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Abstract

Form > n > 0and 1< d < m, it is shownthat theg-Euler numberE,y(q) is congruent to
gM™"Eon(q) mod (1 + qd) if and only if m = n modd. Theg-SaliénumberSy,(q) is shown to be

N
divisible by (1 + qz”l) 2’+1J for anyr > 0. Furthermore, similar congruences for the generalized
g-Eulernumbers are also obtained, and some conjectures are formulated.
© 2005 Elsevier Ltd. All rights reserved.

MSC: primary 05A30, 05A15; secondary 11A07

1. Introduction

The Euler number&o, may be defined as the coefficients in the Taylor expansion of

2/(e* 4+ e7%):
0 X2n 0 X2n -1
Eop—— = .
n;) 2 2n)! (nzzo (2n)!)

A classical result due to Sterd 3] asserts that

Eom = Eon (mod 2) ifandonlyif 2m = 2n (mod 2).
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The so-called Salié numbeSs, [7, p. 242] are defined as

00 2n
> SZn(X— _ coshx (1.1)
n=0

2n)! COSX

Carlitz [3] first proved that the Salié numbeSs, are divisible by 2.

Motivated by the work of Andrews—Gess@|[ Andrews—Foatal], Désarméniend],
and Foata 3], we are about to study @-analogue of Stern’s result andgaanalogue of
Carlitz’s result for Salié numbers. A natugglanalogue of the Euler numbers is given by

0 x2n 00 y2n -1
, 1.2
2 Ea @i (nzzo (@ q)zn> 42

n=0

where(a; Q)n = (1—a)(1—aq)--- (1 —aq" 1) forn > 1 and(a; q)o = 1.

A recent arithmetic study of Euler numbers and more gemgEaller numbers can be
found in [14] and [11]. Notethat, in order to coincide with the Euler numbers 1415,
our definition of Ezn(q) differs by a factox—1)" from that in [1,2,4,5].

Theorem1l.l. Leem>n=>0and1 <d <m. Then
Eom(@) = g™ "Eon(q) (mod 1+ q%) if andonlyif m=n (modd).

Since the polynomials 3 g2*d and 1+ g2°¢ (a # b) are relatively prime, we derive
immediately from the ab@/therem the éllowing

Corollary 1.2. Let m > n > 0 and 2m — 2n = 25r withr odd. Then

s—1
Ezm(@) = 9™ "Ezn(0) (mod [Ta+ q”)) :
k=0

Define theq-SaIié numbers by

anZn n 2n
_ 1.3
ZS”‘(Q)(q Don Z(q Don / 2V g 9

For each positive integer, write n = 25(2r + 1) with r, s > 0 (sos is the 2-adic valuation
of n), and setpn(q) = 1+ q¥ 1. Define

n
Po(@ =[] pe(@ = J@+g*H>r,
k=1

r>0

wherea, is the nunber of positive integers of the fornr?@r + 1) less than oequal to
n. The firstvalues ofP,(q) are given inTable 1

Note thatP,(1) = 2". The fdlowing is a g-analogue of Carlitz's result for Salié
numbers:

Theorem 1.3. For every n > 1, the polynomial Sn(q) isdivisibleby P,(q). In particular,
Sn(q) isdivisibleby (1 + q2f+1)L2rL+lJ for anyr > 0.
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Table 1
Table of Ph(q)

n 1 3 5 7

Pr@ Q4+a A+92Q+9d) @A+3@+0dA+9>» A+ 932 +gH2L+9>A+q))
n 2 4 6 8

Pr@ +a? A+9%2+dd) @A+3a+9d20+0> A+ *A+gH2A+g>HA+q")

We shall collect some arithmetic properties of Gaussian polynomialg-bmomial
coefficients in the next section. The proofsidfeorems 1.&And1.3are given inSectbns 3
and4, resgectively. We will give some similar arithmetic properties of the generalized
Euler numbers irBection 5 Some ombinatorial remarks and open problems are given in
Section 6

2. Two propertiesof Gaussian polynomials

The Gaussian polynomi%m may be defined by
q

M (q; Pwm Cf0<N<M,
Nl = 1@ DNG Dm-N .
0, otherwise.

