Some arithmetic properties of the q-Euler numbers and q-Salié numbers

Victor J.W. Guo, Jiang Zeng
Institut Camille Jordan, Université Claude Bernard (Lyon I), F-69622, Villeurbanne Cedex, France

Received 20 April 2005; accepted 28 April 2005
Available online 13 June 2005

Abstract

For $m>n \geq 0$ and $1 \leq d \leq m$, it is shown that the q-Euler number $E_{2 m}(q)$ is congruent to $q^{m-n} E_{2 n}(q) \bmod \left(1+q^{d}\right)$ if and only if $m \equiv n \bmod d$. The q-Salié number $S_{2 n}(q)$ is shown to be divisible by $\left(1+q^{2 r+1}\right)^{\left\lfloor\frac{n}{2 r+1}\right\rfloor}$ for any $r \geq 0$. Furthermore, similar congruences for the generalized q-Euler numbers are also obtained, and some conjectures are formulated. © 2005 Elsevier Ltd. All rights reserved.

$M S C$: primary 05A30, 05A15; secondary 11A07

1. Introduction

The Euler numbers $E_{2 n}$ may be defined as the coefficients in the Taylor expansion of $2 /\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$:

$$
\sum_{n=0}^{\infty} E_{2 n} \frac{x^{2 n}}{(2 n)!}=\left(\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}\right)^{-1}
$$

A classical result due to Stern [13] asserts that

$$
E_{2 m} \equiv E_{2 n}\left(\bmod 2^{s}\right) \quad \text { if and only if } \quad 2 m \equiv 2 n\left(\bmod 2^{s}\right)
$$

[^0]The so-called Salié numbers $S_{2 n}$ [7, p. 242] are defined as

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{2 n} \frac{x^{2 n}}{(2 n)!}=\frac{\cosh x}{\cos x} \tag{1.1}
\end{equation*}
$$

Carlitz [3] first proved that the Salié numbers $S_{2 n}$ are divisible by 2^{n}.
Motivated by the work of Andrews-Gessel [2], Andrews-Foata [1], Désarménien [4], and Foata [5], we are about to study a q-analogue of Stern's result and a q-analogue of Carlitz's result for Salié numbers. A natural q-analogue of the Euler numbers is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{2 n}(q) \frac{x^{2 n}}{(q ; q)_{2 n}}=\left(\sum_{n=0}^{\infty} \frac{x^{2 n}}{(q ; q)_{2 n}}\right)^{-1} \tag{1.2}
\end{equation*}
$$

where $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ for $n \geq 1$ and $(a ; q)_{0}=1$.
A recent arithmetic study of Euler numbers and more general q-Euler numbers can be found in [14] and [11]. Note that, in order to coincide with the Euler numbers in [14,15], our definition of $E_{2 n}(q)$ differs by a factor $(-1)^{n}$ from that in [1,2,4,5].

Theorem 1.1. Let $m>n \geq 0$ and $1 \leq d \leq m$. Then

$$
E_{2 m}(q) \equiv q^{m-n} E_{2 n}(q)\left(\bmod 1+q^{d}\right) \quad \text { if and only if } \quad m \equiv n(\bmod d) .
$$

Since the polynomials $1+q^{2^{a} d}$ and $1+q^{2^{b} d}(a \neq b)$ are relatively prime, we derive immediately from the above theorem the following

Corollary 1.2. Let $m>n \geq 0$ and $2 m-2 n=2^{s} r$ with r odd. Then

$$
E_{2 m}(q) \equiv q^{m-n} E_{2 n}(q)\left(\bmod \prod_{k=0}^{s-1}\left(1+q^{2^{k} r}\right)\right)
$$

Define the q-Salié numbers by

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{2 n}(q) \frac{x^{2 n}}{(q ; q)_{2 n}}=\sum_{n=0}^{\infty} \frac{q^{n} x^{2 n}}{(q ; q)_{2 n}} / \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(q ; q)_{2 n}} \tag{1.3}
\end{equation*}
$$

For each positive integer n, write $n=2^{s}(2 r+1)$ with $r, s \geq 0$ (so s is the 2-adic valuation of n), and set $p_{n}(q)=1+q^{2 r+1}$. Define

$$
P_{n}(q)=\prod_{k=1}^{n} p_{k}(q)=\prod_{r \geq 0}\left(1+q^{2 r+1}\right)^{a_{n, r}}
$$

where $a_{n, r}$ is the number of positive integers of the form $2^{s}(2 r+1)$ less than or equal to n. The first values of $P_{n}(q)$ are given in Table 1.

Note that $P_{n}(1)=2^{n}$. The following is a q-analogue of Carlitz's result for Salié numbers:

Theorem 1.3. For every $n \geq 1$, the polynomial $S_{2 n}(q)$ is divisible by $P_{n}(q)$. In particular, $S_{2 n}(q)$ is divisible by $\left.\left(1+q^{2 r+1}\right)^{\frac{n}{2 r+1}}\right\rfloor$ for any $r \geq 0$.

