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Abstract

For m > n ≥ 0 and 1≤ d ≤ m, it is shownthat theq-Euler numberE2m(q) is congruent to
qm−n E2n(q) mod (1+ qd ) if and only if m ≡ n modd. Theq-SaliénumberS2n(q) is shown to be

divisible by(1 + q2r+1)

⌊
n

2r+1

⌋
for anyr ≥ 0. Furthermore, similar congruences for the generalized

q-Eulernumbers are also obtained, and some conjectures are formulated.
© 2005 Elsevier Ltd. All rights reserved.

MSC: primary 05A30, 05A15; secondary 11A07

1. Introduction

The Euler numbersE2n may be defined as the coefficients in the Taylor expansion of
2/(ex + e−x ):

∞∑
n=0

E2n
x2n

(2n)! =
( ∞∑

n=0

x2n

(2n)!

)−1

.

A classical result due to Stern [13] asserts that

E2m ≡ E2n (mod 2s) if andonly if 2m ≡ 2n (mod 2s).
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The so-called Salié numbersS2n [7, p. 242] are defined as

∞∑
n=0

S2n
x2n

(2n)! = coshx

cosx
. (1.1)

Carlitz [3] first proved that the Salié numbersS2n are divisible by 2n.
Motivated by the work of Andrews–Gessel [2], Andrews–Foata [1], Désarménien [4],

and Foata [5], we are about to study aq-analogue of Stern’s result and aq-analogue of
Carlitz’s result for Salié numbers. A naturalq-analogue of the Euler numbers is given by

∞∑
n=0

E2n(q)
x2n

(q; q)2n
=
( ∞∑

n=0

x2n

(q; q)2n

)−1

, (1.2)

where(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n ≥ 1 and(a; q)0 = 1.
A recent arithmetic study of Euler numbers and more generalq-Euler numbers can be

found in [14] and [11]. Note that, in order to coincide with the Euler numbers in [14,15],
ourdefinition of E2n(q) differs by a factor(−1)n from that in [1,2,4,5].

Theorem 1.1. Let m > n ≥ 0 and 1 ≤ d ≤ m. Then

E2m(q) ≡ qm−n E2n(q) (mod 1+ qd) if and only if m ≡ n (mod d).

Since the polynomials 1+ q2ad and 1+ q2bd (a �= b) are relatively prime, we derive
immediately from the above theorem the following

Corollary 1.2. Let m > n ≥ 0 and 2m − 2n = 2sr with r odd. Then

E2m(q) ≡ qm−n E2n(q)

(
mod

s−1∏
k=0

(1 + q2kr )

)
.

Define theq-Salié numbers by

∞∑
n=0

S2n(q)
x2n

(q; q)2n
=

∞∑
n=0

qnx2n

(q; q)2n

/ ∞∑
n=0

(−1)n x2n

(q; q)2n
. (1.3)

For each positive integern, write n = 2s(2r + 1) with r, s ≥ 0 (sos is the 2-adic valuation
of n), and setpn(q) = 1 + q2r+1. Define

Pn(q) =
n∏

k=1

pk(q) =
∏
r≥0

(1 + q2r+1)an,r ,

wherean,r is the number of positive integers of the form 2s(2r + 1) less than orequal to
n. The firstvalues ofPn(q) are given inTable 1.

Note that Pn(1) = 2n. The following is a q-analogue of Carlitz’s result for Salié
numbers:

Theorem 1.3. For every n ≥ 1, the polynomial S2n(q) is divisible by Pn(q). In particular,

S2n(q) is divisible by (1 + q2r+1)

⌊
n

2r+1

⌋
for any r ≥ 0.
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Table 1
Table ofPn(q)

n 1 3 5 7

Pn(q) (1 + q) (1 + q)2(1+ q3) (1 + q)3(1 + q3)(1 + q5) (1 + q)3(1+ q3)2(1 + q5)(1+ q7)

n 2 4 6 8

Pn(q) (1 + q)2 (1 + q)3(1+ q3) (1 + q)3(1 + q3)2(1+ q5) (1 + q)4(1+ q3)2(1 + q5)(1+ q7)

We shall collect some arithmetic properties of Gaussian polynomials orq-binomial
coefficients in the next section. The proofs ofTheorems 1.1and1.3are given inSections 3
and4, respectively. We will give some similar arithmetic properties of the generalizedq-
Euler numbers inSection 5. Some combinatorial remarks and open problems are given in
Section 6.

