),
(t�b) sin(a+t�b)+cos(a+t�b)&cos(a),

n odd,
n even.

Dn (t; a, b)={cos(a)&cos(a+t�b),
&(t�b) cos(a+t�b)+sin(a+t�b)&sin(a),

n odd,
n even.

Lemma 3. Assume that t # R1
+ , b # R1, and define

$n (t)�|
Vn&1(t)

cos \t& :
n&1

j=1

uj + `
n&1

j=1

cos(uj) duj .

Then we have

$n (t)=
(t�2)n&1

(n&1)!
:

n&1

k=0

k \n&1
k +

2

t&k

_ :
n&1&k

j=0
\n&1&k

j + (&t)& j 'k+ j (t; t, &0.5), (2.11)

where the function 'k+ j is given by (2.9).

3. CHARACTERISTIC FUNCTIONS

Consider x=(x1 , ..., xn)T which has an L1 -spherical distribution, i.e.,
xtS(n, 1; G). Then the c.f. of x is given by

E(ei tTx)=E(ei tTR* } w)=|
�

0
,w (r*t1 , ..., r*tn) dG(r*), (3.1)
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where R* has c.d.f. G and ,w is the c.f. of wtU(Fn). Therefore, it suffices
to investigate ,w . A special feature of this characteristic function is that it
is a real function. We have the following main result.

Theorem 1. Let ,w(t1 , ..., tn) be the c.f. of wtU(Fn), then

,w (t1 , ..., tn)

={
1 (n) :

n

k=1

(&1) (n&1)�2 tn&1
k cos(tk) } 2k (t2

1 , ..., t2
n),

1 (n) :
n

k=1

(&1)(n�2)&1 tn&1
k sin(tk) } 2k (t2

1 , ..., t2
n),

n odd,

n even,
(3.2)

where t2
j {t2

k , for j, k=1, ..., n, j{k.

Proof. The technique in proving this case is similar to that of
Lemma 7.1 in Fang et al. (1990, p. 185). Let x1 , ..., xn be an i.i.d. sample
from double-exponential with p.d.f.

(2*)&1 exp[&*&1 |x|], *>0, &�<x<�,

that is, x1 , ..., xn t
iid DE(*), x=(x1 , ..., xn)T. It follows from Theorem 1.1 in

Song and Gupta (1997a, b) that

w=(w1 , ..., wn)T =d \x1< :
n

j=1

|xj |, ..., xn< :
n

j=1

|xj |+
T

tU(Fn). (3.3)

Without loss of generality, we take *=1 and obtain the c.f. of w as

,w (t1 , ..., tn)

=E exp[i tTw]=E exp {i tTx< :
n

j=1

|x j |=
=|

Rn
exp {i

t1x1+ } } } +tnxn

|x1|+ } } } +|xn | = 2&n exp[&(|x1|+ } } } +|xn | )] dx

=|
Rn

+

exp[&(x1+ } } } +xn)] `
n

j=1

cos \ t jxj

x1+ } } } +xn+ dx,
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where in the last step we have used the symmetry of the integrand.
The transformation yj=xj ��n

i=1 xi , 1� j�n&1, yn=�n
i=1 xi , has the

Jacobian J(x1 , ..., xn � y1 , ..., yn)= yn&1
n . Therefore, we have

,w(t1 , ..., tn)

=1 (n) |
Vn&1

cos _tn \1& :
n&1

j=1

yj+& `
n&1

j=1

cos(tj yj) dyj . (3.4)

Putting h(u)=cos(tn (1&u)) } I[0, 1] (u) in the CKS formula (2.4), where
ID( } ) represents the indicator function of domain D, we have

,w (t1 , ..., tn)=1 (n) :
n&1

k=1

2k (t2
1 , ..., t2

n&1) } Bn&1 (t2
k),

where

Bn&1 (t)={
(&1) (n&2)�2 t(n&2)�2 (- t sin(- t)&tn sin(tn))�(t&t2

n),
n&1 odd,

(&1) (n&3)�2 t (n&2)�2 } - t(cos(tn)&cos(- t))�(t&t2
n),

n&1 even.

Noting the identity

:
n

k=1

(&1) (n&3)�2 tn&1
k 2k (t2

1 , ..., t2
n)=0, n is odd, (3.5)

which can be obtained by taking N(x)=(&1) (n&1)�2 x (n+1)�2 in (2.1) and
setting x=0, we have, when n is odd,

,w (t1 , ..., tn)

=1 (n) :
n&1

k=1

2k (t2
1 , ..., t2

n) } (&1)(n&3)�2 tn&1
k (cos(tn)&cos(tk)).