Table 1
Table of $P_{n}(q)$

n	1	3	5	7
$P_{n}(q)$	$(1+q)$	$(1+q)^{2}\left(1+q^{3}\right)$	$(1+q)^{3}\left(1+q^{3}\right)\left(1+q^{5}\right)$	$(1+q)^{3}\left(1+q^{3}\right)^{2}\left(1+q^{5}\right)\left(1+q^{7}\right)$
n	2	4	6	8
$P_{n}(q)$	$(1+q)^{2}$	$(1+q)^{3}\left(1+q^{3}\right)$	$(1+q)^{3}\left(1+q^{3}\right)^{2}\left(1+q^{5}\right)$	$(1+q)^{4}\left(1+q^{3}\right)^{2}\left(1+q^{5}\right)\left(1+q^{7}\right)$

We shall collect some arithmetic properties of Gaussian polynomials or q-binomial coefficients in the next section. The proofs of Theorems 1.1 and 1.3 are given in Sections 3 and 4 , respectively. We will give some similar arithmetic properties of the generalized q Euler numbers in Section 5. Some combinatorial remarks and open problems are given in Section 6.

2. Two properties of Gaussian polynomials

The Gaussian polynomial $\left[\begin{array}{c}M \\ N\end{array}\right]_{q}$ may be defined by

$$
\left[\begin{array}{l}
M \\
N
\end{array}\right]_{q}= \begin{cases}\frac{(q ; q)_{M}}{(q ; q)_{N}(q ; q)_{M-N}}, & \text { if } 0 \leq N \leq M, \\
0, & \text { otherwise. }\end{cases}
$$

The following result is equivalent to the so-called q-Lucas theorem (see Olive [10] and Désarménien [4, Proposition 2.2]).

Proposition 2.1. Let m, k, d be positive integers, and write $m=a d+b$ and $k=r d+s$, where $0 \leq b, s \leq d-1$. Let ω be a primitive d-th root of unity. Then

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{\omega}=\binom{a}{r}\left[\begin{array}{l}
b \\
s
\end{array}\right]_{\omega}
$$

Indeed, we have

$$
\begin{aligned}
{\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q} } & =\prod_{j=1}^{r d+s} \frac{1-q^{(a-r) d+b-s+j}}{1-q^{j}} \\
& =\left(\prod_{j=1}^{s} \frac{1-q^{(a-r) d+b-s+j}}{1-q^{j}}\right)\left(\prod_{j=1}^{r d} \frac{1-q^{(a-r) d+b+j}}{1-q^{s+j}}\right) .
\end{aligned}
$$

By definition, we have $\omega^{d}=1$ and $\omega^{j} \neq 1$ for $0<j<d$. Hence,

$$
\lim _{q \rightarrow \omega} \prod_{j=1}^{s} \frac{1-q^{(a-r) d+b-s+j}}{1-q^{j}}=\prod_{j=1}^{s} \frac{1-\omega^{b-s+j}}{1-\omega^{j}}=\left[\begin{array}{l}
b \\
s
\end{array}\right]_{\omega} .
$$

Notice that, for any integer k, the set $\{k+j: j=1, \ldots, r d\}$ is a complete system of residues modulo $r d$. Therefore,

$$
\begin{aligned}
\lim _{q \rightarrow \omega} \prod_{j=1}^{r d} \frac{1-q^{(a-r) d+b+j}}{1-q^{s+j}} & =\lim _{q \rightarrow \omega} \frac{\left(1-q^{(a-r+1) d}\right)\left(1-q^{(a-r+2) d}\right) \cdots\left(1-q^{a d}\right)}{\left(1-q^{d}\right)\left(1-q^{2 d}\right) \cdots\left(1-q^{r d}\right)} \\
& =\binom{a}{r} .
\end{aligned}
$$

Let $\Phi_{n}(x)$ be the n-th cyclotomic polynomial. The following easily proved result can be found in [8, Equation (10)].

Proposition 2.2. The Gaussian polynomial $\left[\begin{array}{c}m \\ k\end{array}\right]_{q}$ can be factorized into

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q}=\prod_{d} \Phi_{d}(q),
$$

where the product is over all positive integers $d \leq m$ such that $\lfloor k / d\rfloor+\lfloor(m-k) / d\rfloor<$ $\lfloor m / d\rfloor$.