2. Two properties of Gaussian polynomials

The Gaussian polynomial
[

M
N

]
q

may be defined by

[
M
N

]
q

=


(q; q)M

(q; q)N (q; q)M−N
, if 0 ≤ N ≤ M,

0, otherwise.

The following result is equivalent to the so-calledq-Lucas theorem (see Olive [10] and
Désarménien [4, Proposition 2.2]).

Proposition 2.1. Let m, k, d be positive integers, and write m = ad + b and k = rd + s,
where 0 ≤ b, s ≤ d − 1. Let ω be a primitive d-th root of unity. Then[

m
k

]
ω

=
(

a
r

)[
b
s

]
ω

.

Indeed, we have[
m
k

]
q

=
rd+s∏
j=1

1 − q(a−r)d+b−s+ j

1 − q j

=
(

s∏
j=1

1 − q(a−r)d+b−s+ j

1 − q j

)(
rd∏
j=1

1 − q(a−r)d+b+ j

1 − qs+ j

)
.

By definition, we haveωd = 1 andω j �= 1 for 0 < j < d. Hence,

lim
q→ω

s∏
j=1

1 − q(a−r)d+b−s+ j

1 − q j
=

s∏
j=1

1 − ωb−s+ j

1 − ω j
=
[

b
s

]
ω

.
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Notice that, for any integerk, the set{k+ j : j = 1, . . . , rd} is acomplete system of residues
modulord. Therefore,

lim
q→ω

rd∏
j=1

1 − q(a−r)d+b+ j

1 − qs+ j
= lim

q→ω

(1 − q(a−r+1)d)(1 − q(a−r+2)d) · · · (1 − qad)

(1 − qd)(1 − q2d) · · · (1 − qrd)

=
(

a
r

)
.

Let Φn(x) be then-th cyclotomic polynomial. The following easily proved result can be
found in [8, Equation (10)].

Proposition 2.2. The Gaussian polynomial
[

m
k

]
q

can be factorized into[
m
k

]
q

=
∏

d

Φd (q),

where the product is over all positive integers d ≤ m such that �k/d� + �(m − k)/d� <

�m/d�.

Indeed, using the factorizationqn − 1 = ∏
d |n Φd (q), we have

(q; q)m = (−1)m
m∏

k=1

∏
d |k

Φd (q) = (−1)m
m∏

d=1

Φd (q)�m/d�,

and so[
m
k

]
q

= (q; q)m

(q; q)k(q; q)m−k
=

m∏
d=1

Φd (q)�m/d�−�k/d�−�(m−k)/d�.

Proposition 2.2now follows from the obvious fact that

�α + β� − �α� − �β� = 0 or 1, for α, β ∈ R.

3. Proof of Theorem 1.1

Multiplying both sides of (1.2) by
∑∞

n=0 x2n/(q; q)2n and equating coefficients ofx2m,
we see thatE2m(q) satisfies the followingrecurrence relation:

E2m(q) = −
m−1∑
k=0

[
2m
2k

]
q

E2k(q). (3.1)

This enables us to obtain the first values of theq-Euler numbers:

E0(q) = −E2(q) = 1,

E4(q) = q(1 + q)(1 + q2) + q2,

E6(q) = −q2(1 + q3)(1 + 4q + 5q2 + 7q3 + 6q4 + 5q5 + 2q6 + q7) + q3.