The following result is equivalent to the so-callgeLucas theorem (see Olivd Q] and
Désarménierd, Proposition 2.2]).

Proposition 2.1. Let m, k, d be positive integers, and writem = ad + bandk =rd + s,
where0 < b, s < d — 1. Let w be a primitive d-th root of unity. Then

[m] _ [a\[b
k{ —\r/)|s]| -
L dw w
Indeed, we have
mT rd+s 1_ q(afr)d+b—s+j

Kl o 1-q

(ﬁ 1— q(afr)d+bfs+j ) (ﬁ 1— q(afr)d+b+j )
—ql — qs+i :
. 1—q J. 1-q¢

j=1 =1

By definition, we havesd = 1 andw! # 1for0 < j < d. Herce,
) S 1— (a—r)d+b—s+j
lim g

S 1 — @P-sti b
Geoll 1-g =117 :[SL'
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Notice that, for any integeq, the setk+j: j = 1, ..., rd} is acomplete systemof residues
modulor d. Therdore,

rd 1 _ q@—"nd-+b+]

_ g@-r+bd _ q@a-r+24d . .. _ ~ad
jim T[22 = jm &9 )1—q ).+ (1— g2
q—ow 1 1—qS+J g—w (1_qd)(1_q2d)”,(l_qrd)

NG

Let &, (x) be then-th cyclotomic polynomial. The fdlowing easily proved result can be
found in [8, Equation (10)].

Proposition 2.2. The Gaussian polynomial [T] can be factorized into
q

m =[] %a(@.
q d

where the product is over all positive integersd < m such that |[k/d] + [(m — k)/d] <
Lm/d].

Indeed, using the factorizati@ — 1 =[], 24(q), we have

m m
@ PDm= D" 2at@ = D™ [] Sa(@)™,
d=1

k=1 dlk
and so
m (d; PDm = d|—[k/d k)/d
— ’ — é Lm/d]—Lk/d]—-L(m=K)/d]
[kL (G DK(G: Dmk (El a@

Proposition 2.2ow follows from the obvious fact that

la + B8] — o] —[B]=00r] fora, B e R.

3. Proof of Theorem 1.1
Multiplying both sides of {.2) by 3% 4 x?"/(q; 0)2n and equating coefficients af™,
we see thaEpn(q) satisfies the followingecurrence relation:

m—1

Eam(@) =—) [221?} E2k(a). 3.1
q

k=0
This enables us to obtain the first values of gaeuler numbers:
Eo(q) = —E2(q) =1,
Ea(@) = g1+ 9L+ 9% + %,
Eo(d) = —9°(1+ ) (1+ 49 +50° + 79° + 69* + 50° + 29° + q") + ¢°.

We first estalish the following result.
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Lemma3.l. Letm>n=>0and1l<d < m. Then

Eom(q) = g™ "Ean(q) (mod $24(q)) if andonlyif m=n (modd). (3.2
Proof. Itis easy to see thatemma 3.1is equivalent to

Eom(¢) =™ "Exn(¢) ifandonlyif m=n (modd), (3.3)

where¢ € C is a d-th primitive root of unity.

We proceed by induction om. Staement 8.3) is trivial form = 1. Suppose it holds
for every number less than. Letn < mbe fixed Writem=ad +bwithO<b <d -1,
then 2n = a(2d) + 2b. By Proposition 2.1we sedhat

2m — (@ 2b , wherek =rd+s 0<s<d-1 (3.4)
2k§ r 234

Hence, by 8.1) and @.4), we have

m—1

Eom(0) =~ Y. [zzﬂ Eac()
¢

k=0

a b-s
ar 2b
=->> (‘f) [ZSL Ezrg2s(0),

r=0 s=0

b a—éps
2b
== > (f‘) [ZSL Eardt2s(0), (3.5)

s=0 r=0

wheres; j equals 1ifi = j and O otherwise.
By the induction hypothesis, we have

Eardt2s(¢) = ¢"9E2s(¢) = (=1)" Eas(2). (3.6)

& a\ [2b 2b a a
Z <r) |:231|§ EZI’d+ZS(§) = |:231|§ Ezs(g) ; (r) (_1)[ —0.

r=0
Therefore, Eq.3.5 implies that
Eam(¢) = (=)*E2(0) = ¢ PEa(?). (3.7)
From @3.7) we seehat
Eam(¢) = ¢™"Ean(¢) <= Ean(0) = t"PEap(2).
By the induction hypothesis, the latter equality is also equivalent to
n=b (modd) <= m=n (modd).