Indeed, using the factorization $q^{n}-1=\prod_{d \mid n} \Phi_{d}(q)$, we have

$$
(q ; q)_{m}=(-1)^{m} \prod_{k=1}^{m} \prod_{d \mid k} \Phi_{d}(q)=(-1)^{m} \prod_{d=1}^{m} \Phi_{d}(q)^{\lfloor m / d\rfloor},
$$

and so

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{m}}{(q ; q)_{k}(q ; q)_{m-k}}=\prod_{d=1}^{m} \Phi_{d}(q)^{\lfloor m / d\rfloor-\lfloor k / d\rfloor-\lfloor(m-k) / d\rfloor} .
$$

Proposition 2.2 now follows from the obvious fact that

$$
\lfloor\alpha+\beta\rfloor-\lfloor\alpha\rfloor-\lfloor\beta\rfloor=0 \text { or } 1, \quad \text { for } \alpha, \beta \in \mathbb{R} .
$$

3. Proof of Theorem 1.1

Multiplying both sides of (1.2) by $\sum_{n=0}^{\infty} x^{2 n} /(q ; q)_{2 n}$ and equating coefficients of $x^{2 m}$, we see that $E_{2 m}(q)$ satisfies the following recurrence relation:

$$
E_{2 m}(q)=-\sum_{k=0}^{m-1}\left[\begin{array}{c}
2 m \tag{3.1}\\
2 k
\end{array}\right]_{q} E_{2 k}(q) .
$$

This enables us to obtain the first values of the q-Euler numbers:

$$
\begin{aligned}
& E_{0}(q)=-E_{2}(q)=1 \\
& E_{4}(q)=q(1+q)\left(1+q^{2}\right)+q^{2} \\
& E_{6}(q)=-q^{2}\left(1+q^{3}\right)\left(1+4 q+5 q^{2}+7 q^{3}+6 q^{4}+5 q^{5}+2 q^{6}+q^{7}\right)+q^{3}
\end{aligned}
$$

We first establish the following result.

Lemma 3.1. Let $m>n \geq 0$ and $1 \leq d \leq m$. Then

$$
\begin{equation*}
E_{2 m}(q) \equiv q^{m-n} E_{2 n}(q)\left(\bmod \Phi_{2 d}(q)\right) \quad \text { if and only if } \quad m \equiv n(\bmod d) \tag{3.2}
\end{equation*}
$$

Proof. It is easy to see that Lemma 3.1 is equivalent to

$$
\begin{equation*}
E_{2 m}(\zeta)=\zeta^{m-n} E_{2 n}(\zeta) \quad \text { if and only if } \quad m \equiv n(\bmod d) \tag{3.3}
\end{equation*}
$$

where $\zeta \in \mathbb{C}$ is a $2 d$-th primitive root of unity.
We proceed by induction on m. Statement (3.3) is trivial for $m=1$. Suppose it holds for every number less than m. Let $n<m$ be fixed. Write $m=a d+b$ with $0 \leq b \leq d-1$, then $2 m=a(2 d)+2 b$. By Proposition 2.1, we see that

$$
\left[\begin{array}{c}
2 m \tag{3.4}\\
2 k
\end{array}\right]_{\zeta}=\binom{a}{r}\left[\begin{array}{l}
2 b \\
2 s
\end{array}\right]_{\zeta}, \quad \text { where } k=r d+s, 0 \leq s \leq d-1
$$

Hence, by (3.1) and (3.4), we have

$$
\begin{align*}
E_{2 m}(\zeta) & =-\sum_{k=0}^{m-1}\left[\begin{array}{c}
2 m \\
2 k
\end{array}\right]_{\zeta} E_{2 k}(\zeta) \\
& =-\sum_{r=0}^{a} \sum_{s=0}^{b-\delta_{a r}}\binom{a}{r}\left[\begin{array}{l}
2 b \\
2 s
\end{array}\right]_{\zeta} E_{2 r d+2 s}(\zeta), \\
& =-\sum_{s=0}^{b} \sum_{r=0}^{a-\delta_{b s}}\binom{a}{r}\left[\begin{array}{l}
2 b \\
2 s
\end{array}\right]_{\zeta} E_{2 r d+2 s}(\zeta), \tag{3.5}
\end{align*}
$$

where $\delta_{i j}$ equals 1 if $i=j$ and 0 otherwise.
By the induction hypothesis, we have

$$
\begin{equation*}
E_{2 r d+2 s}(\zeta)=\zeta^{r d} E_{2 s}(\zeta)=(-1)^{r} E_{2 s}(\zeta) \tag{3.6}
\end{equation*}
$$

Thus,

$$
\sum_{r=0}^{a}\binom{a}{r}\left[\begin{array}{l}
2 b \\
2 s
\end{array}\right]_{\zeta} E_{2 r d+2 s}(\zeta)=\left[\begin{array}{l}
2 b \\
2 s
\end{array}\right]_{\zeta} E_{2 s}(\zeta) \sum_{r=0}^{a}\binom{a}{r}(-1)^{r}=0
$$

Therefore, Eq. (3.5) implies that

$$
\begin{equation*}
E_{2 m}(\zeta)=(-1)^{a} E_{2 b}(\zeta)=\zeta^{m-b} E_{2 b}(\zeta) \tag{3.7}
\end{equation*}
$$

From (3.7) we see that

$$
E_{2 m}(\zeta)=\zeta^{m-n} E_{2 n}(\zeta) \Longleftrightarrow E_{2 n}(\zeta)=\zeta^{n-b} E_{2 b}(\zeta)
$$

By the induction hypothesis, the latter equality is also equivalent to

$$
n \equiv b(\bmod d) \Longleftrightarrow m \equiv n(\bmod d)
$$

This completes the proof.