We first establish the following result.
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Lemma 3.1. Let m > n ≥ 0 and 1 ≤ d ≤ m. Then

E2m(q) ≡ qm−n E2n(q) (modΦ2d (q)) if and only if m ≡ n (mod d). (3.2)

Proof. It is easy to see thatLemma 3.1is equivalent to

E2m(ζ ) = ζ m−n E2n(ζ ) if andonly if m ≡ n (mod d), (3.3)

whereζ ∈ C is a 2d-th primitive root of unity.
We proceed by induction onm. Statement (3.3) is trivial for m = 1. Suppose it holds

for every number less thanm. Let n < m be fixed. Write m = ad + b with 0 ≤ b ≤ d − 1,
then 2m = a(2d) + 2b. By Proposition 2.1, we seethat[

2m
2k

]
ζ

=
(

a
r

)[
2b
2s

]
ζ

, wherek = rd + s, 0 ≤ s ≤ d − 1. (3.4)

Hence, by (3.1) and (3.4), we have

E2m(ζ ) = −
m−1∑
k=0

[
2m
2k

]
ζ

E2k(ζ )

= −
a∑

r=0

b−δa r∑
s=0

(
a
r

)[
2b
2s

]
ζ

E2rd+2s(ζ ),

= −
b∑

s=0

a−δb s∑
r=0

(
a
r

)[
2b
2s

]
ζ

E2rd+2s(ζ ), (3.5)

whereδi j equals 1 ifi = j and 0 otherwise.
By the induction hypothesis, we have

E2rd+2s(ζ ) = ζ rd E2s(ζ ) = (−1)r E2s(ζ ). (3.6)

Thus,

a∑
r=0

(
a
r

)[
2b
2s

]
ζ

E2rd+2s(ζ ) =
[
2b
2s

]
ζ

E2s(ζ )

a∑
r=0

(
a
r

)
(−1)r = 0.

Therefore, Eq. (3.5) implies that

E2m(ζ ) = (−1)a E2b(ζ ) = ζ m−b E2b(ζ ). (3.7)

From (3.7) we seethat

E2m(ζ ) = ζ m−n E2n(ζ ) ⇐⇒ E2n(ζ ) = ζ n−b E2b(ζ ).

By the induction hypothesis, the latter equality is also equivalent to

n ≡ b (mod d) ⇐⇒ m ≡ n (mod d).

This completes the proof. �
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Since

1 + qd = q2d − 1

qd − 1
=

∏
k|2d

Φk(q)∏
k|d

Φk(q)
=

∏
k | d

2k � d

Φ2k(q),

and any two different cyclotomic polynomials are relatively prime,Theorem 1.1follows
from Lemma 3.1.

Remark. The sufficiency part of (3.2) is equivalent to Désarménien’s result [4]:

E2km+2n(q) ≡ (−1)m E2n(q) (modΦ2k(q)).

4. Proof of Theorem 1.3

Recall that theq-tangent numbersT2n+1(q) are defined by

∞∑
n=0

T2n+1(q)
x2n+1

(q; q)2n+1
=

∞∑
n=0

(−1)n x2n+1

(q; q)2n+1

/ ∞∑
n=0

(−1)n x2n

(q; q)2n
.

Foata [5] proved thatT2n+1(q) is divisible by Dn(q), where

Dn(q) =


n∏

k=1

Evk(q), if n is odd,

(1 + q2)

n∏
k=1

Evk(q), if n is even,

and

Evn(q) =
s∏

j=0

(1 + q2 j r ), wheren = 2sr with r odd.

Notice that this implies thatT2n+1(q) is divisible by both(1+q)n and(−q; q)n, a result
due to Andrews and Gessel [2].

To prove our theorem we need the following relation relatingS2n(q) to T2n+1(q).

Lemma 4.1. For every n ≥ 1, we have

n∑
k=0

(−1)kqk
[
2n
2k

]
q

S2k(q)S2n−2k(q) = T2n−1(q)(1 − q2n). (4.1)

Proof. Replacingx by q1/2ix (i = √−1) in (1.3), we obtain

∞∑
n=0

S2n(q)
(−1)nqnx2n

(q; q)2n
=

∞∑
n=0

(−1)nq2nx2n

(q; q)2n

/ ∞∑
n=0

qnx2n

(q; q)2n
. (4.2)
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Multiplying (1.3) with (4.2), we get( ∞∑
n=0

S2n(q)
x2n

(q; q)2n

)( ∞∑
n=0

S2n(q)
(−1)nqnx2n

(q; q)2n

)
(4.3)