This completes the proof. O



V.J.W. Guo, J. Zeng / European Journal of Combinatorics 27 (2006) 884-895 889

Since
[T (@
2d
g’ -1 «kad
1+q%= = =[] @x@.
e I
k|d 2k td

and any two different cyclotomic polynomials are relatively prifieeorem 1.Ifollows
fromLemma 3.1

Remark. The sufficiency part 0f3.2) is equivalent to Désarménien’s resul{

Ezkm+2n(Q) = (—=1)™Ezn(q) (Mod $2«(q)).

4. Proof of Theorem 1.3

Recall that theg-tangent number$,,;1(q) are defined by

2n+l o0 2n+l n
T oxame _
Z 2n+1(Q) (@: Qanst Z( (q Q) 2n+1 /Z( b (@: Q)Zn

n=0

Foata p] proved thatTon1-1(q) is divisible by Dn(q), where

n
l_[ Ew(q), if nis odd
Dn(q) = %=1 n
1+ ]_[ Ew(q), if nis even
k=1

and

S .
Evn(@) = [[@+9®").  wheren = 2% withr odd
j=0

Notice that this implies thalon+1(q) is divisible by both(1+q)" and(—q; q)n, a result
due to Andrews and Gessée][
To prove our theorem & need thedllowing relation relatingS, (q) to Ton41(q).

Lemma4.1. For everyn > 1, we have
" 2
> (=Dfq* [zﬂ S2(e) Sen-26(A) = Tan-1(@) (L — G, (4.2)
k=0 q

Proof. Replcingx by q%/2ix (i = +/—1) in (1.3), we obtain

(DA (DN [ gy
3 ()P _ 4.2
ZSZn(Q) (@ Dan n2=(:] (Q; Dzn n;,(q;qnn 2
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Multiplying (1.3 with (4.2), we get

0 X2n 0 (_1)nqnx2n
DU 4.3
(nZ g, q)zn) (Z =D ) (*3)

n q2n 2n n X2n
Z(_ Y a om Z(_ V@ om
. qun 1 2n—1 N X2n
=1 1 -1
+XZ( S GO /n;,( " @ D

2n+1

=1 T —_— 4.4
+Xn2=:0 2n+1(0) @ Do (4.4)

Equating the coefficients of?" in (4.3) and @.4), we are led to4.1). 0O

It is easily seen thaP,(q) is the least common multiple of the polynomials(1 +
q2'+1)LT+1J (r > 0). For anyr > 0, there holds

[T 2@
q4r+2 -1 d|(4r+2)
g2 _ = P2d(Q).
q g+l —1 [ @4 d|(lzj£1) s
d|2r+1)

It follows that

Pa(@) = [ Pars2(@'z5.

r>0

Theorem 1.3s trivial for n = 1. Suppose it holds for all integers less thanin the
summation of the left-hand side &f.(), combining the first and last terms, we can rewrite
Eqg. @.1) as fdlows:

n-1
L+ D@ + 3D EEL S2e(@) Son-2x(@)

= Tan-2() (L — g™). 4.5)
For everyk (1 < k < n — 1), by the induction hypothesis, the polynomial
Sk(9) Sn—2«(q) is divisible by

k n—k
P(@) Po—k(@) = [ | Parqa(en'zal¥lasal,

r>0

And by Proposition 2.2we have

2n
2n _ 1 (2n—
— l_l @d(q)LZn/dJ [2k/d|—[(2n 2k)/dj’
2K qa d=1



V.J.W. Guo, J. Zeng / European Journal of Combinatorics 27 (2006) 884-895 891

which is clearlydivisible by

l_[ ¢4r+2(Q)LmJ_LZT1J_LmJ

r>0

Hence, the produc[tgﬂ] Sk (qQ) Sn-2«(q) is divisible by
q
[T 242 24! = Poc@.
r>0

Note thatPh_1(q) | Dn_1(q) and pn(q) | (1 — q2"). Therdore, by @.5 and the
aforementioned result ofdata, we immediately have

Pa(@) | 1+ (—1)"q") Sn(@).
SinceP,(q) is relatively prime ta1 + (—1)"g"), weobtainP,(q) | $n(q).