Since

$$
1+q^{d}=\frac{q^{2 d}-1}{q^{d}-1}=\frac{\prod_{k \mid 2 d} \Phi_{k}(q)}{\prod_{k \mid d} \Phi_{k}(q)}=\prod_{\substack{k \mid d \\ 2 k \nmid d}} \Phi_{2 k}(q)
$$

and any two different cyclotomic polynomials are relatively prime, Theorem 1.1 follows from Lemma 3.1.

Remark. The sufficiency part of (3.2) is equivalent to Désarménien's result [4]:

$$
E_{2 k m+2 n}(q) \equiv(-1)^{m} E_{2 n}(q)\left(\bmod \Phi_{2 k}(q)\right) .
$$

4. Proof of Theorem 1.3

Recall that the q-tangent numbers $T_{2 n+1}(q)$ are defined by

$$
\sum_{n=0}^{\infty} T_{2 n+1}(q) \frac{x^{2 n+1}}{(q ; q)_{2 n+1}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(q ; q)_{2 n+1}} / \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(q ; q)_{2 n}}
$$

Foata [5] proved that $T_{2 n+1}(q)$ is divisible by $D_{n}(q)$, where

$$
D_{n}(q)= \begin{cases}\prod_{k=1}^{n} E v_{k}(q), & \text { if } n \text { is odd } \\ \left(1+q^{2}\right) \prod_{k=1}^{n} E v_{k}(q), & \text { if } n \text { is even }\end{cases}
$$

and

$$
E v_{n}(q)=\prod_{j=0}^{s}\left(1+q^{2^{j} r}\right), \quad \text { where } n=2^{s} r \text { with } r \text { odd. }
$$

Notice that this implies that $T_{2 n+1}(q)$ is divisible by both $(1+q)^{n}$ and $(-q ; q)_{n}$, a result due to Andrews and Gessel [2].

To prove our theorem we need the following relation relating $S_{2 n}(q)$ to $T_{2 n+1}(q)$.
Lemma 4.1. For every $n \geq 1$, we have

$$
\sum_{k=0}^{n}(-1)^{k} q^{k}\left[\begin{array}{l}
2 n \tag{4.1}\\
2 k
\end{array}\right]_{q} S_{2 k}(q) S_{2 n-2 k}(q)=T_{2 n-1}(q)\left(1-q^{2 n}\right)
$$

Proof. Replacing x by $q^{1 / 2} \mathrm{i} x(\mathrm{i}=\sqrt{-1})$ in (1.3), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{2 n}(q) \frac{(-1)^{n} q^{n} x^{2 n}}{(q ; q)_{2 n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{2 n} x^{2 n}}{(q ; q)_{2 n}} / \sum_{n=0}^{\infty} \frac{q^{n} x^{2 n}}{(q ; q)_{2 n}} \tag{4.2}
\end{equation*}
$$

Multiplying (1.3) with (4.2), we get

$$
\begin{align*}
\left(\sum_{n=0}^{\infty}\right. & \left.S_{2 n}(q) \frac{x^{2 n}}{(q ; q)_{2 n}}\right)\left(\sum_{n=0}^{\infty} S_{2 n}(q) \frac{(-1)^{n} q^{n} x^{2 n}}{(q ; q)_{2 n}}\right) \tag{4.3}\\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{q^{2 n} x^{2 n}}{(q ; q)_{2 n}} / \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(q ; q)_{2 n}} \\
& =1+x \sum_{n=1}^{\infty}(-1)^{n-1} \frac{q^{2 n-1} x^{2 n-1}}{(q ; q)_{2 n-1}} / \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(q ; q)_{2 n}} \\
& =1+x \sum_{n=0}^{\infty} T_{2 n+1}(q) \frac{x^{2 n+1}}{(q ; q)_{2 n+1}} . \tag{4.4}
\end{align*}
$$

Equating the coefficients of $x^{2 n}$ in (4.3) and (4.4), we are led to (4.1).
It is easily seen that $P_{n}(q)$ is the least common multiple of the polynomials $(1+$ $\left.q^{2 r+1}\right)^{\left\lfloor\frac{n}{2 r+1}\right\rfloor}(r \geq 0)$. For any $r \geq 0$, there holds

$$
1+q^{2 r+1}=\frac{q^{4 r+2}-1}{q^{2 r+1}-1}=\frac{\prod_{d \mid(4 r+2)} \Phi_{d}(q)}{\prod_{d \mid(2 r+1)} \Phi_{d}(q)}=\prod_{d \mid(2 r+1)} \Phi_{2 d}(q)
$$

It follows that

$$
P_{n}(q)=\prod_{r \geq 0} \Phi_{4 r+2}(q)^{\left\lfloor\frac{n}{2 r+1}\right\rfloor}
$$