=
∞∑

n=0

(−1)n q2nx2n

(q; q)2n

/ ∞∑
n=0

(−1)n x2n

(q; q)2n

= 1 + x
∞∑

n=1

(−1)n−1 q2n−1x2n−1

(q; q)2n−1

/ ∞∑
n=0

(−1)n x2n

(q; q)2n

= 1 + x
∞∑

n=0

T2n+1(q)
x2n+1

(q; q)2n+1
. (4.4)

Equating the coefficients ofx2n in (4.3) and (4.4), we are led to (4.1). �

It is easily seen thatPn(q) is the least common multiple of the polynomials(1 +
q2r+1)

⌊
n

2r+1

⌋
(r ≥ 0). For anyr ≥ 0, there holds

1 + q2r+1 = q4r+2 − 1

q2r+1 − 1
=

∏
d |(4r+2)

Φd(q)∏
d |(2r+1)

Φd(q)
=

∏
d |(2r+1)

Φ2d(q).

It follows that

Pn(q) =
∏
r≥0

Φ4r+2(q)�
n

2r+1�.

Theorem 1.3is trivial for n = 1. Suppose it holds for all integers less thann. In the
summation of the left-hand side of (4.1), combining the first and last terms, we can rewrite
Eq. (4.1) as follows:

(1 + (−1)nqn)S2n(q) +
n−1∑
k=1

(−1)kqk
[
2n
2k

]
q

S2k(q)S2n−2k(q)

= T2n−1(q)(1 − q2n). (4.5)

For every k (1 ≤ k ≤ n − 1), by the induction hypothesis, the polynomial
S2k(q)S2n−2k(q) is divisible by

Pk(q)Pn−k(q) =
∏
r≥0

Φ4r+2(q)�
k

2r+1�+� n−k
2r+1�.

And byProposition 2.2, we have[
2n
2k

]
q

=
2n∏

d=1

Φd (q)�2n/d�−�2k/d�−�(2n−2k)/d�,
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which is clearlydivisible by∏
r≥0

Φ4r+2(q)�
n

2r+1�−� k
2r+1�−� n−k

2r+1�.

Hence, the product
[

2n
2k

]
q

S2k(q)S2n−2k(q) is divisible by∏
r≥0

Φ4r+2(q)�
n

2r+1� = Pn(q).

Note that Pn−1(q) | Dn−1(q) and pn(q) | (1 − q2n). Therefore, by (4.5) and the
aforementioned result of Foata, we immediately have

Pn(q) | (1 + (−1)nqn)S2n(q).

SincePn(q) is relatively prime to(1 + (−1)nqn), weobtainPn(q) | S2n(q).

Remark. SinceS0(q) = 1 andS2(q) = 1+q, using (4.5) andthe divisibility of T2n+1(q),
wecan prove by induction thatS2n(q) is divisible by(1+q)n without using the divisibility
property of Gaussian polynomials.

5. The generalized q-Euler numbers

The generalized Euler numbers may be defined by

∞∑
n=0

E (k)
kn

xkn

(kn)! =
( ∞∑

n=0

xkn

(kn)!

)−1

.

Some congruences for these numbers are given in [6,9]. A q-analogue of generalized Euler
numbers is given by

∞∑
n=0

E (k)
kn (q)

xkn

(q; q)kn
=
( ∞∑

n=0

xkn

(q; q)kn

)−1

,

or, recurrently,

E (k)
0 (q) = 1, E (k)

kn (q) = −
n−1∑
j=0

[
kn
k j

]
q

E (k)
kj (q), n ≥ 1. (5.1)

Note thatE (k)
kn (q) is equal to(−1)n fnk,k (q) studied by Stanley [12, p. 148, Equation (57)].

Theorem 5.1. Let m > n ≥ 0 and 1 ≤ d ≤ m. Let k ≥ 1, and let ζ ∈ C be a 2kd-th
primitive root of unity. Then

E (k)
km (ζ 2) = ζ k(m−n) E (k)

kn (ζ 2) (5.2)

if and only if

m ≡ n (mod d).
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The proof is by induction onm and using the recurrence definition (5.1). Since it is
analogous to the proof of (3.3), we omit it here. Note thatζ 2 in Theorem 5.1is a kd-th
primitive root of unity. Therefore, whenk is even orm ≡ n mod 2, Eq. (5.2) is equivalent
to

E (k)
km (q) ≡ q

k(m−n)
2 E (k)

kn (q) (modΦkd (q)).