Remark. SinceS(q) = 1 andS(q) = 1+ q, using @.5 andthe divisibility of Ton11(q),
we can prove by induction th&n(q) is divisible by (1+ q)" without using the divisibility
property of Gaussian polynomials.

5. Thegeneralized g-Euler numbers
The generalized Euler numbers may be defined by

o) kn 0 kn -1
) X . X
2 Ein (kn)! <nz=o (kn)!) '

n=0

Same congruences for these numbers are give6,8).JA g-analogue of generalized Euler
numbers is given by

o) (k) xkn o ykn -1
n;) n (@ (a; Q)kn ngo (d; Dkn ’

or, recurrently,

-1

kn

E@=1  E¥a@=-3 [kj} EX@. nx>1 (5.1)
j=0 q

Note thatES,? (q) is equal to(—1)" frk k() studied by Stanley12, p. 148, Equation (57)].

Theorem5.1. Letm > n>0and1l <d <m.Letk > 1, andlet ¢ € C bea 2kd-th
primitive root of unity. Then

Eam(c?) = MMV EQ () (5.2)
if and only if
m = n (modd).
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The proof is by induction omfm and using the recurrence definitioB.1). Since it is
analogous to the proof oB8(3), we omit it here. Note that? in Theorem 5.1is akd-th
primitive root of unity. Therefore, whekis even om = n mod 2, Eq. §.2) is equivalent
to

EX @) = EX (@) (mod da()).

As merntioned before,
1+029= ] 2a@.

i |2%d
2i t 2d

and we obtain the following theorem and its corollaries.

Theorem5.2. Letk> 1. Letem>n>0and1 <d <m. Then

E2@)(q) = g2 m-n Eéf:]) (@) (mod 1+ g2 %) if and onlyif m=n (modd).

2km

Corollary5.3. Letk > 1. Letm > n > 0and m — n = 25~ 1r withr odd. Then

EZ) @ =q? ™V ES) @) (mod ]‘[(1+q2””f)>.
i=0

Corollary 5.4. Let k, m, n, s be as above. Then

E2Y = g@) (mod %).

2km = —2kn
Furthermore, numerical evidence seems to suggest the following congruence conjecture
for generalized Euler numbers.

Conjecture5.5. Letk > 1. Letm > n > 0and m — n = 25~ 1r withr odd. Then
2 oK
Eékn: = E5 ) +2° (mod 2*Y).
This conjecture is clearly a generalization of Stern’s result, which correspondsde-tiie
case.

6. Concluding remarks

We can also consider the following variants of @peSalié numbers:

. x2n 3 x2n o0 n x2n
= -1 , 6.1
Zszn(q)(q;q)zn nzo(q;q)zn Z( " @ Do (61
2n 0 q2nX2n N 2n
- 6.2
Z&”(q) (d: Dzn nzo(q q)zn /Z( VG 62

2n

~ X n
- 6.3
é&"(‘” (0 Dan (q q)zn /Z( VG q)2n ©-3
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Table 2 _

Table of Qn(q)
n 1 3 5 7
Qn(@ 1 1+92 A+0221+g% A+0%%21+ghHa+qb
n 2 4 6 8

Qn@ 1+9%2 1+0D2A+9H A+992A+aH%1+9% 1+9H32+aH%Q+a® L +a])

Multiplying both sides of §.1)—(6.3) by Zﬁo:o(—l)”xzn/(q;q)zn and equating
coefficients ofx2", we obtain

n-1
Sm@ =1- > -1"* | 3] Sca (6.4
k=0 q
n-1
S = - Y -0 ] S, 6.5)
k=0 q
s n2 - nk|2n| =
Sn@=a" =Y (-1 [ZK} Sk(@). (6.6)
k=0 q
This gives