This implies the first expression of (3.2) by virtue of (3.5). Likewise the
second expression of (3.2) can be reached. K

Remark 1. (i) If t2
j =t2, for j=1, ..., n, then we have

,w (t, ..., t)=1 (n) t&(n&1)$n (t), (3.6)

where the function $n (t) is given by (2.11). In fact, if t=0, of course,
,w (0, ..., 0)=1. Since ,w (&t, ..., &t)=,w (t, ..., t), we may assume without
loss of generality that t>0. Formula (3.6) follows immediately by using
(3.4) and (2.11).
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(ii) In principle, the c.f. of wtU(Fn) for other cases can be obtained
by taking appropriate limits of (3.2) because of uniform continuity in real
space Rn. For example, let n be odd. Then from (3.2) we have, when
t2

1= } } } =t2
r =t2, 2�r<n, and t2

r+1 , ..., t2
n , t2 are distinct,

,w (t1 , ..., tn)
1 (n)(&1) (n&1)�2=0r } `

n

j=r+1

(t2&t2
j )&1

+ :
n

k=r+1

tn&1
k cos(tk)
(t2

k&t2)r 2k (t2
r+1 , ..., t2

n),

where

0r � lim
t1 � t, ..., tr � t

:
r

k=1

tn&1
k cos(tk) 2k (t2

1 , ..., t2
r ).

If we could find a general expression for 0r , other cases follow from (3.2).
In fact, this idea will be employed in showing Theorems 2 and 3. However,
there is a technical difficulty for the present theorem and its corollary. For
any specific r, one can work out 0r . For example,

02 = 1
2 [(n&1) tn&3 cos(t)&tn&2 sin(t)],

03= 1
8 [(&tn&3+(n&1)(n&3) tn&5) cos(t)

&((n&1) tn&4+(n&2) tn&5) sin(t)].

But it is not easy to find the recursive pattern of 0r , hence induction can-
not be used in this situation. A direct attack on the general pattern of 0r

without induction would be even harder.
Next, let us consider the uniform distribution inside the L1 -sphere in Rn,

En={x=(x1 , ..., xn)T : x # Rn, :
n

j=1

|xj |�1= .

If vtU(En), then the joint p.d.f. of v is 2&nn ! } IEn
(v) (see Gupta and Song,

1997a, Example 2.7). In this case, we can represent it as v =d R* } w with
R*tBe(n, 1) being independent of wtU(Fn); that is, vtS(n, 1; G) with
G(x)=xn } I[0, 1] (x). We use Be(a, b) to denote the beta distribution
with parameters a and b. Applying (3.1) and Theorem 1, we immediately
obtain
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Corollary 1. Let �v (t1 , ..., tn) be the c.f. of vtU(En), then

�v (t1 , ..., tn)

={
n ! :

n

k=1

(&1) (n&1)�2 tn&2
k sin(tk) } 2k (t2

1 , ..., t2
n),

n ! :
n

k=1

(&1)n�2 tn&2
k cos(tk) } 2k (t2

1 , ..., t2
n),

n odd,

n even,

where t2
j {t2

k , for j, k=1, ..., n, j{k.

Now let us consider the c.f. of an L1 -norm symmetric distribution. Let
z=(z1 , ..., zn)T have such a distribution, i.e., ztL(n, 1; G), then the c.f. of
z is given by

E(ei tTz)=E(ei tTR* } u)=|
�

0
8u (r*t1 , ..., r*tn) dG(r*),

where R* has c.d.f. G and 8u is the c.f. of utU(Tn). If the moment

generating function (m.g.f.) E(esT u) of random vector u is available, we can
obtain the c.f. of u by replacing s with i t. For this reason, we derive the
m.g.f. of U(Tn) to signify that all moments exist.

Theorem 2. Let 8u (s1 , ..., sn) be the m.g.f. of utU(Tn).

(i) If s j {sk , for j, k=1, ..., n, j{k, then

8u (s1 , ..., sn)=(n&1)! :
n

k=1

esk2k (s1 , ..., sn). (3.7)

(ii) If s j=s, for j=1, ..., n, then 8u (s, ..., s)=exp(s).