Theorem 1.3 is trivial for $n=1$. Suppose it holds for all integers less than n. In the summation of the left-hand side of (4.1), combining the first and last terms, we can rewrite Eq. (4.1) as follows:

$$
\begin{align*}
(1 & \left.+(-1)^{n} q^{n}\right) S_{2 n}(q)+\sum_{k=1}^{n-1}(-1)^{k} q^{k}\left[\begin{array}{c}
2 n \\
2 k
\end{array}\right]_{q} S_{2 k}(q) S_{2 n-2 k}(q) \\
& =T_{2 n-1}(q)\left(1-q^{2 n}\right) \tag{4.5}
\end{align*}
$$

For every $k(1 \leq k \leq n-1)$, by the induction hypothesis, the polynomial $S_{2 k}(q) S_{2 n-2 k}(q)$ is divisible by

$$
P_{k}(q) P_{n-k}(q)=\prod_{r \geq 0} \Phi_{4 r+2}(q)^{\left\lfloor\frac{k}{2 r+\mathrm{I}}\right\rfloor+\left\lfloor\frac{n-k}{2 r+1}\right\rfloor}
$$

And by Proposition 2.2, we have

$$
\left[\begin{array}{l}
2 n \\
2 k
\end{array}\right]_{q}=\prod_{d=1}^{2 n} \Phi_{d}(q)^{\lfloor 2 n / d\rfloor-\lfloor 2 k / d\rfloor-\lfloor(2 n-2 k) / d\rfloor},
$$

which is clearly divisible by

$$
\prod_{r \geq 0} \Phi_{4 r+2}(q)^{\left\lfloor\frac{n}{2 r+1}\right\rfloor-\left\lfloor\frac{k}{2 r+1}\right\rfloor-\left\lfloor\frac{n-k}{2 r+1}\right\rfloor} .
$$

Hence, the product $\left[\begin{array}{c}2 n \\ 2 k\end{array}\right]_{q} S_{2 k}(q) S_{2 n-2 k}(q)$ is divisible by

$$
\prod_{r \geq 0} \Phi_{4 r+2}(q)^{\left\lfloor\frac{n}{2 r+1}\right\rfloor}=P_{n}(q) .
$$

Note that $P_{n-1}(q) \mid D_{n-1}(q)$ and $p_{n}(q) \mid\left(1-q^{2 n}\right)$. Therefore, by (4.5) and the aforementioned result of Foata, we immediately have

$$
P_{n}(q) \mid\left(1+(-1)^{n} q^{n}\right) S_{2 n}(q)
$$

Since $P_{n}(q)$ is relatively prime to $\left(1+(-1)^{n} q^{n}\right)$, we obtain $P_{n}(q) \mid S_{2 n}(q)$.
Remark. Since $S_{0}(q)=1$ and $S_{2}(q)=1+q$, using (4.5) and the divisibility of $T_{2 n+1}(q)$, we can prove by induction that $S_{2 n}(q)$ is divisible by $(1+q)^{n}$ without using the divisibility property of Gaussian polynomials.

5. The generalized \boldsymbol{q}-Euler numbers

The generalized Euler numbers may be defined by

$$
\sum_{n=0}^{\infty} E_{k n}^{(k)} \frac{x^{k n}}{(k n)!}=\left(\sum_{n=0}^{\infty} \frac{x^{k n}}{(k n)!}\right)^{-1}
$$

Some congruences for these numbers are given in [6,9]. A q-analogue of generalized Euler numbers is given by

$$
\sum_{n=0}^{\infty} E_{k n}^{(k)}(q) \frac{x^{k n}}{(q ; q)_{k n}}=\left(\sum_{n=0}^{\infty} \frac{x^{k n}}{(q ; q)_{k n}}\right)^{-1}
$$

or, recurrently,

$$
E_{0}^{(k)}(q)=1, \quad E_{k n}^{(k)}(q)=-\sum_{j=0}^{n-1}\left[\begin{array}{l}
k n \tag{5.1}\\
k j
\end{array}\right]_{q} E_{k j}^{(k)}(q), \quad n \geq 1
$$

Note that $E_{k n}^{(k)}(q)$ is equal to $(-1)^{n} f_{n k, k}(q)$ studied by Stanley [12, p. 148, Equation (57)].

Theorem 5.1. Let $m>n \geq 0$ and $1 \leq d \leq m$. Let $k \geq 1$, and let $\zeta \in \mathbb{C}$ be a $2 k d$-th primitive root of unity. Then

$$
\begin{equation*}
E_{k m}^{(k)}\left(\zeta^{2}\right)=\zeta^{k(m-n)} E_{k n}^{(k)}\left(\zeta^{2}\right) \tag{5.2}
\end{equation*}
$$

if and only if

$$
m \equiv n(\bmod d)
$$

The proof is by induction on m and using the recurrence definition (5.1). Since it is analogous to the proof of (3.3), we omit it here. Note that ζ^{2} in Theorem 5.1 is a $k d$-th primitive root of unity. Therefore, when k is even or $m \equiv n \bmod 2$, Eq. (5.2) is equivalent to

$$
E_{k m}^{(k)}(q) \equiv q^{\frac{k(m-n)}{2}} E_{k n}^{(k)}(q)\left(\bmod \Phi_{k d}(q)\right)
$$