S@=1 S@=2 @ =21+9)1+q+09?,
S@=1 S@=1+¢% S =91+gHL+39+7*+7>,
MW=L S@=1+q  S@=ad+DA+g)2+0q),
and
Ss(q) = 2(1+9)(1+q + 29° + 49° + 69" + 69° + 60°
+50" +49° +29° + 00,
S(@) = 21+ P21 + 49 + 797 + 60° + 60* + 60° + 54° + 297 + ¢°),
S$(@ = g° L+ DA+ gL+ g2+ 49 + 502 + 49° + 39* + ).
Forn > 1 define three sequences of polynomials:

Qn(@) =[] 2ar (@',

r>1
o) _ | Qn(@, if nis even
On(@ = {(1 +9)Qn(@), if nisodd

Qn(@ =A+qL+g>---1+g".

Note thaiQ,(q) is the least common nitiple of the polynomialg1+qg2)lz),r > 1 (see
Table 2.
From 6.4)—(6.6), it is easy to derive by induction that far> 1,

21Sn(@),  A+9) 2@,  A+q) | Sn@.
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Moreover, the computation of the first values of these polynomials seems to suggest the
following stronger result.

Conjecture6.1. For n > 1, we have the following divisibility properties:

Q@ I Sn@, Q@ Sn@, Qn(@ | Sn(@).

Similarly to theproof of Lemma 4.1 we can obtain

1) q2n 2n
(Zsm(q)(q s )(Zsm(q) @D )

2n+1

(0 P2nt1’

=1—qx%+ (1+ Q)X Z Ton+1(Q)
n=0
which yields

Z( g™ [gk} Sk(@Sn-2(@) = Ten-1(@ (L + D) (L - >,
q
n>2. (6.7)

However, it seems difficult to usé (7) to provedirectly the divisibility ofSZn(q) by Qn(q)
because when is even 1+ (—1)"q?" is in general not relatively prime t@n(q)
Finally it is well-known thatE2,(q) has a nice combinatorial interpretation in terms

of generating functions of alteating permutations. Recall thaparmutation x1X2 - - - Xon

of [2n] :== {1, 2,...,2n} is calledalternating, if X1 < X2 > X3 < +-+ > Xon—1 < Xon.
As uaial, the number ofnversions of a permtationx = X1X2 - - - Xp, denoted inx), is
defined to the number of pairs, j) suchthati < j andx; > xj. It is known (see 12,

p. 148, Proposition.36.4]) that

(—D)"Ezn(@) = Y g™,

wherer ranges overlathe alternating permutations @2n]. It would be interesting to find
a conbinatorial proof ofTheorem 1.Wwithin the alternating permutations model.

A permuationx = X1X2 - - - Xon Of [2n] is said to be &alié permutation, if thereexigs
an even index R suchthat xixz - - - Xok is alternating andok < Xok+1 < --- < Xopn, and
Xok—1 IS called thdast valley of x. It is known (seeT, p. 242, Exercise 4.2.13]) th%thn
is the nunier of Salié permutations ¢2n].

Proposition 6.1. For every n > 1 the polynomial %Ezn(q) is the generating function for
Salié permutations of [2n] by number of inversions.

Proof. Substituting 1.2) into (6.1) and compring coefficients ok?" on both sides, we
obtain

n

So@ = Y| 0] -DFEmca. )
q

k=0
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As [gﬂ]q is the generating function for the permutations 8f22"~2¢ by number of

inversiongsee e.g.12, p. 26, Proposition 1.3.17]), it is easily seen tﬁﬁt] (—DHKEx(q)
q

is the generating function for permutatioxs= X1X2 - - - Xon Of [2n] suchthatxy Xz - - - X2k

is alternating andok1 - - - Xon IS increasing with respect to number of inversions. Notice
that such a permutationis a Salié permutation with the last vall@y_1 if xox < Xok+1

or Xok+1 if Xok > Xok41. Therdore, the right-hand side oB6(8) is twice the gnerating
function for Salié permutations d2n] by number of inversions. This completes the
proof. O

It is also possible to find similar combinatorial interpretations for the oth&dié
numbers, which are left to the interested readers.
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