As mentioned before,

1 + q2kd =
∏

i | 2k d

2i � 2k d

Φ2i (q),

and we obtain the following theorem and its corollaries.

Theorem 5.2. Let k ≥ 1. Let m > n ≥ 0 and 1 ≤ d ≤ m. Then

E (2k)

2km
(q) ≡ q2k−1(m−n) E (2k)

2kn
(q) (mod 1+ q2k−1d ) if and only if m ≡ n (mod d).

Corollary 5.3. Let k ≥ 1. Let m > n ≥ 0 and m − n = 2s−1r with r odd. Then

E (2k)

2km
(q) ≡ q2k−1(m−n) E (2k)

2kn
(q)

(
mod

s−1∏
i=0

(1 + q2k+i−1r )

)
.

Corollary 5.4. Let k, m, n, s be as above. Then

E (2k)

2km
≡ E (2k)

2kn
(mod 2s).

Furthermore, numerical evidence seems to suggest the following congruence conjecture
for generalized Euler numbers.

Conjecture 5.5. Let k ≥ 1. Let m > n ≥ 0 and m − n = 2s−1r with r odd. Then

E (2k)

2km
≡ E (2k)

2kn
+ 2s (mod 2s+1).

This conjecture is clearly a generalization of Stern’s result, which corresponds to thek = 1
case.

6. Concluding remarks

We can also consider the following variants of theq-Salié numbers:

∞∑
n=0

S2n(q)
x2n

(q; q)2n
=

∞∑
n=0

x2n

(q; q)2n

/ ∞∑
n=0

(−1)n x2n

(q; q)2n
, (6.1)

∞∑
n=0

Ŝ2n(q)
x2n

(q; q)2n
=

∞∑
n=0

q2nx2n

(q; q)2n

/ ∞∑
n=0

(−1)n x2n

(q; q)2n
, (6.2)

∞∑
n=0

S̃2n(q)
x2n

(q; q)2n
=

∞∑
n=0

qn2
x2n

(q; q)2n

/ ∞∑
n=0

(−1)n x2n

(q; q)2n
. (6.3)



V.J.W. Guo, J. Zeng / European Journal of Combinatorics 27 (2006) 884–895 893

Table 2
Table ofQn(q)

n 1 3 5 7

Qn(q) 1 1+ q2 (1 + q2)2(1+ q4) (1+ q2)2(1 + q4)(1+ q6)

n 2 4 6 8

Qn(q) 1 + q2 (1+ q2)2(1 + q4) (1 + q2)2(1+ q4)2(1 + q6) (1+ q2)3(1 + q4)2(1 + q6)(1+ q8)

Multiplying both sides of (6.1)–(6.3) by
∑∞

n=0(−1)nx2n/(q; q)2n and equating
coefficients ofx2n, weobtain

S2n(q) = 1 −
n−1∑
k=0

(−1)n−k
[
2n
2k

]
q

S2k(q), (6.4)

Ŝ2n(q) = q2n −
n−1∑
k=0

(−1)n−k
[
2n
2k

]
q

Ŝ2k(q), (6.5)

S̃2n(q) = qn2 −
n−1∑
k=0

(−1)n−k
[
2n
2k

]
q

S̃2k(q). (6.6)

This gives

S0(q) = 1, S2(q) = 2, S4(q) = 2(1 + q2)(1 + q + q2),

Ŝ0(q) = 1, Ŝ2(q) = 1 + q2, Ŝ4(q) = q(1 + q2)(1 + 3q + q2 + q3),

S̃0(q) = 1, S̃2(q) = 1 + q, S̃4(q) = q(1 + q)(1 + q2)(2 + q),

and

S6(q) = 2(1 + q2)(1 + q + 2q2 + 4q3 + 6q4 + 6q5 + 6q6

+ 5q7 + 4q8 + 2q9 + q10),

Ŝ6(q) = q2(1 + q2)2(1 + 4q + 7q2 + 6q3 + 6q4 + 6q5 + 5q6 + 2q7 + q8),

S̃6(q) = q2(1 + q)(1 + q2)(1 + q3)(2 + 4q + 5q2 + 4q3 + 3q4 + q5).