As mentioned before,

$$
1+q^{2^{k} d}=\prod_{\substack{i \backslash 2^{k} d \\ 2 i \nmid 2^{k} d}} \Phi_{2 i}(q)
$$

and we obtain the following theorem and its corollaries.
Theorem 5.2. Let $k \geq 1$. Let $m>n \geq 0$ and $1 \leq d \leq m$. Then

$$
E_{2^{k} m}^{\left(2^{k}\right)}(q) \equiv q^{2^{k-1}(m-n)} E_{2^{k} n}^{\left(2^{k}\right)}(q)\left(\bmod 1+q^{2^{k-1} d}\right) \text { if and only if } m \equiv n(\bmod d)
$$

Corollary 5.3. Let $k \geq 1$. Let $m>n \geq 0$ and $m-n=2^{s-1} r$ with r odd. Then

$$
E_{2^{k} m}^{\left(2^{k}\right)}(q) \equiv q^{2^{k-1}(m-n)} E_{2^{k} n}^{\left(2^{k}\right)}(q)\left(\bmod \prod_{i=0}^{s-1}\left(1+q^{2^{k+i-1} r}\right)\right)
$$

Corollary 5.4. Let k, m, n, s be as above. Then

$$
E_{2^{k} m}^{\left(2^{k}\right)} \equiv E_{2^{k} n}^{\left(2^{k}\right)}\left(\bmod 2^{s}\right)
$$

Furthermore, numerical evidence seems to suggest the following congruence conjecture for generalized Euler numbers.
Conjecture 5.5. Let $k \geq 1$. Let $m>n \geq 0$ and $m-n=2^{s-1} r$ with r odd. Then

$$
E_{2^{k} m}^{\left(2^{k}\right)} \equiv E_{2^{k} n}^{\left(2^{k}\right)}+2^{s}\left(\bmod 2^{s+1}\right)
$$

This conjecture is clearly a generalization of Stern's result, which corresponds to the $k=1$ case.

6. Concluding remarks

We can also consider the following variants of the q-Salié numbers:

$$
\begin{align*}
& \sum_{n=0}^{\infty} \bar{S}_{2 n}(q) \frac{x^{2 n}}{(q ; q)_{2 n}}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(q ; q)_{2 n}} / \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(q ; q)_{2 n}}, \tag{6.1}\\
& \sum_{n=0}^{\infty} \widehat{S}_{2 n}(q) \frac{x^{2 n}}{(q ; q)_{2 n}}=\sum_{n=0}^{\infty} \frac{q^{2 n} x^{2 n}}{(q ; q)_{2 n}} / \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(q ; q)_{2 n}}, \tag{6.2}\\
& \sum_{n=0}^{\infty} \widetilde{S}_{2 n}(q) \frac{x^{2 n}}{(q ; q)_{2 n}}=\sum_{n=0}^{\infty} \frac{q^{n^{2}} x^{2 n}}{(q ; q)_{2 n}} / \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(q ; q)_{2 n}} . \tag{6.3}
\end{align*}
$$

Table 2
Table of $\bar{Q}_{n}(q)$

n	1	3	5	7
$\bar{Q}_{n}(q)$	1	$1+q^{2}$	$\left(1+q^{2}\right)^{2}\left(1+q^{4}\right)$	$\left(1+q^{2}\right)^{2}\left(1+q^{4}\right)\left(1+q^{6}\right)$
n	2	4	6	8
$\bar{Q}_{n}(q)$	$1+q^{2}$	$\left(1+q^{2}\right)^{2}\left(1+q^{4}\right)$	$\left(1+q^{2}\right)^{2}\left(1+q^{4}\right)^{2}\left(1+q^{6}\right)$	$\left(1+q^{2}\right)^{3}\left(1+q^{4}\right)^{2}\left(1+q^{6}\right)\left(1+q^{8}\right)$

Multiplying both sides of (6.1)-(6.3) by $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} /(q ; q)_{2 n}$ and equating coefficients of $x^{2 n}$, we obtain

$$
\begin{align*}
& \bar{S}_{2 n}(q)=1-\sum_{k=0}^{n-1}(-1)^{n-k}\left[\begin{array}{l}
2 n \\
2 k
\end{array}\right]_{q} \bar{S}_{2 k}(q), \tag{6.4}\\
& \widehat{S}_{2 n}(q)=q^{2 n}-\sum_{k=0}^{n-1}(-1)^{n-k}\left[\begin{array}{l}
2 n \\
2 k
\end{array}\right]_{q} \widehat{S}_{2 k}(q), \tag{6.5}\\
& \widetilde{S}_{2 n}(q)=q^{n^{2}}-\sum_{k=0}^{n-1}(-1)^{n-k}\left[\begin{array}{l}
2 n \\
2 k
\end{array}\right]_{q} \widetilde{S}_{2 k}(q) . \tag{6.6}
\end{align*}
$$