(iii) If s1= } } } =sr=s, 2�r<n, and s, sr+1 , ..., sn are distinct, then

8u (s1 , ..., sn)=(n&1)! { es

(r&1)!
`
n

j=r+1

(s&sj)
&1

+ :
n

k=r+1

esk (sk&s)&r 2k (sr+1 , ..., sn)= . (3.8)

Proof. (i) Since the joint p.d.f. of utU(Tn) is (n&1)!�- n } ITn
(u),

then the m.g.f. of u is given by

8u (s1 , ..., sn)=E(esT u)=
(n&1)!

- n |
Tn

exp { :
n

j=1

sj uj= du.
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Applying the HG formula (2.7) to the function g(t)=exp(t), we obtain
(3.7) immediately.

(ii) It is trivial.

(iii) Considering the limit of (3.7), we have

8u (s1 , ..., sn)
(n&1)!

=0r* } `
n

j=r+1

(s&sj)
&1

+ :
n

k=r+1

esk (sk&s)&r 2k (sr+1 , ..., sn), (3.9)

where

0r* � lim
s1 � s, ..., sr � s

:
r

k=1

esk2k (s1 , ..., sr).

In particular, we can obtain

02*=es, 03*=
es

2!
, 04*=

es

3!
, ... .

Therefore 0r*=es�(r&1)!. By substituting this into (3.9), we obtain
(3.8). K

Now we turn to the c.f. of U(Vn). Again, we can do more by deriving the
m.g.f. of U(Vn).

Theorem 3. Let 9y (s1 , ..., sn) be the m.g.f. of ytU(Vn).

(i) If s j {sk , for j, k=1, ..., n, j{k, then

9y (s1 , ..., sn)=n ! :
n

k=1

s&1
k (esk&1) 2k (s1 , ..., sn). (3.10)

(ii) If s j=s, for j=1, ..., n, then

9y (s, ..., s)=n !(&s)&n&n ! es :
n

k=1

(&s)&k�(n&k)!. (3.11)

201FUNCTIONS OF L1 DISTRIBUTIONS



(iii) If s1= } } } =sr=s, 2�r<n, and s, sr+1 , ..., sn are distinct, then

9y (s1 , ..., sn)

=n ! {\(&s)&r&es :
r

k=1

(&s)&k�(r&k)!+ `
n

j=r+1

(s&sj)
&1

+ :
n

k=r+1

s&1
k (esk&1)(sk&s)&r 2k (sr+1 , ..., sn)= . (3.12)

Proof. As the joint p.d.f. of ytU(Vn) is n ! } IVn
(y), we have

E(esT y)=n ! |
Vn

exp { :
n

j=1

sj yj = dy. (3.13)

(i) If all s1 , ..., sn are distinct, we see from (3.13) and (2.5) that

E(esTy)=n ! :
n

k=1

2k (s1 , ..., sn) |
1

0
exp( ysk) dy

=n ! :
n

k=1

2k (s1 , ..., sn) s&1
k (esk&1),

which implies (3.10).

(ii) If all sj=s, for j=1, ..., n, we have from (3.13) and (2.6)

E(esTy)=n! |
Vn

exp {s :
n

j=1

yj= dy=|
1

0
esx } nxn&1 dx=!n (1; s).

So we obtain (3.11) by Lemma 1.

(iii) Considering the limit of (3.10), we have

9y (s1 , ..., sn)
n !

=0r** } `
n

j=r+1

(s&sj)
&1

+ :
n

k=r+1

s&1
k (esk&1)(sk&s)&r 2k (sr+1 , ..., sn), (3.14)

where

0r** � lim
s1 � s, ..., sr � s

:
r

k=1

s&1
k (esk&1) 2k (s1 , ..., sr).
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In particular, we have

02** =s&2 (ses&es+1), 0*3*=s&3( 1
2s2es&ses+es&1) ,

04**=s&4 ( 1
6 s3es& 1

2s2es+ses&es+1), ... .