Forn ≥ 1 define three sequences of polynomials:

Qn(q) :=
∏
r≥1

Φ4r (q)�
n
2r �,

Q̂n(q) :=
{

Qn(q), if n is even,
(1 + q2)Qn(q), if n is odd,

Q̃n(q) := (1 + q)(1 + q2) · · · (1 + qn).

Note thatQn(q) is the least common multiple of the polynomials(1+ q2r)� n
2r �, r ≥ 1 (see

Table 2).
From (6.4)–(6.6), it is easy to derive by induction that forn ≥ 1,

2 | S2n(q), (1 + q2) | Ŝ2n(q), (1 + q) | S̃2n(q).
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Moreover, the computation of the first values of these polynomials seems to suggest the
following stronger result.

Conjecture 6.1. For n ≥ 1, we have the following divisibility properties:

Qn(q) | S2n(q), Q̂n(q) | Ŝ2n(q), Q̃n(q) | S̃2n(q).

Similarly to theproof ofLemma 4.1, wecan obtain( ∞∑
n=0

Ŝ2n(q)
x2n

(q; q)2n

)( ∞∑
n=0

Ŝ2n(q)
(−1)nq2nx2n

(q; q)2n

)

= 1 − qx2 + (1 + q)x
∞∑

n=0

T2n+1(q)
x2n+1

(q; q)2n+1
,

which yields

n∑
k=0

(−1)kq2k
[
2n
2k

]
q

Ŝ2k(q)Ŝ2n−2k(q) = T2n−1(q)(1 + q)(1 − q2n),

n ≥ 2. (6.7)

However, it seems difficult to use (6.7) to provedirectly the divisibility of Ŝ2n(q) by Q̂n(q),
because whenn is even 1+ (−1)nq2n is in general not relatively prime tôQn(q).

Finally it is well-known thatE2n(q) has a nice combinatorial interpretation in terms
of generating functions of alternating permutations. Recall that apermutation x1x2 · · · x2n

of [2n] := {1, 2, . . . , 2n} is calledalternating, if x1 < x2 > x3 < · · · > x2n−1 < x2n.
As usual, the number ofinversions of a permutation x = x1x2 · · · xn, denoted inv(x), is
defined to the number of pairs(i, j) suchthat i < j andxi > x j . It is known (see [12,
p. 148, Proposition 3.16.4]) that

(−1)n E2n(q) =
∑
π

q inv(π),

whereπ ranges over all the alternating permutations of[2n]. It would be interesting to find
a combinatorial proof ofTheorem 1.1within the alternating permutations model.

A permutationx = x1x2 · · · x2n of [2n] is said to be aSalié permutation, if thereexists
an even index 2k suchthat x1x2 · · · x2k is alternating andx2k < x2k+1 < · · · < x2n, and
x2k−1 is called thelast valley of x . It is known (see [7, p. 242, Exercise 4.2.13]) that12 S2n

is the number of Salié permutations of[2n].
Proposition 6.1. For every n ≥ 1 the polynomial 1

2 S2n(q) is the generating function for
Salié permutations of [2n] by number of inversions.

Proof. Substituting (1.2) into (6.1) and comparing coefficients ofx2n on both sides, we
obtain

S2n(q) =
n∑

k=0

[
2n
2k

]
q
(−1)k E2k(q). (6.8)
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As
[

2n
2k

]
q

is the generating function for the permutations of 12k22n−2k by number of

inversions(see e.g. [12, p. 26, Proposition 1.3.17]), it is easily seen that
[

2n
2k

]
q
(−1)k E2k(q)

is the generating function for permutationsx = x1x2 · · · x2n of [2n] suchthatx1x2 · · · x2k

is alternating andx2k+1 · · · x2n is increasing with respect to number of inversions. Notice
that such a permutationx is a Salié permutation with the last valleyx2k−1 if x2k < x2k+1
or x2k+1 if x2k > x2k+1. Therefore, the right-hand side of (6.8) is twice the generating
function for Salié permutations of[2n] by number of inversions. This completes the
proof. �

It is also possible to find similar combinatorial interpretations for the otherq-Salié
numbers, which are left to the interested readers.
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