This gives

$$
\begin{array}{ll}
\bar{S}_{0}(q)=1, & \bar{S}_{2}(q)=2, \quad \bar{S}_{4}(q)=2\left(1+q^{2}\right)\left(1+q+q^{2}\right), \\
\widehat{S}_{0}(q)=1, & \widehat{S}_{2}(q)=1+q^{2}, \quad \widehat{S}_{4}(q)=q\left(1+q^{2}\right)\left(1+3 q+q^{2}+q^{3}\right), \\
\widetilde{S}_{0}(q)=1, & \widetilde{S}_{2}(q)=1+q, \quad \widetilde{S}_{4}(q)=q(1+q)\left(1+q^{2}\right)(2+q),
\end{array}
$$

and

$$
\begin{aligned}
\bar{S}_{6}(q)= & 2\left(1+q^{2}\right)\left(1+q+2 q^{2}+4 q^{3}+6 q^{4}+6 q^{5}+6 q^{6}\right. \\
& \left.+5 q^{7}+4 q^{8}+2 q^{9}+q^{10}\right), \\
\widehat{S}_{6}(q)= & q^{2}\left(1+q^{2}\right)^{2}\left(1+4 q+7 q^{2}+6 q^{3}+6 q^{4}+6 q^{5}+5 q^{6}+2 q^{7}+q^{8}\right), \\
\widetilde{S}_{6}(q)= & q^{2}(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right)\left(2+4 q+5 q^{2}+4 q^{3}+3 q^{4}+q^{5}\right) .
\end{aligned}
$$

For $n \geq 1$ define three sequences of polynomials:

$$
\begin{aligned}
& \bar{Q}_{n}(q):=\prod_{r \geq 1} \Phi_{4 r}(q)^{\left\lfloor\frac{n}{2 r}\right\rfloor}, \\
& \widehat{Q}_{n}(q):= \begin{cases}\bar{Q}_{n}(q), & \text { if } n \text { is even, }, \\
\left(1+q^{2}\right) \bar{Q}_{n}(q), & \text { if } n \text { is odd, }\end{cases} \\
& \widetilde{Q}_{n}(q):=(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right) .
\end{aligned}
$$

Note that $\bar{Q}_{n}(q)$ is the least common multiple of the polynomials $\left(1+q^{2 r}\right)^{\left\lfloor\frac{n}{2 r}\right\rfloor}, r \geq 1$ (see Table 2).

From (6.4)-(6.6), it is easy to derive by induction that for $n \geq 1$,

$$
2\left|\bar{S}_{2 n}(q), \quad\left(1+q^{2}\right)\right| \widehat{S}_{2 n}(q), \quad(1+q) \mid \widetilde{S}_{2 n}(q)
$$

Moreover, the computation of the first values of these polynomials seems to suggest the following stronger result.

Conjecture 6.1. For $n \geq 1$, we have the following divisibility properties:

$$
\bar{Q}_{n}(q)\left|\bar{S}_{2 n}(q), \quad \widehat{Q}_{n}(q)\right| \widehat{S}_{2 n}(q), \quad \widetilde{Q}_{n}(q) \mid \widetilde{S}_{2 n}(q) .
$$

Similarly to the proof of Lemma 4.1, we can obtain

$$
\begin{aligned}
& \left(\sum_{n=0}^{\infty} \widehat{S}_{2 n}(q) \frac{x^{2 n}}{(q ; q)_{2 n}}\right)\left(\sum_{n=0}^{\infty} \widehat{S}_{2 n}(q) \frac{(-1)^{n} q^{2 n} x^{2 n}}{(q ; q)_{2 n}}\right) \\
& \quad=1-q x^{2}+(1+q) x \sum_{n=0}^{\infty} T_{2 n+1}(q) \frac{x^{2 n+1}}{(q ; q)_{2 n+1}}
\end{aligned}
$$

which yields

$$
\begin{align*}
& \sum_{k=0}^{n}(-1)^{k} q^{2 k}\left[\begin{array}{l}
2 n \\
2 k
\end{array}\right]_{q} \widehat{S}_{2 k}(q) \widehat{S}_{2 n-2 k}(q)=T_{2 n-1}(q)(1+q)\left(1-q^{2 n}\right), \\
& \quad n \geq 2 \tag{6.7}
\end{align*}
$$

However, it seems difficult to use (6.7) to prove directly the divisibility of $\widehat{S}_{2 n}(q)$ by $\widehat{Q}_{n}(q)$, because when n is even $1+(-1)^{n} q^{2 n}$ is in general not relatively prime to $\widehat{Q}_{n}(q)$.

Finally it is well-known that $E_{2 n}(q)$ has a nice combinatorial interpretation in terms of generating functions of alternating permutations. Recall that a permutation $x_{1} x_{2} \cdots x_{2 n}$ of $[2 n]:=\{1,2, \ldots, 2 n\}$ is called alternating, if $x_{1}<x_{2}>x_{3}<\cdots>x_{2 n-1}<x_{2 n}$. As usual, the number of inversions of a permutation $x=x_{1} x_{2} \cdots x_{n}$, denoted $\operatorname{inv}(x)$, is defined to the number of pairs (i, j) such that $i<j$ and $x_{i}>x_{j}$. It is known (see [12, p. 148, Proposition 3.16.4]) that

$$
(-1)^{n} E_{2 n}(q)=\sum_{\pi} q^{\operatorname{inv}(\pi)}
$$

where π ranges over all the alternating permutations of [$2 n$]. It would be interesting to find a combinatorial proof of Theorem 1.1 within the alternating permutations model.