The general pattern of 0r** is not quite obvious. Noting that the limit of
(3.10) is (3.11), i.e.,

lim
s1 � s, ..., sn � s

:
n

k=1

s&1
k (esk&1) 2k (s1 , ..., sn)

=(&s)&n&es :
n

k=1

(&s)&k�(n&k)!. (3.15)

We have 0r**=(&s)&r&es �r
k=1 (&s)&k�(r&k)! by replacing n with r in

(3.14). By substituting of 0r** into (3.14), we obtain (3.12). K

4. DENSITY FUNCTIONS FOR LINEAR FORMS

We first consider the linear function associated with U(Fn) and the
double-exponential distribution. Let x1 , ..., xn t

iid DE(1) and x=(x1 , ..., xn)T.
From (3.3), we know that w=x��n

k=1 |xk |tU(Fn). We are often inter-
ested in the exact p.d.f. of linear function such as

w=aTw= :
n

k=1

akwk and x=aTx= :
n

k=1

akxk . (4.1)

Since &x =d x and &w =d w, we can assume without loss of generality that
all a1 , ..., an are positive. The configuration classifications for [a1 , ..., an]
are as follows.

Case 1. All ak are different, say, 0<a1< } } } <an .

Case 2. All ak are equal, say, a1= } } } =an=1.

Case 3. At least two of ak are equal. For example, (a1 , ..., a5)T=
(0.5, 0.5, 1, 4, 4)T;

For Cases 1 and 2, we have the following results.
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Theorem 4. Case 1. The p.d.f.'s of w=aTw and x=aTx are respec-
tively given by

f1 (w)= :
n

k=1

{nk }
n&1
2ak \1&

|w|
ak +

n&2

I[&ak , ak] (w), (4.2)

g1 (x)= :
n

k=1

{nk }
1

2ak
exp \&

|x|
ak + , &�<x<+�, (4.3)

where

{nk=a2(n&1)
k 2k (a2

1 , ..., a2
n), k=1, ..., n. (4.4)

Case 2. The p.d.f.'s of w=�n
k=1 wk and x=�n

k=1 xk are respectively
given by

f2 (w)= :
n

k=1

\nk }
|w|k&1 (1&|w| )n&k&1

2B(k, n&k)
, |w|�1, (4.5)

g2 (x)= :
n

k=1

\nk }
|x|k&1 exp(&|x| )

21(k)
, &�<x<+�, (4.6)

where

\nk=\2n&k&1
n&1 +<22n&k&1, k=1, ..., n. (4.7)

Proof.

Case 1. It suffices to consider the situation when n is odd. From (3.2),
the c.f. of w=aTw is

.w (t)=E(eitw)=E(eitaTw)=,w (ta1 , ..., tan)

=1(n) :
n

k=1

(&1) (n&1)�2 an&1
k 2k (a2

1 , ..., a2
n) } t&(n&1) cos(tak).

In terms of the inversion theorem, the p.d.f. of w is given by

f1 (w)=
1

2? |
+�

&�
e&itw.w (t) dt

=
1

2?
} 1(n) :

n

k=1

(&1) (n&1)�2 an&1
k 2k (a2

1 , ..., a2
n) } I1 , (4.8)
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where

I1 �|
+�

&�
e&itw } t&(n&1) cos(tak) dt=|

+�

&�

e&itw (e itak+e&itak)
2tn&1 dt.

By means of residue theorem in complex analysis, Stuart and Ord (1987,
p. 362) derived the complex integral

|
+�

&�

e ibz

zn dz={&2?inbn&1�(n&1)!,
0,

if b�0,
if b>0,

(4.9)

which can be employed to give

I1={?(&1)(n&1)�2 (ak&|w| )n&2�(n&2)!,
0,

|w|�ak ,
otherwise.

(4.10)

By substituting (4.10) into (4.8), we obtain (4.2).
Define `��n

k=1 |xk |, then `tGa(n, 1) and independent w (Gupta and
Song, 1997a, Theorem 1.1). So x=w } ` and ` is independent of w. The
p.d.f. of x=aTx is given by

g1 (x)=|
�

0
f1 \x

t+
1
t

}
tn&1e&t

1(n)
dt

= :
n

k=1

{nk }
n&1
2ak

|
�

|x|�ak
\1&

|x|
tak+

n&2 tn&2e&t

1(n)
dt,

which implies (4.3).

Case 2. It can be shown similarly by using the inversion theorem from
c.f. to p.d.f. K

Some insights into (4.2)�(4.6) are given in Remark 2 below. We recall
some distributions related to the beta distribution. Denote by xt

Be( p, q; a), the beta distribution with scale a, if x has p.d.f.

1
a } B( p, q) \

x
a+

p&1

\1&
x
a+

q&1

, 0�x�a, a>0.