A permutation $x=x_{1} x_{2} \cdots x_{2 n}$ of [2n] is said to be a Salié permutation, if there exists an even index $2 k$ such that $x_{1} x_{2} \cdots x_{2 k}$ is alternating and $x_{2 k}<x_{2 k+1}<\cdots<x_{2 n}$, and $x_{2 k-1}$ is called the last valley of x. It is known (see [7, p. 242, Exercise 4.2.13]) that $\frac{1}{2} S_{2 n}$ is the number of Salié permutations of $[2 n]$.

Proposition 6.1. For every $n \geq 1$ the polynomial $\frac{1}{2} \bar{S}_{2 n}(q)$ is the generating function for Salié permutations of $[2 n]$ by number of inversions.

Proof. Substituting (1.2) into (6.1) and comparing coefficients of $x^{2 n}$ on both sides, we obtain

$$
\bar{S}_{2 n}(q)=\sum_{k=0}^{n}\left[\begin{array}{l}
2 n \tag{6.8}\\
2 k
\end{array}\right]_{q}(-1)^{k} E_{2 k}(q)
$$

As $\left[\begin{array}{l}2 n \\ 2 k\end{array}\right]_{q}$ is the generating function for the permutations of $1^{2 k} 2^{2 n-2 k}$ by number of inversions (see e.g. [12, p. 26, Proposition 1.3.17]), it is easily seen that $\left[\begin{array}{l}2 n \\ 2 k\end{array}\right]_{q}(-1)^{k} E_{2 k}(q)$ is the generating function for permutations $x=x_{1} x_{2} \cdots x_{2 n}$ of [2n] such that $x_{1} x_{2} \cdots x_{2 k}$ is alternating and $x_{2 k+1} \cdots x_{2 n}$ is increasing with respect to number of inversions. Notice that such a permutation x is a Salié permutation with the last valley $x_{2 k-1}$ if $x_{2 k}<x_{2 k+1}$ or $x_{2 k+1}$ if $x_{2 k}>x_{2 k+1}$. Therefore, the right-hand side of (6.8) is twice the generating function for Salié permutations of $[2 n]$ by number of inversions. This completes the proof.

It is also possible to find similar combinatorial interpretations for the other q-Salié numbers, which are left to the interested readers.

Acknowledgment

The second author was supported by EC's IHRP Programme, within the Research Training Network "Algebraic Combinatorics in Europe", grant HPRN-CT-2001-00272.

References

[1] G.E. Andrews, D. Foata, Congruences for the q-Euler numbers, European J. Combin. 1 (1980) 283-287.
[2] G.E. Andrews, I. Gessel, Divisibility properties of the q-tangent numbers, Proc. Amer. Math. Soc. 68 (1978) 380-384.
[3] L. Carlitz, The coefficients of $\cosh x / \cos x$, Monatsh. Math. 69 (1965) 129-135.
[4] J. Désarménien, Un analogue des congruences de Kummer pour les q-nombres d'Euler, European J. Combin. 3 (1982) 19-28.
[5] D. Foata, Further divisibility properties of the q-tangent numbers, Proc. Amer. Math. Soc. 81 (1981) 143-148.
[6] I.M. Gessel, Some congruences for generalized Euler numbers, Canad. J. Math. 35 (1983) 687-709.
[7] I.P. Goulden, D.M. Jackson, Combinatorial Enumeration, Dover Publications, Inc., Mineola, NY, 2004 (reprint of the 1983 original).
[8] D. Knuth, H. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math. 396 (1989) 212-219.
[9] D.J. Leeming, R.A. MacLeod, Some properties of generalized Euler numbers, Canad. J. Math. 33 (1981) 606-617.
[10] G. Olive, Generalized powers, Amer. Math. Monthly 72 (1965) 619-627.
[11] B.E. Sagan, P. Zhang, Arithmetic properties of generalized Euler numbers, Southeast Asian Bull. Math. 21 (1997) 73-78.
[12] R.P. Stanley, Enumerative Combinatorics, vol. 1, in: Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997.
[13] M.A. Stern, Zur Theorie der Eulerschen Zahlen, J. Reine Angew. Math. 79 (1875) 67-98.
[14] Z.-W. Sun, On Euler numbers modulo powers of two, J. Number Theory (in press).
[15] S.S. Wagstaff Jr., Prime divisors of the Bernoulli and Euler numbers, in: Number Theory for the Millennium, III (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 357-374.

[^0]: E-mail addresses: jwguo@eyou.com (V.J.W. Guo), zeng@igd.univ-lyon1.fr (J. Zeng).