The p.d.f.'s of the symmetric beta distribution and the symmetric beta
distribution with scale a are respectively defined as
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1
2 } B( p, q)

|x| p&1 (1&|x| )q&1, |x|�1,

1
2a } B( p, q) }

x
a }

p&1

\1&
|x|
a +

q&1

, |x|�a, a>0,

and they are symbolized by Sbe( p, q) and Sbe( p, q; a).

Remark 2. (i) We know that each component wk of w has the same
symmetric beta distribution with parameters 1 and n&1, i.e., wk t

Sbe(1, n&1), thereby, akwk tSbe(1, n&1; ak). Equation (4.2) indicates
that the distribution for the sum of n dependent variables with
Sbe(1, n&1; ak) is the mixture of Sbe(1, n&1; ak). Likewise, (4.3) implies
that the distribution for the sum of n independent variables with DE(ak)
(akxk tDE(ak)) is the mixture of DE(ak).

(ii) Formula (4.5) and (4.6) denote the mixtures of the symmetric
beta distribution Sbe(k, n&k) and the symmetric gamma distribution
SGa(k, 1) respectively. The latter coincides with the result listed on p. 24 of
Johnson and Kotz (1970).

Now let us consider the exact distribution of linear function y=aTy=
�n

k=1 ak yk , where y=( y1 , ..., yn)T
tU(Vn). The relationship between the

c.f. of y=aTy and the c.f. of y is .y (t)=9y (ta1 , ..., tan). By means of
(3.10), we have

.y (t)=n ! :
n

k=1

_nk }
exp(itak)&1

(itak)n , (4.11)

where

_nk=an&1
k 2k (a1 , ..., an), k=1, ..., n. (4.12)

In analogy with (4.8), the p.d.f. of y=aTy is given by

h1 ( y)=
n !
2?

:
n

k=1

_nk
1

(iak)n } I2 ,

where

I2=|
+�

&�

eit(&y+ak)

tn dt&|
+�

&�

e&ity

tn dt.

By (4.9), we have for some fixed ak ,

I2={&2?in ( y&ak)n&1 } (&1)n�(n&1)!,
&2?in (&y+ak)n&1�(n&1)!,

if ak>0, 0� y�ak ,
if ak<0, ak� y�0,
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that is,

I2=
2?in (ak& y)n&1

(n&1)!
} sgn(ak) } I[min(0, ak), max(0, ak)] ( y).

These results are summarized into the following theorem.

Theorem 5. Let y=( y1 , ..., yn)T
tU(Vn). If all ak ({0) are different,

then the p.d.f. of y=aT y=�n
k=1 ak yk is

h1 ( y)= :
n

k=1

_nk }
n

ak \1&
y

ak+
n&1

} sgn(ak) } I[min(0, ak), max(0, ak)] ( y), (4.13)

where weights [_nk , k=1, ..., n] are given by (4.12) and sgn( } ) denotes the
sign function.

Remark 3. (i) When ak>0, the formula (5.5.4) in David (1981,
p. 103) coincides with (4.13), which indicates that h1 ( y) is the mixture of
Be(1, n; ak), the beta distribution with scale ak .

(ii) If a1= } } } =an=1, it is easy to see y=�n
k=1 yk tBe(n, 1) by

viewing (3.11).

Corresponding to Theorem 5, we have

Theorem 6. Let u=(u1 , ..., un)T
tU(Tn). If all ak ({0) are different,

then the p.d.f. of u=aTu=�n
k=1 akuk is

h2 (u)= :
n

k=1

_nk }
n&1

ak \1&
u

ak+
n&1

} sgn(ak) } I[min(0, ak), max(0, ak)] (u), (4.14)

where weights [_nk , k=1, ..., n] are given by (4.12).

Finally, we present a unified approach to linear functions of variables.
We shall adopt the following notations for samples and their order
statistics:

y=( y1 , ..., yn)T
tU(Vn), y(1) � } } } � y(n) ,

u=(u1 , ..., un)T
tU(Tn), u(1)� } } } �u(n) ,

z=(z1 , ..., zn)T
tL(n, 1; G), z(1)� } } } �z(n) ,

!=(/1 , ..., !n+1)T
t
iid E(1), !(1)� } } } �!(n+1) ,

'=('1 , ..., 'n)T
t
iid U[0, 1], '(1)� } } } �'(n) ,
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where E(*) denotes the exponential with p.d.f.: *&1 exp(&*&1!), *>0,
!>0. We shall illustrate that all distributions of the linear functions

:
n

k=1

bk y(k) , :
n

k=1

bku(k) , :
n

k=1

bk z(k) , :
n

k=1

bk !(k) , :
n

k=1

bk'(k) ,

:
n

k=1

ck zk , and :
n

k=1

ck!k

can be reduced to the distribution of �n
k=1 ak yk as given by (4.13) or to

that of �n
k=1 akuk as given by (4.14).

(i) �n
k=1 bk y(k) � �n

k=1 ak yk . From Example 5.1 of Fang et al.
(1990, p. 121), we know that ytU(Vn) belongs to the class of the L1 -norm
symmetric distribution. Therefore, the conclusion stated in Theorem 5.12 of
Fang et al. (1990, p. 126) is also available to y. Define yk* �(n&k+1)
( y(k)& y(k&1)), y(0)=0, k=1, ..., n, called normalized spacings of y, then
( y1*, ..., yn*)T =d y, which implies

:
n

k=1

bk y(k) =d
:
n

k=1

ak yk , where ak= :
n

j=k

bj �(n&k+1). (4.15)

(ii) �n
k=1 bk u(k) � �n

k=1 akuk . Since utU(Tn) also belongs to the
family of the L1 -norm symmetric distribution, similar to (4.15), we obtain

:
n

k=1

bk u(k) =d
:
n

k=1

akuk , where ak= :
n

j=k

b j �(n&k+1).

(iii) �n
k=1 bk z(k) and �n

k=1 ck zk � �n
k=1 ak yk . Now z=(z1 , ..., zn)T

tL(n, 1; G) which implies z =d R* } u, where R*tG( } ) independent of
utU(Tn), hence

:
n

k=1

bk z(k) =d R* } :
n

k=1

bku(k) , :
n

k=1

ckzk =d R* } :
n

k=1

ckuk .

(iv) �n
k=1 bk !(k) and �n

k=1 ck!k � �n
k=1 ak yk . Because

( y1 , ..., yn)T =d \!1< :
n+1

k=1

!k , ..., !n< :
n+1

k=1

!k+
T

,
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then

:
n

k=1

bk !(k) =d
:
n

k=1

ck !k , where ck= :
n

j=k

bj �(n&k+1),

:
n

k=1

ck !k =d \ :
n+1

k=1

!k+ } :
n

k=1

ak yk , where ak=ck ,

where �n+1
k=1 !k tGa(n+1, 1) independent of �n

k=1 ak yk .

(v) �n
k=1 bk '(k) � �n

k=1 ak yk . Now yk =d ('(k) & '(k&1)), '(0) = 0,
k=1, ..., n, then

:
n

k=1

bk '(k) =d
:
n

k=1

ak yk , where ak= :
n

j=k

bj .

5. APPLICATIONS

In this section, we shall demonstrate the usefulness of the preceding
results with three important examples: predicting the reliability of com-
ponents in a system, the random weighting method, and serial correlation.

Example 1 (Prediction Problem in Reliability). Consider the non-
parametric problem of predicting aTx (2) based on the first m observations
x(1) , where a is an (n&m)_1 scalar vector and x=(xT

(1) , xT
(2))

T
t

S(n, 1; G). It is easy to see that t(x)=aTx(2) ��m
k=1 |xk | is scale-invariant

(see, Gupta and Song, 1997a, Theorem 6.2). Hence we can take x=
(x1 , ..., xn)T, x1 , ..., xn t

iid DE(1). If all components of a are 1, then the p.d.f.
of x�aTx (2)=�n

k=m+1 xk from (4.6) is given by

g2 (x)= :
n&m

k=1

\n&m, k }
|x|k&1 exp(&|x| )

21(k)
, &�<x<�.

Since �m
k=1 |xk |tGa(m, 1) and is independent of aTx(2) , the p.d.f. of t(x)

is

h(u)=|
�

0
g2 (uv) }

1
1(m)

vm&1e&vv dv

= :
n&m

k=1

\n&m, k }
1

2B(k, m)
}

|u|k&1

(1+|u| )k+m . (5.1)
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In this case we can obtain the prediction interval [L1 , U1] of
aTx(2)=�n

k=m+1 xk for a given confidence coefficient 1&:,

1&:=P {L1� :
n

k=m+1

xk�U1=
=P { L1

�m
k=1 |xk |

�t(x)�
U1

�m
k=1 |xk |= .

Hence

[L1 , U1]=_\ :
m

k=1

|xk |+ } L2 , \ :
m

k=1

|xk |+ } U2& , (5.2)

where L2 and U2 are determined by virtue of (5.1) by

1&:=P[L2�t(x)�U2]=|
U2

L2

h(u) du. (5.3)

In the same fashion we may also get the prediction interval of aTx(2) when
ai {aj , i{ j, by means of (4.3).

Example 2 (Random Weighting Method). Since Efron's (1979) well-
known paper appeared there has been considerable work on resampling
methods. Among all of these techniques, the bootstrap is the simplest and
most attractive one, and the random weighting method is an alternative
which is aimed at estimating the error distribution of estimators. Let

xk=++ek , k=1, 2, ..., (5.4)

be a measure model, where [ek , k=1, 2, ...] are random errors of
measurements. It is assumed that [e1 , e2 , ...] are i.i.d. with a common dis-
tribution function F(x) satisfying � x dF(x)=+ and � (x&+)2 dF(x)=
_2>0, and that + and _2 are unknown. The common estimator for + is the
sample mean x� , with sample size n. To construct a confidence interval for
+, we need to know the distribution of the error x� &+. The main idea of
the random weighting method is to construct a distribution based on sam-
ples x1 , ..., xn , to mimic the distribution of x� &+. Let u=(un1 , ..., unn)T

t

U(Tn) be independent of x1 , ..., xn , and define

Dn*=- n :
n

k=1

(xk&x� ) unk , (5.5)

which is the weighted mean of - n(xk&x� ) with random weight unk . Zheng
(1987, 1992) shows that Dn* | (x1 , x2 , ...), the conditional distribution of Dn*
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given (x1 , x2 , ...), is close to the distribution of the error - n(x� &+) when
n is large, i.e., with probability one,

Dn* | (x1 , x2 , ...) w�L N(0, _2), (5.6)

where the notation w�L stands for convergence in law, provided that in
model (5.4) the errors [ek , k=1, 2, ...] are i.i.d. with E(ek)=0 and
Var(ek)=_2<�.

Our interest here is to find the exact (conditional) p.d.f. of
Dn* | (x1 , x2 , ...). In fact, the (conditional) p.d.f. of Dn* | (x1 , x2 , ...) is a
mixture of beta distributions with scale by virtue of (4.14) with
ak=- n(xk&x� ).

Example 3 (Serial Correlation Problem). Consider the following
model of time series (Johnson and Kotz, 1970, p. 233)

Xt=\Xt&1+Zt , |\|<1, t=1, 2, ..., (5.7)

where the Z$t s are mutually independent unit normal variables, and further,
Zt is independent of all Xk for k<t. Define a modified noncircular serial
correlation coefficient as

R1, 1=

:
n&1

k=1

(Xk&X� 1)(Xk+1&X� 1)+ :
2n&1

k=n+1

(Xk&X� 2)(Xk+1&X� 2)

:
n

k=1

(Xk&X� 1)2+ :
2n

k=n+1

(Xk&X� 2)2

, (5.8)

where

X� 1=n&1 :
n

k=1

Xk ; X� 2=n&1 :
2n

k=n+1

Xk .

The exact distribution of R1, 1 has been obtained by Pan (1968) for the case
when the correlation between Xi and Xj is \ for |i& j |=1, and is 0
otherwise. In this case it can be shown that R1, 1 is distributed as
(�n&1

k=1 *k!k)�(�n&1
k=1 !k), where the !'s are mutually independent variables,

each distributed as standard exponential, i.e., (!1 , ..., !n)T
t
iid E(1), and

*2k&1=cos(2k?�(n+1)), k=1, 2, ..., [n�2], while *2 , *4 , ..., *2[(n&1)�2] are
roots of the equation

(1&*)&2 [(&1
2)n& 1

2 Dn&1 (*)&(n+1&n*) Dn (*)]
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with

Dn (*)=\&
1
2

*+
n

:
[n�2+1]

k=1
\ n+1

2k&1+ (&1)k&1 (*2&1)k&1.

It's easy to see that R1, 1 has the same distribution as �n&1
k=1 *k uk whose

p.d.f. is given by (4.14) with (u1 , ..., un&1)T
tU(Tn&1).
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